-
노화된 세포를 젊은 세포로 되돌리는 초기 원천기술 개발
우리 연구진이 노화된 세포를 젊은 세포로 되돌리는 역 노화 원천기술을 개발했다. 이를 활용하면 노화 현상을 막고 각종 노인성 질환을 사전 억제할 수 있는 치료제를 개발할 단서를 찾을 수 있을 것으로 기대된다.
우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 시스템생물학 연구를 통해 노화된 인간 진피 섬유아세포를 정상적인 젊은 세포로 되돌리는 역 노화의 초기 원천기술을 개발했다고 26일 밝혔다.
조광현 교수팀의 이번 연구 결과는 ㈜아모레퍼시픽 기술연구원과의 산학 공동연구를 통해 최초로 개발된 노화 인공피부 모델에서 이 기술을 적용함으로써 입증하는 데 성공했다.
조 교수팀은 이번 연구를 위해 인간 진피 섬유아세포의 세포노화 신호전달 네트워크의 컴퓨터 모델을 개발한 후 시뮬레이션 분석을 통해 노화된 인간 진피 섬유아세포를 젊은 세포로 되돌리는데 필요한 핵심 인자를 찾아냈다. 이후 노화 인공피부 모델에서 핵심 인자를 조절함으로써 노화된 피부조직에서 감소된 콜라겐의 합성을 증가시키고 재생 능력을 회복시켜 젊은 피부조직의 특성을 보이게 하는 역 노화 기술을 개발했다.
연구팀 관계자는 이러한 역 노화 기술은 노화된 피부 등을 포함한 노화 현상 및 많은 노인성 질환의 발생을 사전에 억제할 수 있도록 근본적인 치료전략을 제시한 것으로 건강 수명을 오랫동안 유지하고 싶은 인류의 꿈을 실현하는데 한 걸음 다가선 결과라고 의미를 부여했다.
바이오및뇌공학과 안수균 박사과정 학생, 강준수 연구원, 이수범 연구원과 ㈜아모레퍼시픽의 바이오사이언스랩이 참여한 이번 연구 결과는 국제저명학술지인 `미국국립과학원회보(PNAS)'에 게재됐다.(논문명: Inhibition of 3-phosphoinositide-dependent protein kinase 1 (PDK1) can revert cellular senescence in human dermal fibroblasts)
현재 널리 연구되고 있는 회춘 전략은 이미 분화된 세포를 역분화시키는 4개의 `OSKM(Oct4, Sox2, Klf4, c-Myc) 야마나카 전사인자'를 일시적으로 발현시켜 후성유전학적 리모델링(epigenetic remodeling)을 일으킴으로써 노화된 세포를 젊은 상태로 되돌리는 부분적 역분화(partial reprogramming) 전략이다.
이 기술은 노화된 세포가 젊은 세포로 되돌아갈 수 있다는 것을 증명했지만 종양의 형성과 암의 진행을 유발하는 부작용이 생긴다. 따라서 이와 같은 부작용을 배제할 수 있는 정교한 제어 전략이 과학 난제로 남아있었다.
조 교수팀은 이러한 난제 해결을 위해 시스템생물학 연구 방법을 통해 노화된 인간 진피 섬유아세포를 정상적인 젊은 세포로 되돌릴 수 있는 핵심 조절인자를 오래전부터 탐구하기 시작했다. 4년에 걸친 연구 끝에 단백질 합성, 세포의 성장 등을 조절하는 mTOR와 면역 물질 사이토카인의 생성에 관여하는 NF-kB를 동시에 제어하고 있는 상위 조절 인자인 `PDK1(3-phosphoinositide-dependent protein kinase 1)'을 찾아냈다.
연구팀은 PDK1을 억제함으로써 노화된 인간 진피 섬유아세포를 다시 정상적인 젊은 세포로 되돌릴 수 있음을 분자 세포실험 및 노화 인공피부 모델 실험을 통해 입증했다. 연구를 통해 노화된 인간 진피 섬유아세포에서 PDK1을 억제했을 때 세포노화 표지 인자들이 사라지고 주변 환경에 적절하게 반응하는 정상 세포로서 기능을 회복하는 현상을 확인했다.
연구 결과 노화된 인간 진피 섬유아세포에서는 PDK1이 mTOR와 NF-kB를 활성화해 노화와 관련된 분비 표현형(SASP: Senescence Associated Secretary Phenotype)을 유발하고 노화 형질을 유지하는 것과 연관돼 있음을 밝혀냈다. 즉, PDK1을 억제함으로써 다시 원래의 정상적인 젊은 세포 상태로 안전하게 되돌릴 수 있음을 증명한 것이다.
조 교수팀이 연구 과정에서 찾아낸 표적 단백질의 활성을 억제할 수 있는 저분자화합물과 관련된 신약개발과 그리고 전임상실험을 통해 노화된 세포의 정상 세포화라는 연구 결과는 새로운 노인성 질환의 치료 기술과 회춘 기술에 관한 연구를 본 궤도에 올려놓은 초석을 다진 획기적인 연구로 평가받고 있다.
실제 ㈜아모레퍼시픽 기술연구원은 이번 연구 결과로부터 동백추출물에서 PDK1 억제 성분을 추출해 노화된 피부의 주름을 개선하는 화장품을 개발중이다.
조광현 교수는 "그동안 비가역적 생명현상이라고 인식돼왔던 노화를 가역화할 가능성을 보여줬다ˮ라며 "이번 연구는 노화를 가역적 생명현상으로 인식하고 이에 적극적으로 대처해 건강 수명을 연장하는 한편 노인성 질환을 예방할 수 있는 새로운 시대의 서막을 열었다ˮ라고 의미를 부여했다.
이번 연구는 조광현 교수 연구팀의 시스템생물학 기반 가역화 기술 개발의 일환으로 이뤄졌으며, 연구팀은 지난 1월 같은 기술을 적용해 대장암세포를 다시 정상 대장 세포로 되돌리는 연구에 성공한 바 있다.
한편 이번 연구는 한국연구재단의 중견연구자지원사업과 KAIST 그랜드챌린지 30 (KC30) 프로젝트 및 아모레퍼시픽 R&D 센터의 지원으로 수행됐다.
2020.11.26
조회수 42799
-
항암제 표적 단백질을 약물 전달체로 쓴다?
우리 대학 바이오및뇌공학과와 생명과학과 공동연구팀이 항암제의 표적 단백질을 전달체로 이용하는 역발상 연구결과를 내놨다. 항암제를 이용한 암 치료에 새로운 가능성이 열릴 전망이다.
우리 대학 생명과학과 김진주 박사·바이오및뇌공학과 이준철 박사과정 학생이 공동 제1 저자로 그리고 생명과학과 전상용·바이오및뇌공학과 최명철 교수가 공동 교신저자로 참여한 이번 연구결과는 국제학술지 ‘어드밴스드 머티리얼스(Advanced Materials, IF=27.4)’ 8월 20일 字 표지논문으로 게재됐다. (논문명: Tubulin-based Nanotubes as Delivery Platform for Microtubule-Targeting Agents)
우리 몸속 세포가 분열할 때 염색체*들은 세포 한가운데에 정렬해 두 개의 딸세포로 나눠지는데 이 염색체들을 끌어당기는 끈이 바로 `미세소관(microtubule)'이다. 미세소관은 `튜불린(tubulin)' 단백질로 이루어진 긴 튜브 형태의 나노 구조물이다.
☞ 염색체(Chromosome): DNA와 단백질이 응축하여 만드는 막대 형태의 구조체로 생명체의 모든 유전 정보를 지니고 있다.
미세소관을 표적으로 하는 항암 약물인 ‘미세소관 표적 치료제(microtubule-targeting agents)’는 임상에서 다양한 암의 치료에 활용되고 있다. 이들은 암세포 미세소관에 결합해 앞서 언급한 끈 역할을 방해함으로써, 암세포의 분열을 억제, 결국 사멸을 유도한다.
튜불린 단백질에는 이 약물이 강하게 결합하는 고유의 결합 자리(binding site)가 여럿 존재한다. 연구진은 이 점에 착안해 표적 물질인 튜불린 단백질을 약물 전달체로 사용한다는 획기적인 아이디어를 세계 최초로 구현했다. 공동연구팀은 튜불린 나노 튜브(Tubulin-based NanoTube), 약자로 TNT로 명명한 전달체를 개발하고 항암 효능을 실험으로 확인한 것이다. TNT라는 이름에는 암 치료를 위한 폭발물이라는 의미도 담고 있다.
미세소관 표적 치료제는 TNT에 자발적으로 탑재된다. 약물 입장에서는 세포 내 미세소관에 결합하는 것과 다를 바가 없기 때문이다. 이는 항암제마다 적합한 전달체를 찾아야 했던 기존의 어려움을 해소해준다. 즉 TNT는 미세소관을 표적으로 하는 모든 약물을 탑재할 수 있는 잠재력을 가진‘만능 전달체’인 셈이다.
연구진은 먼저 튜불린 단백질에 블록 혼성 중합체*인 PEG-PLL(pegylated poly-L-lysine)을 섞어 기본적인 TNT 구조를 만들었다. 여기서 튜불린은 빌딩 블록, PEG-PLL은 이들을 붙여주는 접착제이다. 그 다음, 도세탁셀(docetaxel), 라우리말라이드(laulimalide), 그리고 모노메틸아우리스타틴 E(monomethyl auristatin E) 3종의 약물이 TNT에 탑재됨을 보였다. 이 약물들은 실제 유방암, 두경부암, 위암, 방광암 등의 화학요법에 활용되고 있는 항암제들이다.
☞ 블록 혼성 중합체(Block copolymer): 두 종류 이상의 단위체로 이루어진 고분자 화합물로, 각 단위체들이 길게 반복되는 특징이 있다.
연구팀은 또 탑재되는 약물의 종류와 개수에 따라 TNT의 구조가 변할 뿐 아니라 약물 전달체로서의 물리·화학적 특성도 달라진다는 사실을 밝혀냈다. 이는 TNT가 탑재하려는 약물에 맞춰 자발적으로 형태를 변형하는‘적응형 전달체’임을 보여주고 있다.
연구팀은 특히 항암제가 탑재된 TNT가 엔도좀-리소좀 경로(endo-lysosomal pathway)로 암세포에 들어가 뛰어난 항암 및 혈관 형성 억제 효과를 보인다는 점을 세포 및 동물을 대상으로 한 실험을 통해 확인했다.
적응형 만능 약물 전달체가 성공적으로 구현이 가능했던 배경에는 연구진이 보유한 튜불린 분자 제어 기술력 때문이다. 연구진은 튜불린 단백질을 일종의 레고 블록으로 보았다. 블록의 형태를 변형하고 쌓아 올리는 방식을 제어하여, 튜브 형태의 구조체를 조립하는 노하우를 축적해왔다. 연구팀은 이번 연구에서 포항 방사광 가속기의 소각 X-선 산란 장치를 이용해 TNT 구조를 나노미터(nm, 10억 분의 1미터) 이하의 정확도로 분석했다.
공동연구팀은 "이번 연구결과는 지금까지 학계에 보고되지 않은 완전히 새로운 방식의 약물 전달체를 구현했다는 점에서 의미가 크다ˮ고 밝혔다. 연구팀은 이어 "TNT는 현재까지 개발된, 또 향후 개발예정인 미세소관 표적 치료제까지 운송할 수 있는 범용적인 전달체이며, 다양한 항암제들의 시너지 효과(synergy effect)를 기대할 수 있는 `플랫폼 전달체'가 될 것ˮ이라고 강조했다.
이번 연구는 한국연구재단 (중견연구, 리더연구, 방사선기술, 바이오의료기술개발사업) 한국원자력연구원, KUSTAR-KAIST의 지원으로 수행됐다.
2020.08.25
조회수 29645
-
1mm 크기 예쁜꼬마선충에서 노화 늦추는 단백질 찾았다
우리 대학 연구진이 '예쁜꼬마선충'(C. elegans)에서 수명 연장을 돕는 단백질을 찾아냈다.
우리 대학 생명과학과 이승재 교수와 포항공대 김경태 교수 연구팀이 예쁜꼬마선충에서 세포 내 에너지 조절 센서인 'AMPK'를 활성화해 노화를 지연시키는 단백질 'VRK-1'을 발견했다.
예쁜꼬마선충은 몸길이 1㎜ 정도의 선충류다. 배양이 쉽고 사람과 유전 정보 특성이 닮아 실험동물로 널리 활용된다.
한편 에너지 센서라 불리는 AMPK는 공복이나 운동 등으로 에너지 수준이 낮아질 때 활성화돼 세포가 항상성을 유지하도록 돕는다.
예쁜꼬마선충과 생쥐, 초파리 등에서 AMPK가 식이를 제한해 수명 연장을 돕는 역할을 한다는 연구는 그동안 활발히 진행되어 왔지만, AMPK를 자극하는 상위 조절 인자는 알려지지 않았다.
연구팀은 VRK1이 활성화될 때 2만여개의 예쁜꼬마선충 유전자가 단백질로 발현되는 패턴이 AMPK가 활성화될 때의 패턴과 비슷하다는 사실을 발견했다.
VRK1은 AMPK를 인산화시키고, 인산화된 AMPK는 미토콘드리아가 세포에 에너지를 공급하는 데 필수적인 과정인 '전자 전달계'의 기능을 억제함으로써 노화를 늦춘다는 것도 확인했다.
실제 VRK1의 자극에 반응하지 않는 AMPK 돌연변이 예쁜꼬마선충에서는 수명 연장 효과가 나타나지 않았다.
생명과학과 이승재 교수는 "이번 연구 결과는 AMPK 이상으로 인한 대사질환 치료와 항노화 약물 개발에 기여할 것"이라고 말했다.
한편, 이번 연구 결과는 국제 학술지 '사이언스 어드밴시스'(Science Advances) 7월 2일 자에 실렸다.
2020.07.16
조회수 25295
-
동맥경화증을 효과적으로 치료할 수 있는 혈관 내 플라크 제거 나노기술 개발
국내 연구진이 만성 혈관염증 질환인 죽상 동맥경화증을 나노 기술을 이용해 기존 치료법보다 효과적으로 치료할 수 있는 기술개발에 성공해 전 세계 사망원인 1위로 꼽히는 심혈관질환을 정복하는데 한 걸음 더 성큼 다가섰다.
우리 대학 바이오및뇌공학과 박지호 교수 연구팀이 나노 기술을 이용해 죽상 동맥경화증(atherosclerosis) 치료를 위한 체내 약물전달 기술을 개발했다.
죽상 동맥경화증이란 오래된 수도관이 녹슬고 각종 이물질이 가라앉아 들러붙으면 좁아지듯이, 혈관 안쪽에 콜레스테롤과 같은 지방질로 이뤄진 퇴적물인 `플라크(plaque)'가 쌓여 혈류 장애를 일으키는 만성 혈관염증 질환이다. 플라크가 혈관을 막게 되면 심근경색, 뇌졸중 등 심각한 병을 유발한다.
KAIST 바이오및뇌공학과 졸업생 김희곤 박사가 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `제어 방출 저널 (Journal of Controlled Release)' 3월 10일 字 및 `ACS 나노 (ACS Nano)' 4월 28일 字 온라인판에 각각 게재됐다. (논문명: Cyclodextrin polymer improves atherosclerosis therapy and reduces ototoxicity / Affinity-Driven Design of Cargo-Switching Nanoparticles to Leverage a Cholesterol-Rich Microenvironment for Atherosclerosis Therapy)
일반적으로 약물치료의 경우 대표적 고지혈증 약물인 스타틴(statin)을 경구투여한다. 이 방법은 혈액 내 콜레스테롤 농도를 낮춰 콜레스테롤이 플라크에 쌓이는 것을 억제하기엔 효과적이나 이미 형성된 플라크를 제거하는 데에는 한계가 있다. 따라서 환자들은 평생 스타틴을 복용해야 하며 플라크라는 잠재적인 위험요소를 안고 살아가야 한다.
연구팀은 문제 해결을 위해 콜레스테롤과 결합하면 이를 녹일 수 있어 제거하기가 쉽다고 알려진 일종의 당 화합물인 `사이클로덱스트린(cyclodextrin)'을 연구에 사용했다.
박지호 교수 연구팀은 사이클로덱스트린을 약 10 nm(나노미터) 크기의 폴리머(polymer, 중합체) 나노입자 형태로 제조, 정맥 주입을 하면 기존 사이클로덱스트린보다 약 14배 효과적으로 플라크에 축적되어 보다 효과적으로 플라크를 제거할 수 있다는 결과를 얻었다고 학술지 `제어 방출 저널'에 게재했다. 연구팀은 또 사이클로덱스트린은 귀 내이의 유모세포(hair cell)를 손상시켜 청력손실을 일으킨다고 알려졌으나 이를 폴리머 나노입자 형태로 제조하면 체내분포양상을 변화시켜 귀 내이에 잘 축적되지 않기 때문에 청력손실을 방지할 수 있다는 사실을 알아냈다.
이와 함께 사이클로덱스트린과 스타틴을 자기조립(self-assembly)을 통해 약 100nm(나노미터) 크기의 나노입자 형태로 제조, 정맥 주입하자 사이클로덱스트린은 플라크 내에서 콜레스테롤을 제거하며 스타틴은 혈관을 좁게 만들었던 주요 원인인 염증성 대식거품세포(macrophage foam cell)를 줄이는 현상을 찾아냈다. 연구팀은 이같이 사이클로덱스트린과 스타틴의 동시 전달은 각각의 약물을 따로 전달했을 때보다 월등하게 효과적이기 때문에 시너지 효과를 가질 수 있는 약물들을 이용한 복합치료(combination therapy)의 필요성을 `ACS 나노 저널'을 통해 제시했다.
박지호 교수는 "이번 연구 결과를 계기로 평생 약물을 복용해야 하는 환자들의 삶의 질을 크게 개선할 수 있을 것으로 기대가 된다ˮ며 "종양 치료를 위해서 주로 개발되었던 약물전달 나노 기술이 전 세계 사망원인 1위인 심혈관질환을 효과적으로 치료하는 데도 기여할 수 있음을 보여준 연구”라고 의미를 부여했다.
한편, 이번 연구는 한국연구재단과 KAIST의 지원을 받아 수행됐다.
2020.05.29
조회수 12623
-
산소 이용해 알츠하이머 유발 단백질 독성 개선
화학과 임미희 교수 연구팀이 공기 중의 산소를 이용해 알츠하이머 유발에 관여하는 단백질의 독성을 개선할 수 있는 화학적 도구를 설계하는 데 성공했다.
연구팀은 알츠하이머 발병에 관여한다고 알려진 구리-아밀로이드 베타 복합체의 응집과 이에 의한 발생한 세포 독성을 개선할 수 있는 화학적 도구를 설계하고, 구리 배위권 이중 변형을 통한 작용 원리를 분자적 수준에서 밝혀냈다.
한지연 박사과정이 1 저자로 참여한 이번 연구 결과는 국제 학술지인 미국 국립과학원회보(PNAS)에 2월 27일 자로 게재됐다.(논문명 : Mechanistic approaches for chemically modifying the coordination sphere of copper-amyloid-β complexes)
전이 금속 중 구리 이온은 항산화 작용과 신경전달물질 생성 등 신체에 필수적인 생리적 기능에 관여한다. 건강한 사람의 뇌와 달리 알츠하이머병 같은 퇴행성 뇌 질환 환자의 뇌에서는 이러한 구리 이온의 항상성이 완전히 무너져있다고 알려져 있다.
알츠하이머 발병에 밀접하게 관계가 있다고 알려진 아밀로이드 베타 펩타이드는 구리 이온과 강하게 결합할 수 있다. 구리 이온은 아밀로이드 베타의 응집을 촉진할 뿐만 아니라, 활성산소를 과다하게 생성해 신경독성을 일으킨다. 따라서 구리-아밀로이드 베타 복합체를 표적하고 그 배위 결합을 효과적으로 막을 수 있는 화학적 접근 기법이 최근 주목받고 있다.
연구팀은 알츠하이머 발병 원리에 직간접적으로 관여하는 구리 이온이 공기 중 산소와 반응할 수 있다는 점을 이용했다. 이에 구리-아밀로이드 베타 복합체와 상호작용할 수 있도록 화합물을 합리적으로 설계하고, 해당분자가 산소가 존재하는 환경에서 구리 배위권에 위치한 특정 아미노산에 결합 및 산화에 의한 이중 변형을 일으킨 것을 확인했다.
연구팀은 연구팀이 개발한 배위권 이중 변형 기법에 따라 구리-아밀로이드 베타의 응집 과정 및 섬유 형성 정도가 확연히 달라짐을 확인했다. 이 기법을 통해 구리 이온의 병리학적 특성 중 하나인 활성산소 생성 정도 또한 두드러지게 개선된 것을 관찰했다.
나아가 기존의 기법과 비교했을 때 구리-아밀로이드 베타 복합체에 의한 세포 독성을 더욱 효과적으로 회복시키는 것으로 나타났다.
이번 연구는 산소의 유무, 전이 금속의 종류, 산화 활성 금속의 산화수, 아밀로이드성 단백질의 종류 등 다양한 변수의 통제를 통해 해당 화합물이 아밀로이드 베타의 구리 배위권을 어떻게 변형시켰는지에 대한 작용 원리를 분자적 수준에서 제안했다는 의의가 있다.
임미희 교수는 “알츠하이머 발병에 관여한다고 알려진 구리 이온이 산소와 반응할 수 있다는 점을 역으로 이용했다”라며 “이번 연구에서 최초로 발표한 단백질 내 구리 배위권 이중 변형 기법을 바탕으로, 다른 퇴행성 뇌질환의 치료제 개발에도 더욱 박차를 가할 수 있을 것이다”라고 말했다.
이번 연구는 한국연구재단과 KAIST의 지원으로 수행됐다.
2020.03.03
조회수 14643
-
김재경 교수, 수학 모델 통해 세포 상호작용 원리 규명
〈김재경 교수〉
우리 대학 수리과학과 김재경 교수와 라이스 대학 매튜 베넷(Matthew Bennett), 휴스턴 대학 크레시미르 조식(Kresimir Josic) 교수 공동 연구팀이 합성생물학과 수학적 모델을 이용해 세포들이 넓은 공간에서 효과적으로 의사소통하는 방법을 발견했다.
이번 연구 결과는 국제 학술지 ‘네이처 케미컬 바이올로지(Nature Chemical Biology)’ 10월 14일 자 온라인판에 게재됐다. (논문명 :Long-range temporal coordination of gene expression in synthetic microbial consortia)
〈박테리아들의 복잡한 상호작용을 수학을 이용해 원위의 점들의 상호작용으로 단순화한 모식도〉
세포들은 신호 전달 분자(Signalling molecule)를 이용해 의사소통하는데 이 신호는 보통 아주 짧은 거리만 도달할 수 있다. 그런데도 세포들은 넓은 공간에서도 상호작용하며 동기화를 이뤄낸다.
이는 마치 넓은 축구장에 수만 명의 사람이 주변 3~4명의 박수 소리만 들을 수 있는데도 불구하고 모두가 같은 박자로 손뼉을 치는 것과 비슷한 상황이다. 이러한 현상이 가능한 이유는 무엇일까?
연구팀은 합성생물학을 이용해 만든 전사 회로(Transcriptional circuit)를 박테리아(E. coli)에 구축해 주기적으로 신호 전달 분자를 방출할 수 있도록 했다. 처음엔 제각기 다른 시간에 신호 전달 분자를 방출하던 박테리아들은 의사소통을 통해 같은 시간에 주기적으로 분자를 방출하는 동기화를 이뤄냈다.
하지만 박테리아를 넓은 공간으로 옮겼을 땐 이러한 동기화가 각 박테리아의 신호 전달 분자 전사 회로에 전사적 양성 피드백 룹 (Transcriptional positive feedback loop)이 있을 때만 가능하다는 것을 발견했다.
양성 피드백 룹은 단백질이 스스로 유전자 발현을 유도하는 시스템으로, 전달받은 신호를 증폭하는 역할을 한다. 연구팀은 이러한 역할을 자세히 이해하기 위해 편미분방정식(Partial differential equation)을 이용해 세포 내 신호 전달 분자의 생성과 세포 간 의사소통을 정확하게 묘사하는 수학적 모델을 개발했다.
그러나 전사 회로를 구성하는 다양한 종류의 분자들 사이의 상호작용을 묘사하기 위해서는 고차원의 편미분방정식이 필요했고 이를 분석하기는 쉽지 않았다.
이를 극복하기 위해 연구팀은 시스템이 주기적인 패턴을 반복한다는 점에 착안해 고차원 시스템을 1차원 원 위의 움직임으로 단순화했다. 달은 고차원인 우주 공간에서 움직이지만, 궤도를 따라 주기적으로 움직이기에 달의 움직임을 1차원 원 위에서 나타낼 수 있는 것과 같은 원리이다.
이를 통해 연구팀은 박테리아 사이의 복잡한 상호작용을 원 위를 주기적으로 움직이는 두 점의 상호작용으로 단순화할 수 있었다.
연구팀은 양성 피드백 룹이 있으면 두 점의 위치 차이가 커도 시간이 지날수록 점점 차이가 줄어들어 결국 동시에 움직이는 것을 확인했다. 연구팀은 이러한 수학적 분석 결과를 실험을 통해서 검증함으로써 넓은 공간에서 세포가 효과적으로 상호작용하는 방식을 규명했다.
김재경 교수는 “세포들이 자신의 목소리는 낮추고 상대방의 목소리에는 더 귀 기울일 때만 한목소리를 낼 수 있다는 점이 인상적이다”라며 “이러한 원리는 수학을 이용한 복잡한 시스템의 단순화 없이는 찾지 못했을 것이다. 복잡한 것을 단순하게 볼 수 있도록 해주는 것이 수학의 힘이다”라고 말했다.
2019.10.15
조회수 12952
-
김범준 교수, 빛에 반응해 모양과 색 변하는 스마트 마이크로 입자 개발
〈 김범준 교수, 이준혁 박사, 구강희 박사 〉
우리 대학 생명화학공학과 김범준 교수 연구팀이 빛에 의해 모양과 색을 바꿀 수 있는 스마트 마이크로 입자 제작기술을 개발했다.
아주 작은 입자의 모양이나 색을 원하는 대로 가공(fabrication)할 수 있게 되면 군용장비의 위장막(artificial camouflage), 병든 세포만 표적하는 약물전달캡슐, 투명도 및 색이 변하는 스마트 윈도우나 외부 인테리어 등에 활용할 수 있다.
마이크로 입자의 모양과 색 변화 연구는 주로 약물전달이나 암세포 진단과 같은 생물학적 응용을 위해 산도(pH), 온도, 특정 생체분자 같은 물리화학적 자극과 관련해 주로 이뤄졌다.
하지만 이런 자극들은 의도하는 국소부위에만 전달하기 어렵고 자극 스위치를 명확하게 켜고 끄기 어려운 것이 단점이었다.
반면 빛은 원하는 시간 동안 특정부위에만 쬐어줄 수 있고 파장과 세기를 정밀하게 조절, 선택적·순차적으로 입자 모양을 변형시킬 수 있어 해상도 높은 자극으로 주목받는다.
하지만 기존 빛에 감응하는 스마트 입자는 제작방법이 복잡하고, 편광방향으로의 길이 연장만 가능한 등 정밀한 모양변화가 어려워 활용에 한계가 있었다.
연구팀은 빛에 의해 분자구조가 변해 친수성 정도나 광학적 특성을 조절할 수 있는 계면활성제*를 개발하고 이들의 자가조립방식을 기반으로 빛에 반응해 모양과 색깔이 변하는 수 마이크로미터 크기의 스마트 입자를 대량으로 제작하는 데 성공했다.
빛을 쬐어준 시간과 파장에 따라 구형에서 타원체, 튤립, 렌즈형태 등으로 변화시킬 수 있는 한편 입자의 색도 조절할 수 있다.
또한 100μm 이하의 국소 부위에만 빛을 조사함으로써 원하는 위치에서 원하는 모양을 정교하게 유도할 수 있다.
특히 반응하는 빛의 파장이 서로 다른 계면활성제를 활용하면 입자 모양의 변화를 여러 단계로 조절하거나 원래의 모양으로 되돌리는 변화가 가능하다.
이러한 스마트 입자로 만들어진 박막이나 용액은 그 성질을 정밀하게 조절할 수 있어 정보를 담거나 신호를 넣을 수 있는 스마트 소재로도 활용할 수 있다.
과학기술정보통신부와 한국연구재단이 추진하는 미래소재디스커버리사업, 글로벌프론티어사업 및 중견연구자지원사업의 지원으로 수행된 이번 연구의 결과는 화학 분야 국제학술지 잭스(JACS, Journal of the American Chemical Society)에 9월 4일 게재되는 한편 표지 논문으로 선정됐다.
김범준 교수는 “빛을 이용해 모양과 색이 조절되는 스마트 입자 제작 플랫폼을 개발한 것으로 빛을 신호로 국소부위 입자의 성질을 정밀하게 조절할 수 있어 스마트 디스플레이, 센서, 도료, 약물전달 등에 응용될 수 있을 것으로 기대된다.”고 설명했다.
□ 그림 설명
그림1. 김범준 교수 연구성과 개념도
2019.09.09
조회수 13899
-
박수형 교수, 중증열성혈소판감소증후군 예방 백신 개발
〈 박수형 교수 〉
우리 대학 의과학대학원 박수형 교수 연구팀이 일명 살인진드기병으로 불리는 중증열성혈소판감소증후군(SFTS) 바이러스 감염을 예방하는 백신을 개발했다.
충북대학교 의과대학 최영기 교수와 진원생명과학(주)이 함께 참여한 공동 연구팀은 개발한 백신이 감염 동물모델 실험을 통해 중증열성혈소판감소증후군 바이러스 감염을 완벽하게 억제할 수 있음을 증명했다.
이번 연구를 통해 예방 백신 도출 및 검증 성과뿐 아니라 면역학적 관점에서 백신의 감염 예방 효능을 극대화할 수 있는 항원을 제시함으로써, 추후 중증열성혈소판감소증후군 바이러스에 대한 대응 전략 확립 및 연구에 기여할 것으로 기대된다.
곽정은 박사과정과 충북대학교 김영일 박사가 1 저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 8월 23일 자 온라인판에 게재됐다. (논문명 : Development of a SFTSV DNA vaccine that confers complete protection against lethal infection in ferrets)
흔히 살인진드기병으로 알려진 SFTS는 SFTS 바이러스에 감염된 매개 진드기에 물려 발생하는 신종 감염병으로, 최근 발생 빈도 및 지역의 확산으로 WHO에서도 주의해야 할 10대 신, 변종 바이러스 감염병으로 지정한 질병이다.
일반적으로 6~14일의 잠복기 후 고열(38∼40℃)이 3~10일 이어지고, 혈소판 감소 및 백혈구 감소와 구토, 설사 등 소화기 증상이 발생하며, 일부 사례에서는 중증으로 진행돼 사망에 이르기도 한다.
2013년에 한국에서 처음으로 환자가 발생한 이래 발생 건수가 매년 꾸준히 증가하고 있지만, 진드기 접촉 최소화를 통한 예방이 제시될 뿐 현재까지 예방 백신이 개발되지 않았다.
연구팀은 31종의 서로 다른 SFTS 바이러스의 유전자 서열로부터 공통 서열을 도출해 백신 항원을 설계하고, 진원생명과학의 플랫폼을 이용해 DNA 백신을 제작했다.
DNA 백신 기술은 기존 백신과 달리 바이러스 자체가 아닌 유전자만을 사용해 안전하고 기존 백신 대비 광범위한 면역 반응을 유도할 수 있다는 장점이 있다.
연구팀은 감염 동물모델인 패럿에서 백신이 감염을 완벽하게 억제하며 소화기 증상, 혈소판 및 백혈구 감소, 고열, 간 수치 상승 등 감염 환자에서 발생하는 임상 증상들 역시 관찰되지 않음을 확인했다.
특히 연구팀은 해당 바이러스의 전체 유전자에 대한 5종의 백신을 구상해 SFTS 예방 백신 개발에 대한 전략적 접근법을 제시했다.
연구팀은 수동전달 기법(passive transfer)을 통해 바이러스의 당단백질에 대한 항체 면역 반응이 감염억제에 주요한 역할을 함을 규명했다. 또한, 비-당단백질에 대한 T세포 면역 반응 역시 감염 예방에 기여할 수 있음을 밝혔다.
박 교수는 “이번 연구는 SFTS 바이러스 감염을 완벽하게 방어할 수 있는 백신을 최초로 개발하고, 생쥐 모델이 아닌 환자의 임상 증상과 같게 발생하는 패럿 동물모델에서 완벽한 방어효능을 증명했다는 중요한 의의가 있다”라고 말했다.
최 교수는 “이번 SFTS 바이러스 백신 개발 연구 성과는 국제적으로 SFTS 백신 개발을 위한 기술적 우위를 확보했다는 중요한 의의가 있으며, 연구결과를 바탕으로 지속적인 연구를 통해 SFTS 바이러스 백신의 상용화에 기여할 수 있을 것이다”라고 말했다.
향후 임상개발은 이번 연구에 함께 참여한 DNA 백신 개발 전문기업인 진원생명과학(주)을 통해 진행할 계획이다.
이번 연구는 보건복지부 감염병위기대응기술개발사업의 지원을 받아 수행됐다.
2019.08.28
조회수 14143
-
허원도 교수, 변화무쌍 스위치 단백질 관찰하는 바이오센서 개발
〈 허 원 도 교수 〉
우리 대학 생명과학과 허원도 교수 연구팀(기초과학연구원 인지 및 사회성 연구단)이 신호전달 스위치단백질의 활성을 모니터링하는 새로운‘바이오센서’를 개발하고 살아있는 생쥐의 신경세포 활성화를 관찰하는데 성공했다.
이번 연구를 통해 암세포의 이동과 신경세포 활성화 등 다양한 세포 기능에 관여하는 신호전달 스위치 단백질의 변화무쌍한 과정을 실시간으로 볼 수 있을 것으로 기대된다.
이번 연구결과는 국제 학술지 ‘네이처 커뮤니케이션즈’(Nature Communications)에 1월 14일자 온라인 판에 게재됐다.
세포의 신호전달 스위치 단백질은 스위치가 켜지면 기계가 작동하듯 활성화 여부로 세포의 기능을 제어한다. 대표적인 신호전달 스위치단백질인 small GTPase은 세포의 이동, 분열, 사멸과 유전자 발현 등에 관여한다. 핵심 단백질인 small GTPase를 제어할 수 있다면 세포의 기능도 조절할 수 있어 많은 연구팀들이 연구주제로 삼고 있다.
허원도 교수 연구팀이 그간 연구 노하우를 바탕으로 개발한 새로운 바이오센서는 small GTPase 활성의 모든 변화 과정을 실시간으로 볼 수 있는 도구다. 광유전학과 결합해 다양한 방식으로 관찰이 가능하고 민감도가 커 생체 내 두꺼운 조직 안에서 벌어지는 수 나노미터(nm) 크기의 변화까지도 정밀하게 볼 수 있다는 게 특징이다. 고감도 성능을 이용하면 살아있는 동물의 암세포 전이 및 뇌 속 신경세포의 구조변화를 관찰할 수 있어 향후 강력한 이미징 기술이 될 것으로 기대된다.
일반적으로 small GTPase의 활성을 관찰하는 데엔 형광 공명 에너지전달(FRET) 방식을 이용했다. 하지만 FRET 방식은 광유전학과 광 파장이 겹쳐 정작 관찰해야 할 세포신호의 변화는 보기가 어려웠다. 또 민감도가 낮아 동물 모델에 적용하는 것도 제한적이었다.
연구팀은 단백질 공학 기술로 5가지 종류의 small GTPase 단백질의 바이오센서를 개발하고 두 가지 파장(488nm, 561nm)에서 관찰이 가능한 바이오센서를 개발, 이를 동시에 분석하는데 성공했다. 연구진이 개발한 바이오센서는 기존 바이오센서가 청색광을 활용하는 광유전학 기법의 파장과 겹치는 문제를 효과적으로 극복해 세포의 이동방향을 살피면서 동시에 공간적 기능도 분석할 수 있는 장점이 있다.
연구팀은 유방암 전이 암세포에 바이오센서를 발현시키고, 광유전학 기술로 암세포 이동 방향을 조절하자 small GTPase 단백질이 활성화됨을 확인했다. 이 과정에서 암세포의 이동 방향이 변할 때, 세포 내 small GTPase가 이리저리 움직이며 활성화하는 모습을 실시간 이미징하는데 성공했다. 연구진은 small GTPase의 활성을 실시간으로 탐지해 추후 암치료물질을 탐색하는 등 다방면의 기술 접목이 가능할 것으로 전망한다.
더 나아가 IBS 연구진은 미국 막스 플랑크 플로리다 연구소(Max Plank Florida Institute)의 권형배 박사 연구팀과 공동연구를 진행했다. 연구진은 공 위를 달리는 실험으로 깨어있는 생쥐인 실험군과 마취된 대조군의 뇌 영역의 운동 피질의 신경세포에서의 small GTPase단백질의 활성을 비교하는데 성공했다. 살아있는 쥐에서 수 나노미터 단위의 신경세포 수상돌기 가시 수상돌기 가시에서 실시간으로 변화하는 small GTPase 단백질의 활성을 관찰한 것은 이번이 처음이다.
이번에 개발된 바이오센서는 시냅스처럼 수 마이크로미터 단위의 미세한 구조에서도 목표한 단백질을 관찰할 수 있을 만큼 민감도가 크다. 실험쥐의 운동행동과 같은 생리학적 현상에 지장을 주지 않는 자연스러운 상태에서 뇌 영역을 바로 실시간으로 관찰할 수 있어 뇌 관련 연구에도 다양하게 적용될 수 있다.
연구를 이끈 허원도 교수는 “이번 연구는 small GTPase 단백질을 생체 내에서 관찰하기 위한 기존의 바이오센서들의 기술적 한계를 극복하는데 성공했다”며 “특히 청색 빛을 활용한 광유전학 기술과 동시에 적용할 수 있어 다양한 세포막 수용체와 관련된 광범위한 세포신호전달연구와 뇌인지과학연구에 접목이 가능할 것으로 기대된다”고 말했다.
□ 그림 설명
그림1. small GTPase 바이오센서 개발
그림2. small GTPase 바이오센서를 이용해 유방암 전이 암세포 관찰
그림3. 운동 행동 중인 생쥐 실시간 관찰
2019.01.15
조회수 10562
-
이봉재, 이승섭 교수, 금속-유전체 간 근접장 복사열전달량 제어 기술 개발
〈 왼쪽 위부터 시계방향으로 이승섭 교수, 이봉재 교수, 임미경 박사, 송재만 박사과정 〉
우리 대학 기계공학과 이봉재 교수와 이승섭 교수 연구팀이 금속-유전체 다층구조 사이의 근접장 복사열전달량을 측정하고 제어하는 데 성공했다.
연구팀의 복사열전달 제어 기술은 차세대 반도체 패키징과 열광전지, 열관리 시스템 등에 적용 가능하고 폐열의 재사용을 통한 에너지 절감, 사물인터넷 센서의 지속적 전력 공급원 등에 응용 가능할 것으로 기대된다.
임미경 박사와 송재만 박사과정이 주도한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 10월 16일자 온라인 판에 게재됐다. (논문명 : Tailoring Near-Field Thermal Radiation between Metallo-Dielectric Multilayers using Coupled Surface Plasmon Polaritons, 표면 플라즈몬 폴라리톤 커플링을 이용한 금속-유전체 다층구조 사이의 근접장 복사열전달 제어)
두 물체 사이의 거리가 나노미터 단위일 때 물체 사이의 복사열전달은 거리가 가까워질수록 매우 크게 증가한다. 그 값은 복사열전달량의 이론적인 최댓값이라 여겨졌던 흑체 복사열전달량보다 1천 배에서 1만 배 이상 커질 수 있다. 이 현상을 근접장 복사열전달이라고 한다.
최근 나노기술의 발전으로 다양한 물질 사이의 근접장 복사열전달을 규명하는 연구가 활발히 진행되고 있다. 특히 나노구조에서 발생하는 표면 폴라리톤 커플링을 이용하면 두 물체 사이의 근접장 복사열전달량을 크게 향상시킬 수 있을 뿐 아니라 파장에 따른 복사열전달 제어가 가능해진다.
이런 이유로 박막, 다층나노구조, 나노와이어 등 나노구조를 도입한 근접장 복사열전달 적용 장치에 대한 이론 연구가 계속 진행되고 있다. 그러나 현재까지 대부분의 연구는 등방성(等方性) 물질 사이의 근접장 복사열전달만을 측정하는 데 초점이 맞춰졌다.
이봉재, 이승섭 교수 공동 연구팀은 커스텀 MEMS 장치 통합 플랫픔과 3축 위치 나노제어 시스템을 이용해 금속-유전체 다층나노구조 사이의 진공 거리에 따른 근접장 복사열전달량을 최초로 측정하는 데 성공했다.
금속-유전체 다층나노구조는 일정한 두께를 갖는 금속과 유전체가 반복적으로 쌓인 구조를 말한다. 금속-유전체 단일 층 쌍을 단위 셀이라 부르며 단위 셀에서 금속 층이 차지하는 두께의 비율을 충전인자라 한다.
연구팀은 다층나노구조의 충전인자와 단위 셀 개수의 변화에 따른 근접장 복사열전달량 측정 결과를 통해 표면 플라즈몬 폴라리톤 커플링으로 근접장 복사열전달량을 크게 향상시켰으며, 나아가 열전달의 파장별 제어가 가능함을 증명했다.
연구를 주도한 이봉재 교수는 “그동안 실험적으로 규명된 등방성 물질은 근접장 복사열전달의 파장별 제어에 한계가 있었다”며 “이번에 밝혀낸 다층나노구조를 사용한 근접장 복사열전달 제어 기술은 열광전지, 다이오드, 복사냉각 등 다양한 근접장 복사열전달 적용 장치 개발에 첫걸음이 될 것으로 기대된다”고 말했다.
이번 연구는 한국연구재단 중견연구자사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 근접장 복사열전달 측정 3차원 개념도와 개발한 장치
그림2. 금속-유전체 다층나노구조의 충전 인자에 따른 복사 열전달량 분석 결과
2018.11.14
조회수 11210
-
김학성 교수, 빛에 의해 스위치처럼 작동하는 단백질 개발
〈 김 학 성 교수 〉
우리 대학 생명과학과 김학성 교수 연구팀이 빛으로 결합력을 제어할 수 있는 결합 단백질을 개발해 빛을 이용한 세포 신호전달 제어에 새 방법을 제시했다.
이는 제한적이었던 기존 광 제어 기술의 한계를 극복해 다양한 세포신호 전달 제어에 활용할 수 있을 것으로 기대된다.
허우성, 최정민 박사가 주도한 이번 연구는 앙케반테 케미(Angewandte Chemie) 6월 27일자 온라인 판에 게재됐다.
빛을 이용한 세포의 신호전달 조절은 물리, 화학적 방법보다 비 침습적이고 빠르기 때문에 신호전달 연구에 효과적으로 활용 가능하다.
그러나 지금까지는 자연에 존재하는 광 스위치 단백질에 의존했기 때문에 이 단백질들을 각각의 신호전달 조절에 맞도록 다시 설계해야 하는 복잡하고 힘든 과정으로 인해 응용이 극히 제한됐다.
최근에는 합성된 광스위치 분자를 단백질에 결합시켜 빛에 따라 그 기능을 조절하려는 연구가 진행됐다. 그러나 이 경우 빛에 따라 스위치처럼 작동하는 단백질의 설계방법이 단백질 종류에 따라 다르고 복잡하다는 한계가 있었다.
연구팀은 LRR(Leucine-rich repeat) 단백질을 기반으로 아조벤젠 유래 광 스위치 분자를 합리적 방법으로 단백질 모듈에 결합시켰다. 이를 통해 빛으로 단백질의 구조변화를 유도해 표적에 대한 결합력을 조절했다.
또한 빛에 의한 상피세포 성장인자 수용체(EGFR, epithelial growth factor receptor)에 대한 결합력 조절이 가능한 단백질을 개발하고, 이를 이용해 세포 내 EGFR 신호 전달을 빛으로 조절할 수 있음을 증명했다.
연구팀은 LRR 모듈로 구성된 단백질의 구조 특성을 기반으로 광스위치 분자를 반복 모듈 사이에 결합시켜 빛으로 표적에 대한 결합력이 효과적으로 조절되는 단백질의 합리적 설계 방법을 개발했다.
이는 다양한 표적에 대해 결합하는 LRR 단백질에 광범위하게 적용할 수 있는 기반 기술로, 빛을 이용한 세포 내 다양한 신호 전달 조절에 활용할 수 있는 새로운 단백질 창출 방법을 제시한 것이다.
이번 연구는 한국연구재단의 글로벌연구실사업(GRL)과 중견연구자지원사업을 통해 수행됐다.
□ 그림 설명
그림1. LRR 단백질 기반으로 합리적 설계를 통해 광스위치 단백질 개발 및 이를 이용한 세포 신호전달 조절
2018.08.13
조회수 11198
-
고규영 교수, 녹내장 발생에 관여하는 신호전달체계 규명
우리 대학 의과학대학원 고규영 교수가 녹내장(Glaucoma)이 발생하고 진행되는 근본적 원인을 규명하고 새로운 치료방법을 제시했다.
김재령 박사과정이 1저자로 참여한 이번 연구는 미국 임상연구학회에서 발간하는 임상연구학회지(The Journal of Clinical Investigation) 9월 19일자 온라인 판에 게재됐다. 또한 10월 발간되는 인쇄본의 표지 및 커버스토리로 실린다.
녹내장은 안압이 상승해 시신경이 눌리거나 혈액 공급에 문제가 생겨 시신경이 망가지고 실명에 이르는 병이다. 증상이 나타날 땐 이미 시신경이 크게 손상된 상태라 완치가 어렵다. 전 세계 40세 이상 성인 인구의 3.5%가 녹내장을 앓고 있으며 국내에서도 환자가 빠르게 증가하는 추세다. 특히 전체 환자의 약 75% 이상을 차지하는 원발개방각녹내장의 경우 원인을 분자적 수준에서 밝히기 어려워 근본적인 치료법 마련에 한계가 있었다.
원발개방각녹내장 발병 기전의 이해를 넓힌 이번 연구로 그간 더뎠던 치료법 개발에 속도가 날 것으로 기대된다.
연구진은 안압이 안정적으로 유지되는 작동원리와 신호전달체계를 규명했다. 안압 조절에 중요한 기관인 쉴렘관의 항상성 유지를 Angiopoietin-TIE2 수용체 신호전달체계(이하 ANG-TIE2 신호전달체계)가 수행함을 밝혔다.
녹내장은 방수배출장치가 고장 나면서 발생한다. 눈 내부에서 생성된 방수는 섬유주를 지나 쉴렘관을 거쳐 혈관으로 배출된다. 안압은 방수가 생성되는 만큼 배출되어야 일정하게 유지되는데 방수배출장치에 문제가 생기면 안압이 상승한다. 원발개방각녹내장의 경우, 방수유출경로의 저항이 커지면서 방수가 제대로 빠져나가지 않아 발생하는 것으로 알려져 있으나 어떤 이유 때문에 저항이 커지는지는 알 수 없었다.
김재령 연구원과 박대영 연구원(박사후연구원/안과 전문의)은 혈관 성숙과 안정화에 필수적인 ANG 단백질과 TIE2 수용체가 각각 쉴렘관 주변부와 내피세포에 두드러지게 발현되는 것을 발견했다. 연구진은 ANG-TIE2 신호전달체계가 생후 초기 쉴렘관의 발달뿐만 아니라 성체가 된 이후에도 항상성 유지에 필수적일 것으로 예상했다.
실험 결과, 연구진은 쉴렘관 형성과 유지, 안압 조절에 있어 ANG-TIE2 신호전달체계가 핵심적인 역할을 수행함을 확인했다. ANG-TIE2 신호전달체계는 쉴렘관을 형성하고 내강을 유지해 방수 유출을 가능케 한다.
쉴렘관이 형성되는 동안에는 Prox1 전사인자 발현을 촉진하고 성체가 된 이후에는 적절한 양의 방수, 거대액포, Prox1 전사인자 발현을 유지하여 쉴렘관의 항상성을 지킨다.
연구진은 녹내장이 유발된 상황에서 ANG-TIE2 신호전달체계의 활성화가 어떤 효과가 있는지 추가 실험을 진행했다. TIE2 수용체를 활성화하는 실험적 항체(ABTAA)가 쉴렘관의 내피세포에 작용하여 방수 유출을 증가시키고 안압을 낮출 수 있는지가 관건이었다. 쉴렘관이 망가져 안압 상승으로 녹내장이 유발된 실험군의 눈 속에 항체를 투여한 결과, 쉴렘관이 회복되면서 안압이 내려가는 것을 확인했다. 결국 ANG-TIE2 신호전달체계가 쉴렘관의 항상성을 유지함으로써 안압을 조절해 녹내장이 발병하지 않도록 하는 것이다.
이번 연구는 녹내장을 근본적으로 해결할 수 있는 치료법 개발에 큰 도움이 될 것으로 보인다. 특히 녹내장을 재현한 질병 모델에 TIE2 활성 항체를 주사해 안압 하강 효과를 얻은 만큼 추후 임상 연구로의 확장이 기대된다. 연구진은 방수배출장치의 또 다른 요소인 섬유주와 ANG-TIE2 신호전달체계의 관계를 밝히는 실험과 실제 환자에게 TIE2 활성 항체를 사용할 수 있을지 전임상 실험을 계획 중이다.
연구를 이끈 고규영 교수는 “이번 논문에는 이십여 개에 달하는 연구 이미지 세트가 실렸다. 일반적인 경우의 두 배에 달한다”며 “쉴렘관 항상성 유지의 기전을 자세히 밝히는 방대한 양의 연구를 수행했음을 보여준다”라고 말했다.
□ 그림 설명
그림1. 녹내장의 증상과 원인
그림2. ANG-TIE2 신호전달체계의 역할
그림3. ANG-TIE2 신호전달체계 억제 시 쉴렘관 항상성 저해 현상
2017.09.20
조회수 14997