-
명현 교수, 해파리 제거 로봇 개발
- 내년 4월 중 상용화 예정 -
우리대학 건설및환경공학과 명현 교수 연구팀이 해파리 제거 로봇 ‘제로스’(JEROS: Jellyfish Elimination RObotic Swarm)의 개발을 완료하고 시험중에 있다고 20일 밝혔다.
최근 서남해안 일대에 해파리 떼가 출몰하면서 해파리로 인한 사망사고와 조업 손실 (연간 3,000억원 정도 추산) 이 큰 문제가 되고 있는 가운데, 명현 교수 연구팀은 3년 전부터 해파리를 제거할 수 있는 무인 자동화 시스템인‘제로스"개발에 착수했다.
무인 수상 로봇의 일종인 ‘제로스’는 기다란 원기둥처럼 생긴 두 개의 동체가 부력을 이용해서 물 위에 떠 있을 수 있으며 동체에 붙어 있는 두 개의 수중 모터를 이용해서 전・후진 및 회전이 가능하다. 또한 장착된 카메라와 GPS (위성항법장치)를 이용해 해파리 떼의 위치와 자신의 위치를 파악한 후 제거작업 영역을 파악해 작업 경로를 미리 계산한다.
제로스는 또한 무인 항법을 통해 스스로 움직이며 추진 속도를 이용하여 아래에 부착된 그물 쪽으로 해파리가 미끄러져 들어오게 하고, 믹서기처럼 특수 제작된 강력한 프로펠러가 해파리를 완전 분쇄하게 된다.
제로스는 수작업에 비해 약 3배 이상의 경제성이 있는 것으로 추정되고 있다. 시험운영 결과, 제로스 1대가 6노트 정도의 속도로 진행한다고 했을 때 처리 용량은 시간당 약 400kg이다. 1시간에 1톤을 제거하는 그물 방식의 수작업과 비슷한 효과를 얻기 위해서 연구팀은 3대 이상의 로봇을 동시에 군집으로 제어하도록 설계했다.
연구팀은 현재 군산 새만금, 경기도 시화호, 경남 마산만 등에서 보름달물해파리 제거 시험을 완료하였고, 해파리 제거 능력의 성능 보완을 통하여 기술 개발이 완료되는 내년 4월경에는 기업체를 통해 상용화를 진행할 계획이다.
제로스 기술은 해파리 제거 외에도 해양 순찰 및 경계, 원유 유출 방지, 부유 쓰레기 제거 등 다양한 목적으로도 활용될 수 있다.
명현 교수 연구팀은 이번 연구로 지난 6월 한국로봇학회 종합학술대회에서 최우수논문상을 수상하기도 했다.
한편, 이번 연구는 교육과학기술부가 2010년부터 3년간 지원한 신진 연구과제를 통해 수행됐다. 끝.
2012.08.22
조회수 13086
-
임춘택 교수, 새로운 무선충전 전달장치 개발
- 온라인 전기차 OLEV 용 ‘I형 무선전력 전달장치’ 개발 -
- 기존의 레일형 플랫폼 대비 공사기간 10분의 1로 단축하고 선로비용 기존의 80% 수준 -
우리 대학이 개발한 온라인 전기차 올레브(이하 OLEV)가 경제성을 더욱 개선한 새로운 무선전력 전달장치 개발로 실용화에 한걸음 더 다가섰다.
우리 대학 원자력및양자공학과 임춘택 교수(49세)가 기존의 레일형 급전선로와 형태가 다른 ‘I형 무선전력 전달장치’를 개발했다
임 교수 연구팀이 개발에 성공한 I형 무선전력 전달장치는 모듈형 제작이 가능하기 때문에 기존의 급전선로에 비해 콘크리트 공사가 필요 없고 아스팔트 시설비용도 절약할 수 있어 온라인 전기차에 적용할 경우 설치비용을 크게 절감할 수 있는 이점이 있다.
KAIST OLEV는 도로 밑 약 15cm 지점에 매설한 전선에서 발생하는 자기장을 차량하부에 장착한 집전장치에서 전기에너지로 변환해 운행하는 새로운 개념의 친환경 전기차인데, KAIST가 지난 2009년 세계 최초로 도로주행용 무선전기차 개발에 성공했다. KAIST OLEV는 신호대기 등 정차 중에 충전할 수 있으며 주행 중에는 실시간으로 전력을 전달받아 운행한다.
현재 대전 KAIST 문지캠퍼스를 비롯해 여수 엑스포전시관, 서울대공원에서 각각 시범운행 중인 OLEV는 레일형으로 급전선로 폭이 80cm이며 공극간격 20cm에서 집전장치 당 15kW까지 충전이 가능하다.
KAIST OLEV는 그 동안 기술력과 아이디어 면에서는 크게 인정을 받은 반면 기존 도로에 설치하기 위해선 도로를 파고 시스템을 설치해야 하는 등 경제성 문제로 상용화에 어려움이 있다는 지적을 받아왔다.
임 교수팀이 이번에 새로 개발한 ‘I형 무선전력 전달장치’는 급전선로 폭을 10cm로 줄여 기존선로 폭의 1/8로 줄였으며 무선전력도 공극간격 20cm에서 25kW까지 전달할 수 있도록 성능이 대폭 향상됐다. 또한 차량의 좌우 허용편차도 24cm로 넓어졌으며 전자기장도 국제적 설계 가이드라인을 충족해 인체안전성에도 문제가 없다.
급전선로 폭이 획기적으로 줄어들고 공장에서 대량으로 모듈제작이 가능해진 만큼 그동안 경제성 측면에서 지적을 받아 온 KAIST OLEV로서는 새로운 급전시설 개발이 실용화에 큰 도움이 될 것으로 전문가들은 예상하고 있다. 임춘택 교수도 “기존 레일형에 비해 공사시간은 10분의 1로 크게 단축되고 급전선로 비용도 80%에 불과해 시공성과 경제성이 모두 크게 개선됐다”고 강조했다.
임 교수 연구팀의 이번 연구성과는 작년 12월 국제전기전자공학회 전력전자 저널 (IEEE Trans. on Power Electronics)에 게재됐다. 임 교수는 올 2월 미국에서 열린 국제 전기차학회 (Conference on Electric Roads & Vehicles)에 초청돼 관련기술에 대해 강연도 진행했다. 한편, 이번 연구는 지식경제부가 지원한 온라인 전기자동차(OLEV) 원천기술개발과제를 통해 수행됐다.
2012.06.22
조회수 14823
-
OLEV, 전자파 안전성 검증받아
- 온라인전기자동차 전자파 측정치, 국제기준보다 훨씬 낮아 -
KAIST(총장 서남표)는 올 해 6월과 9월 두 차례에 걸쳐 온라인전기자동차(OLEV)의 전자파를 측정한 결과 모두 안전성을 검증받았다고 19일 밝혔다.
지난 6월 전자파인체유해성 확인을 위해 한국표준과학연구원에서 서울대공원에 설치된 온라인전기열차를 대상으로 전자파를 측정했으며, 그 결과 0.05~61mG로 국내 기준인 62.5mG(밀리가우스)이내에 들었다.
한국표준과학연구원은 IEC 62233 ‘가전기기 및 유사기기에 대한 자속밀도 측정을 위한 시험조건 규정’에 따라 온라인전기자동차 측면 및 중앙에서부터 일정 거리(30cm)와 높이(5cm~150cm)를 달리하면서 총 22곳의 전자파를 측정했다.
또한, 온라인전기자동차의전자파에 대한 안정성 문제를 제기해왔던 교육과학기술위원회 소속 박영아 의원이 교육과학기술부를 통해 온라인전기자동차의 전자파 재측정을 요구해 지난 13일 또 한 번의 측정이 이뤄졌다. 이번 측정은 박영아 의원실 지정기관인 (주)EMF Safety에서 진행했고 지난 6월과 동일한 열차를 사용했다.
이번 전자파 측정결과도 0~24.1mG로 국내 기준을 만족했으며, 측정 현장에는 측정의 신뢰도를 보장하기위해 박영아 의원실을 비롯한 몇몇 외부 참관인도 이 자리에 함께했다.
참고로, 이 측정결과는 미국 국제전기전자기술자협회(IEEE)가 정하고 있는 전자파 인체보호기준(1,100mG)보다는 훨씬 안전한 수준이다.
현재 온라인전기자동차에 대한 구체적인 전자파 측정방법이 법으로 명시되어 있지 않아 이번 측정에는 박영아 의원이 요청한 대로 IEC 62110 ‘전력설비에 대한 자기장 측정방법’을 따라 온라인전기자동차 측면 및 중앙에서부터 거리 20cm에서 높이(50cm~150cm)를 달리하면서 총 15곳의 전자파를 측정했다.
한편, KAIST 온라인전기자동차는 차량 하부에 장착된 고효율 집전장치를 통해 주행 및 정차 중 도로에 설치된 급전라인으로부터 비접촉 자기유도 방식으로 전력을 공급받아 충전 걱정 없이 운행하는 신개념의 전기자동차 개발 사업이다.
붙임 : 측정 기준 및 방법, 참고사항
<측정기준 및 방법>
○‘전자파 인체보호 기준(방송통신위원회 고시 제2008-37호)’에 명시되어 있는
일반인에 대한 전자파 강도 기준에 근거
(3kHz 이상~150kHz 미만, 자속밀도 6.25μT=62.5mG)
- 온라인전기자동차의 경우, 20kHz 사용으로 자속밀도 기준은 62.5mG임
○IEC* 62233, 가전기기 및 유사기기에 대한 자속밀도 측정을 위한 시험조건규정
○IEC 62110, 전력설비에 대한 자기장 측정 방법
* IEC(International Electrotechnical Commission) : 국제전기표준회의
<참고사항>
국내에서 현재 따르고 있는 3kHz이상~150kHz미만에서 자속밀도를 제정한 국제비전리방사보호위원회(Intenational Commission on Non-Ionizing Radiation Protection, ICNIRP)는 62.5mG를 기준으로 하고 있으며, 미국 국제전기전자기술자협회(Institute of Electrical and Electronics Engineers, IEEE)는 동일한 주파수에서 1,100mG를 기준으로 삼고 있음.
2010.09.24
조회수 15508
-
유회준 교수 연구팀, 세계 최초로 가슴에 붙이는 심장건강상태 모니터링 장치 개발
- 붙이는 파스형태의 심장 건강상태 모니터링 장치, ‘스마트 파스’ 세계 최초개발 -
전기및전자공학과 유회준 교수 연구팀이 세계 최초로 가슴에 붙이는 심장건강상태 모니터링 장치를 최근 개발했다.
붙이는 파스형태로 제작돼 휴대폰 등의 휴대용 단말기기를 통하여 원격으로 켜고 끌 수 있으며 데이터통신도 가능하다.
고성능 반도체 집적회로(헬스케어 칩)가 파스 안에 장착돼 있고 파스 표면에 25개의 전극이 형성돼 있어 다양한 형태로 전극을 사용할 수 있으며 심장의 수축·이완 능력과 심전도 신호를 동시에 검출해 무선으로 외부에 알려 준다.
이 장치의 핵심은 크게 심혈관 저항 및 심전도 측정 집적회로(헬스케어 칩)와 이 칩을 내부에 장착하고 있으며 표면에 전극을 형성시킨 4층 헝겊형 기판기술이다.
직물 위에 전극 및 회로 기판을 직접 인쇄할 수 있는 P-FCB(Planar Fashionable Circuit Board)기술로 서로 다른 헝겊에 전극, 무선 안테나, 회로기판(이 헝겊의 중앙부에 헬스 케어 칩을 부착)형성한 후 플렉시블 배터리와 함께 적층해 이 장치를 제작했다.
또한 전극 제어부, 심전도·혈관 저항 측정부, 데이터 압축부, SRAM, 무선 송수신 장치 등을 가지고 초저전력으로 동작하는 특수 헬스 케어 집적회로(크기 5mm X 5mm)를 제작해 헝겊형 회로 기판 위에 부착시켰다.
전극이 형성된 헝겊 면에는 접착제가 발라져 있어 일반 파스처럼 가슴에 부착시켜 사용하게 된다. 완성품은 가로 세로 15Cm X 15Cm이며 두께는 가장 두꺼운 중앙 부분이 1mm정도이다.
특히, 헬스 케어 칩은 차동전류주입기와 재구성이 가능한 고감도 검출 회로를 통해 심혈관 임피던스 변화를 16가지 서로 다른 조합으로 0.81% 신호왜곡 이하로 검출 가능하다.
KAIST 얜롱(Yan Long, 전기및전자공학과 박사과정)연구원은 “헝겊 위에 직접 전극 배열을 인쇄하고 건강관리 칩과 플렉시블 배터리를 부착함으로서 편의성과 착용감을 확보해 간편하게 심전도와 심혈관 임피던스 변화를 동시에 측정할 수 있다.”라고 말했다.
자신의 건강상태를 실시간으로 간편하게 자가진단을 할 수 있어 지속적인 관리가 필요한 만성 심부전 환자 등을 포함한 심혈관 질병이 있는 사람들에게 안성맞춤이다.
만성 심혈관 관련 환자를 위한 건강관리 기술은 2000년 이후 전 세계적으로 꾸준한 관심을 받고 있으나, 대부분 심장의 전기적 특성 즉 심전도 신호만을 검출하는데 그쳤다. 현재까지 개발된 측정기는 크고 이물감이 있으며, 유선으로 연결되는 등 외부와의 저전력 통신이 어려워 일상생활에서 널리 사용되지 못하고 있다.
이번 연구결과는 지난 2월 8일부터 10일까지 미국 샌프란시스코에서 개최된 국제반도체회로 학술회의(ISSCC)에 발표됐다.
❋ ISSCC (International Solid State Circuit Conference: 국제 고체 회로 학회)학회:1954년부터 국제 전기전자공학회 (IEEE SSCS) 주관으로 매년 2월에 미국 San Francisco, Marriot 호텔에서 개최되는 이 분야 최고 권위의 학회로 ‘반도체 올림픽’이라고 불리우고 있음. 전 세계로부터 4천여명의 학자와 연구원들이 참여한 가운데 매년 반도체 분야 최우수 논문 210편만을 엄선하여 3일 동안 발표하면서 연구 성과와 정보를 교환하고 미래의 반도체 산업과 기술을 논의하는 학회임.
(사진 1) 스마트 파스 구조
스마트 파스는 총 4층 구조로 형성 되어 있으며 그 크기는 15cm x 15cm 이다. 가슴에 부착하는 면인 제 1층은 25개의 전극이 형성되어 이 중 4개는 전류 주입 전극으로 16개는 전압 측정 전극으로 5개는 기준 전극으로 사용할 수 있다. 제 2층은 직물형 인덕터(2.2uH, Q=9.2)로 스마트 파스의 무선 데이터 통신을 지원한다. 제 3층은 플렉시블 배터리(1.5V, 30mAh)로 파스를 하루이상 지속적으로 사용할 수 있도록 전원을 공급한다. 제 4층은 직물형 인쇄 회로 기판으로 그 위에 고성능 반도체 칩이 장착되어 있다.
(사진 2) 스마트 파스 사용 예
사용자가 스마트 파스를 가슴에 붙인 모습을 보여 준다. 휴대폰 등의 휴대용 단말기기를 통하여 원격으로 켜고 끌 수 있으며 25개의 전극배열이 피부와 접착되어 있어 심혈관 저항 및 심전도를 여러 가지 형태로 측정하여 내장메모리에 저장 또는 휴대용 단말기기로데이터를 고속으로 송신도 가능하다.
(사진 3) 스마트 파스 측정 예스마트 파스를 통하여 측정된 심전도 신호와 심혈관의 저항의 변화를 보여 준다. 이러한 신호로부터 심장의 수축 이완 능력을 편리하게 일상생활 속에서 측정 가능하다.
(사진 4) 스마트 파스에 장착된 헬스 케어 칩
직물형 인쇄 회로 기판에 장착되어 있는 고성능 반도체칩(헬스케어 칩)의 사진과 제원이다. 본 헬스케어 칩은 최대 3.9mW의 전력을 소모하며 평균 2.4mW의 전력소비로 0.1옴이하의 저항 변화를 고감도 회로를 통하여 검출 가능케 하는 것이 특징이다.
2010.02.10
조회수 20377
-
생명화공 장호남 교수팀, 음식물 쓰레기 완전 소멸기술 개발
- 한국 아파트에도 선진국 형 無수거 시스템 도입 가능해져
- 지하실에 완전 밀폐식 소규모 시설 설치로 위생적 처리 가능
- 현장 실험 성공, 국내 특허 취득, 미국 등 국제 특허 출원 중
아파트 주방에서 나오는 음식물 쓰레기를 수거하지 않고 소규모 처리 시설만으로 효과적으로 정화할 수 있는 획기적인 기술이 개발되었다.
생명화학공학과 장호남(張虎男, 61) 교수팀은 공동주택 주방에서 분쇄기(디스포저)를 통해 음식물 쓰레기를 분쇄한 뒤, 지하실에 설치된 완전 밀폐식 소규모 처리조에서 정화해 생활하수와 함께 배출할 수 있는 처리 기술(HEROS)을 개발했다고 밝혔다.
이 기술은 미세스크린 고속분리장치에서 하수를 분리 배출하고, 분리된 음식물쓰레기는 고농도 미생물 반응기에서 혐기성 소멸 처리법을 통해 정화한다. 이 처리법은 에너지 소모가 거의 없으며 화학 약품을 전혀 사용하지 않는 친환경적인 정화 기술이다.
주방에 설치된 디스포저로 분쇄된 후 0.1~0.3mm 크기의 미세 스크린 고속분리장치로 분리된 하수는 BOD 150mg/L. SS250mg/L로 추가 처리 없이 도시 하수관로로 바로 배출할 수 있다. 이는 일본에서 정한 도시 하수관로 배출기준인 BOD 300mg/L. SS 300mg/L 보다 훨씬 낮은 수치다. 이렇게 처리된 하수는 분쇄기 처리 기법에 의한 처리 시에 문제가 되는 하수관로 침적을 일으키지 않으며, 하수 종말 처리장 용량에도 전혀 영향을 미치지 않는다.
또한, 아파트에서 음식물 쓰레기를 처리하는 전용 하수관의 별도 설치 없이 기존의 하수관을 사용할 수 있어 신설 아파트는 물론이고 기존 아파트에도 활용이 가능한 기술로 평가되고 있다.
지난 3월부터 9개월간 張 교수팀은 KAIST 교수 아파트에서 이 음식물 쓰레기 처리 기술 현장 실험을 실시하여 성공적인 결과를 얻었다. 이 실험 결과를 바탕으로 내년에는 서울 강남 소재 아파트에서 실용화 추진을 위한 본격적인 실증 실험을 실시할 예정이다.
張 교수는 “HEROS 처리 기술이 본격적으로 활용되면 음식물 쓰레기가 더 이상 생활에 불편과 환경을 오염시키는 것을 막을 수 있을 것”이라고 밝혔다.
이 연구결과는 최근 국내 특허를 취득했으며, 미국, 일본, 싱가폴 등에 국제 특허를 출원 중에 있다.
<HEROS공정도>
2005.12.08
조회수 15871