-
수 초 만에도 급속충전 가능 소듐전지 개발
소듐(Na)은 리튬(Li) 대비 지구상에 500배 이상으로 존재하기 때문에 이를 활용한 소듐 이온 배터리는 최근 큰 주목을 받고 있다. 그러나 리튬 이온 배터리에 비해 낮은 출력, 제한된 저장 특성, 긴 충전 시간 등의 근본적인 한계점이 있어 이를 극복하는 차세대 에너지 저장 소재 개발이 필요하다.
우리 대학 신소재공학과 강정구 교수 연구팀이 우수한 성능의 급속 충전이 가능한 고에너지·고출력 하이브리드 소듐 이온 전지를 개발했다고 11일 밝혔다.
최근 활발하게 연구가 진행되고 있는 하이브리드 에너지 저장 시스템은 배터리용 음극과 축전기용 양극을 결합해 높은 저장 용량과 빠른 충·방전 속도를 모두 지닐 수 있는 장점을 가지고 있다. 이는 기존 소듐 이온 배터리의 한계를 극복해 리튬이온 배터리를 대체할 수 있는 차세대 에너지 저장 장치로 주목받고 있다.
하지만 고에너지 및 고출력 밀도의 하이브리드 전지를 구현하기 위해서 배터리용 음극의 상대적으로 느린 에너지 저장 속도를 향상해야 하는 동시에 음극에 비해 상대적으로 낮은 용량을 갖는 축전기용 양극재의 에너지 저장 용량을 끌어 올려야 한다.
이에 강 교수 연구팀은 두 가지 서로 다른 금속-유기 골격체를 활용해 하이브리드 전지에 최적화된 전극 소재의 합성법을 제시했다. 우선 금속-유기 골격체에서 기인한 다공성 탄소 소재에 미세한 활물질을 함유해 속도 특성이 향상된 음극 소재를 개발했다. 고용량 양극 소재를 합성했고, 이를 조합해 양극 간의 에너지 저장 속도 특성의 차이를 최소화하면서도 용량 균형을 최적화한 소듐 이온 에너지 저장 시스템을 개발했다.
연구팀은 개발된 음극과 양극을 완전셀로 구성해 고성능 하이브리드 소듐이온 에너지 저장 소자를 구현했다. 하이브리드 소듐 이온 에너지 저장 소자는 기존 상용화된 리튬이온 배터리를 뛰어넘는 에너지 밀도와 축전기의 출력 밀도 특성을 모두 가짐을 확인했으며, 차세대 에너지 저장 장치로 수 초에서 수 분 만에 급속 충전이 가능해 전기 자동차, 스마트 전자기기, 항공 장치 등에 적용할 수 있을 것으로 예상된다.
강 교수는 "전극 기준으로 높은 에너지 밀도(247 Wh/kg)를 가지며, 고출력 밀도(34,748 W/kg)에 의한 급속 충전이 가능한 하이브리드 소듐 이온 에너지 저장 소자는 현 에너지 저장시스템의 한계를 극복할 수 있는 새로운 돌파구가 될 것이다ˮ라며 "전기 자동차를 포함한 모든 전자기기의 활용 범위를 확대해 적용될 수 있을 것이다ˮ고 말했다.
신소재공학과 최종휘 박사과정과 김동원 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 에너지 저장 소재 분야의 국제 학술지 `에너지 스토리지 머터리얼스(Energy Storage Materials)'에 3월 29일 字 게재됐다. (논문명: Low-crystallinity conductive multivalence iron sulfide-embedded S-doped anode and high-surface area O-doped cathode of 3D porous N-rich graphitic carbon frameworks for high-performance sodium-ion hybrid energy storages)
한편 이번 연구는 과학기술정보통신부와 한국연구재단의 나노 및 소재기술개발사업 미래기술연구실의 지원을 받아 수행됐다.
2024.04.11
조회수 7475
-
변혜령 ˙ 백무현 교수팀, 이온 쌍 형성을 통한 안정한 유기 레독스 흐름 전지 개발
우리 대학 화학과 변혜령 교수와 백무현 교수가 이끄는 공동 연구팀이 레독스 흐름 전지 구동 중 비수계 전해질의 조합 및 이온쌍의 형성에 따라 유기 분자의 전자 전달 과정이 변하는 원리를 해명했다.
최근 에너지 저장 장치(ESS, Energy Storage System)에서의 화재 위험성을 줄이기 위해 리튬 기반의 전지 대신 안정성과 경제성을 겸비한 레독스 흐름 전지(redox flow battery)가 새로운 대안으로 제시되고 있다. 상용화된 레독스 흐름 전지는 바나듐을 활물질로 사용하고 있지만, 최근 바나듐 원가의 가격 상승으로 인해 대체 활물질의 개발이 절실히 요구되고 있다. 특히 레독스 특성을 가지는 유기 분자를 설계하고 활물질로 활용한 연구는 전지의 성능을 대폭 개선할 수 있어 각광을 받고 있다.
공동연구팀은 분자당 두 개의 전자를 저장할 수 있는 나프탈렌 다이이미드(NDI, Naphthalene diimide)를 활물질로 사용한 비수계 레독스 흐름 전지의 연구를 진행했다. 먼저, 암모늄 기능기를 NDI에 도입하고 음이온 전해질 조절을 통해 아세토니트릴 전해액에서 NDI의 용해도를 최대 0.9 M까지 증가시켰다. 또한, 전기화학반응에서 NDI와 함께 사용되는 전해질의 양이온에 따라 산화환원 전위 및 레독스 흐름 전지에서의 충/방전 과정의 변화 이유를 규명하였다. 작은 크기의 리튬 이온(Li+)이온과 낮은 전자주개 특성을 가지는 용매(아세토니트릴)로 구성된 비수계 전해질 환경에서, NDI는 두 단계의 환원 과정이 유사한 전위에서 진행됨을 보였다. 이와 비교하여 큰 반지름을 가지는 포타슘 이온(K+)을 포함한 아세토니트릴 전해액에서는 NDI의 두 단계 환원반응 사이의 전위차가 크게 벌어짐을 관찰했다.
밀도범함수 계산 분석을 통해 환원된 NDI 음이온과 높은 전하밀도를 가지는 Li+ 이온은 결합이 강해지며 특정구조를 가지는 이온쌍이 형성됨을 예상하였으며, 적외선 분광 분석을 통해 이를 실험적으로 증명할 수 있었다. 반면, 낮은 전하밀도의 K+은 NDI 음이온과 약한 상호작용으로 이온쌍이 형성되기 어려우며, 따라서 K+ 은 NDI의 환원 전위 및 안정성에 영향을 미치지 않음을 보고했다.
전해질 양이온의 효과는 레독스 흐름 전지의 전압 및 에너지 전달 효율성에 그대로 반영되었다. Li+을 기반으로 한 전해질 하에서는 NDI의 두 전자전달 반응에서 각각 하나의 충/방전 전압을 유지하는 반면, K+ 기반의 전해질에서는 각각 두개의 충/방전 전압 곡선이 관찰되었다. 무엇보다도 Li+을 사용한 레독스 흐름 전지의 장점은 이온쌍 형성으로 인한 구조 크기의 증가로 크로스오버(레독스 활성분자인 NDI가 기공을 가지는 분리막을 지나 상대 전극으로 이동하여 용량을 감소시키는 현상)를 감소시킬 수 있었다는 점이다. 그 결과 0.1 M의 NDI를 음극 전해액으로 이용한 비수계 레독스 흐름 전지를 구동 시 약 1000 사이클 이후에도 84%의 용량이 유지되는 것을 증명하였다. 이는 Li+ 전해질에서의 충/방전 과정이 안정적이며 연속 사용 시 사이클 당 0.017%의 용량 감소만이 진행된다는 결과다.
이 연구는 삼성미래기술육성사업 및 기초과학연구원 등으로부터 지원을 받아 수행되었으며, ‘미국화학회지(Journal of the American Chemical Society)’에 2024년 2월 12일자로 온라인으로 발표되었다. (논문명: Stabilization of Naphthalene Diimide Anions by Ion Pair Formation in Nonaqueous Organic Redox Flow Batteries)
2024.02.20
조회수 5304
-
4.55V 고전압 리튬이온전지 전해액 기술 개발
전기차 시대의 가속화에 따라 1회 충전에 긴 주행거리를 가능하게 하는 고용량, 고에너지밀도 이차전지 개발과 더불어 빠르게 충전을 할 수 있는 고속 충전 기술 개발의 중요도가 커지고 있다.
우리 대학 생명화학공학과 최남순 교수 연구팀이 고전압 조건에서 리튬이온전지의 높은 효율과 에너지를 유지하고 고속 충전이 가능한 전해액 설계 기술을 개발했다고 6일 밝혔다. 개발된 전해액은 점도가 낮으면서 고전압에 안정적인 용매를 사용하였으며 안정적인 전극-전해질 계면 반응을 확보할 수 있는 첨가제 기술을 통해 리튬이온전지의 수명 특성을 획기적으로 향상시켰다.
최남순 교수 연구팀은 상용 리튬이온전지에 사용되고 있는 카보네이트 계열의 용매 대신 점도가 낮고 고전압 조건에서 안정적으로 작용할 수 있는 용매 조성 기술과 전극계면 보호 기술을 적용해 기존 연구 결과보다 현저하게 향상된 *가역 효율 (99.9% 이상)을 달성했다.
☞ 가역 효율 : 매 사이클마다 전지의 방전용량을 충전용량으로 나누어 백분율로 나타낸 값으로 배터리의 가역성을 의미함. 가역 효율이 높을수록 매 사이클마다 배터리 용량 손실이 적음을 의미함. 아무리 높은 용량을 구현하는 배터리라도 가역성이 높지 않다면 실용화가 어려움.
또한, 첫 사이클 방전 기준 용량 대비 200 사이클에서의 방전 기준 용량까지를 용량 유지율 측정하였는데 개발된 전해액 기술은 고온 (45도)에서 4.5 V의 충전 전압 조건에서 89.9%의 높은 용량 유지율을 보였으며 4.53 V의 충전 전압 조건에서도 77.0%의 높은 용량 유지율을 보였다. 개발 전해액 조성의 경우 기존 상용 최고 수준 기술 대비 약 10~15% 이상의 높은 용량 유지율을 보여줬다. 뿐만 아니라, 4.55 V의 혁신적인 충전 전압 조건에서도 200회 사이클 후 61.7%의 높은 용량 유지율을 보여주는 등 우수한 수명 특성을 보여줬다.
이번 연구에서 개발된 전해액 설계 기술은 리튬 코발트 산화물 양극을 사용해 4.5 V 이상의 고전압 그리고 1.5C (45분 충전)의 빠른 충전 조건에서 극대화된 성능을 얻었다는 점에서 그 의미가 크다. 여기에 더해 60도 고온 저장에서도 저장 성능이 향상됨도 확인했다. 특히 고에너지밀도 리튬이온전지용 전해액 기준 프레임을 제시한 바, 이는 리튬이차전지 전해액 설계에서 새로운 기준이 될 것이라고 연구진은 설명했다.
이번 논문의 공동 제1 저자인 우리 대학 생명화학공학과 김세훈 박사과정은 “높은 산화안정성 및 저점도 특성을 가지는 용매 적용에 따른 고전압 안정성 및 고속 충전 특성 향상과 전해액 첨가제에 의한 안정적인 전극-전해질 계면 형성의 시너지 효과에 의해 기존에 보고된 리튬이온전지용 전해액 기술 개발의 한계를 뛰어넘는 기술을 개발하게 됐다ˮ라고 말했다. 또한, “상용 리튬이온전지에서 사용하는 수준의 높은 로딩의 리튬 코발트 산화물 양극을 사용하여 전지의 수명 특성을 극대화했기 때문에 산업에의 빠른 적용 및 향후 고에너지밀도 전지 시스템 설계에 있어 이정표로 작용할 수 있을 것이다”라고 전했다.
최남순 교수는 "개발된 전해액 기술은 상용 용매로 사용되고 있는 카보네이트 유기용매의 부족한 고전압 내구성을 에스테르 용매로 획기적으로 극복하였으며 이를 통해 배터리 충전과정에서 가스 발생을 최소화하는 고전압 전해액 시스템을 구축했다ˮ라고 말했다. 또한, "이러한 고전압 용매 조성과 전해액 첨가제 조합 기술은 리튬이온전지의 한계 에너지밀도를 끌어올리기 위한 전해액의 고전압화를 위한 돌파기술이라는 점에서 그 의미가 크다고 하겠다ˮ라고 연구의 의미를 강조했다.
이번 연구에서 생명화학공학과 최남순 교수와 김세훈, 이정아 연구원은 리튬이온전지의 고전압 구동을 위한 새로운 전해액 조성 기술을 개발하고 이에 대한 효과를 검증하였으며 작동 메커니즘을 규명하였다. 경상국립대학교 나노신소재융합공학과 (나노·신소재공학부 고분자공학 전공) 이태경 교수와 이동규, 손준수 연구원은 전해액 용매 및 첨가제의 작동 메커니즘을 계산화학을 통해 구체화하는 연구를 진행하였다. 이번 연구는 저명한 국제 학술지 `에이시에스 에너지 레터즈 (ACS Energy Letters)'에 1월 12일자로 발간되었으며 커버 논문으로 선정되었다 (논문명 : Designing Electrolytes for Stable Operation of High-Voltage LiCoO2 in Lithium-Ion Batteries).
이번 연구 수행은 삼성 에스디아이 (Samsung SDI)의 지원을 받아 수행됐다.
2024.02.06
조회수 7687
-
쭉쭉 늘어나는 최고 성능의 태양전지 개발
웨어러블 전자소자의 시장 규모가 급격히 커지며 에너지 공급원으로서 잡아당겨 늘려도 작동할 수 있는 스트레쳐블 태양전지가 각광 받고 있다. 이러한 태양전지를 구현하기 위해서는 빛을 전기로 전환하는 광활성층의 높은 전기적 성능과 기계적 신축성 확보가 필수적인데, 이 두 가지 특성은 서로 상충관계를 가지고 있어서 스트레쳐블 태양전지의 구현은 매우 어려운 문제였다.
우리 대학 생명화학공학과 김범준 교수 연구팀이 높은 전기적 성능과 신축성을 동시에 갖는 새로운 형태의 전도성 고분자 물질을 개발해 세계 최고 성능의 스트레처블 유기태양전지를 구현했다고 26일 밝혔다.
유기 태양전지(organic solar cells)는 빛을 받아 전기를 생산하는 광 활성층이 유기물로 구성되는 전자소자로, 기존 무기 재료 기반 태양전지에 비해 가볍고 유연하다는 장점이 있어 몸에 착용할 수 있는 웨어러블 전자소자에 사용 가능하다. 특히, 태양전지는 이러한 전자소자의 전력을 공급하는 필수적인 소자이지만, 기존 고효율 태양전지는 신축성을 가지기 어려워서 웨어러블 소자로 거의 구현된 바가 없다.
김범준 교수 연구팀은 높은 전기적 성질을 가지는 전도성 고분자에 고무처럼 늘어나는 고신축성 고분자를 화학 결합을 통해 연결하여, 높은 전기적 성능과 기계적 신축성을 동시에 가지는 새로운 형태의 전도성 고분자를 개발하였다. 개발된 고분자는 현재 세계 최고 수준의 광전변환효율 (19%)을 가지는 유기태양전지를 구현하면서도, 기존 소자들에 비해 10배 이상 높은 신축성을 달성하였다. 이를 통해 40% 이상 잡아당겨도 작동하는 세계 최고성능의 스트레처블 태양전지를 구현하였으며, 이를 통해 사람이 착용가능한 태양전지의 응용 가능성을 증명했다.
김범준 교수는 "이번 연구를 통해 세계 최고성능의 스트레쳐블 유기 태양전지를 개발했을 뿐만 아니라 새로운 개념의 고분자 소재 개발을 통해 자유형상 및 신축성을 요구로 하는 다양한 전자소자에 응용가능한 소재 원천 기술을 개발했다는 것에 큰 의의가 있다ˮ라고 밝혔다.
이진우, 이흥구 연구원이 공동 제1 저자로 참여하고, 기계공학과 김택수 교수, 생명화학공학과 리섕 교수팀이 공동으로 진행한 이번 연구는 국제 학술지 `줄(Joule)'에 12월 1일 출판됐다. (논문명: Rigid and Soft Block-Copolymerized Conjugated Polymers Enable High-Performance Intrinsically-Stretchable Organic Solar Cells).
이번 연구는 한국연구재단의 지원을 받아 수행됐다.
2023.12.26
조회수 5068
-
KAIST-LG에너지솔루션, 리튬금속전지 기술 혁신
리튬금속전지는 전기차의 주행거리를 크게 높일 수 있다는 것이 특징을 가지고 있다. 하지만, 리튬금속은 전지의 수명과 안정성 확보를 어렵게 하는 `덴드라이트(Dendrite)' 형성과 액체 전해액에 의한 지속적인 부식(Corrosion)이 발생하여 기술적 해결이 필요하다.
우리 대학 생명화학공학과 김희탁 교수와 LG에너지솔루션 공동연구팀이 차세대 전지로 주목받고 있는 `리튬금속전지(Lithium metal battery)'의 성능을 획기적으로 늘릴 수 있는 원천기술을 개발했다고 7일 밝혔다.
공동연구팀은 1회 충전에 900km 주행, 400회 이상 재충전이 가능한 리튬금속전지 연구 결과를 공개했다. 기존 리튬이온전지(Lithium-ion battery)의 주행거리인 약 600km보다 50% 높은 수준이다.
공동연구팀은 리튬금속전지의 구현을 위해 기존에 보고되지 않은 `붕산염-피란(borate-pyran) 기반 액체 전해액'을 세계 최초로 적용, 리튬금속 음극의 기술적 난제를 해결하고 그 근본원리를 규명했다.
붕산염-피란 전해액은 리튬금속 음극 표면에 형성된 수 나노미터 두께의 고체 전해질 층(Solid Electrolyte Interphase, SEI)를 치밀한 구조로 재구성함으로써 전해액과 리튬 간의 부식 반응을 차단한다.
이 `고체 전해질 층 재구성(SEI restructuring)' 기술은 덴드라이트와 부식 문제를 동시에 해결해 리튬금속 음극의 충전-방전 효율을 향상하는 것은 물론, 기존보다 배터리 음극재와 전해액의 무게를 크게 줄일 수 있어 에너지 밀도(Energy Density)를 높일 수 있는 특징이 있다. 특히 이번 연구에서 구현된 리튬금속전지는 구동 시 높은 온도와 압력이 요구되지 않아, 전기차의 주행거리를 높이기 위한 간소화된 전지 시스템 설계가 가능하다.
생명화학공학과 김희탁 교수는 "이번 연구는 지금까지 실현 불가능하다고 여겨진 액체 전해액을 기반으로 하는 리튬금속전지의 구현 가능성을 가시화한 연구ˮ 라고 말했다. 논문의 제1 저자인 권혁진 박사과정은 "리튬금속음극 계면의 나노스케일 제어를 통해 리튬금속전지의 한계를 극복할 수 있음을 보였다ˮ라고 연구의 의미를 강조했다.
이 연구결과는 세계적인 학술지 `네이처 에너지(Nature Energy)'에 11월 23일자 온라인 게재했다.
※ 네이처 에너지(Nature Energy) : 2023년 Clarivate Analytics가 발표한 Journal impact factor에서 에너지 분야 157개 학술지 중 1위, 총 2만 1천여 개 학술지 중 23위를 기록
※ 논문명 : Borate–pyran lean electrolyte-based Li-metal batteries with minimal Li corrosion
이번 연구 성과는 카이스트와 LG에너지솔루션이 차세대 리튬금속전지 기술 개발을 위해 2021년 설립한 프론티어 연구소(Frontier Research Laboratory, FRL, 연구소장 김희탁 교수)를 통해 이뤄진 것이다. 이처럼 대학과 기업이 힘을 모아 배터리 기술의 혁신을 이뤄내고 있다.
2023.12.07
조회수 6523
-
그린수소 생산에 탁월한 전해질 신소재 개발
그린수소는 풍력, 태양광등 재생에너지를 이용하여 생산과정에서 이산화탄소 배출이 전혀 없는 궁극적인 청정 에너지원으로 각광을 받고 있다. 이러한 그린수소를 활용/생산하는 연료전지, 수전해 전지, 촉매 분야에 산소 이온성 고체전해질이 널리 사용되고 있다. 이러한 산소 이온 전도체들은 주로 700oC 이상의 고온에서 활용되는데 이 때문에 소자 내의 다른 요소들과의 바람직하지 않은 화학반응, 소재 응집, 열충격이 발생하거나 높은 유지비용이 요구되는 등의 문제가 발생하고 있다.
우리 대학 기계공학과 이강택 교수 연구팀이 미국 메릴랜드 대학 에릭 왁스만(Eric Wachsman) 교수 연구팀과 공동연구를 통해 기존 소재 대비 전도성이 140배 높은 산소 이온 전도성 고체전해질 개발에 성공했다고 22일 밝혔다.
개발된 신소재는 비스무트 산화물 기반으로 400oC에서 기존 지르코니아 소재의 700oC에 해당하는 높은 전도성을 보이며 중저온(600oC) 영역대에서 140배 이상 높은 이온전도도 나타냈다. 비스무트 산화물 산소 이온 전도체 소재는 중저온 영역대에서 상전이로 인해 이온전도도가 급격하게 감소한다는 문제가 있었으나, 이번 연구에서 개발된 산소 이온 전도체 신소재는 도핑을 통해 중저온 영역대에서도 1,000시간 이상 높은 이온전도도를 유지해 상용화 가능성을 크게 높였다.
또한, 공동연구팀은 원자단위 시뮬레이션 계산화학을 통해 도핑된 원소가 산소 이온 전도체 신소재의 성능 및 안정성을 향상하는 메커니즘을 규명했다. 개발된 신소재는 고체산화물 연료전지(SOFC)에 적용돼 학계에 보고된 소자 중 가장 높은 수준의 전력 생산(2.0 W/cm2, 600oC) 능력을 보였다. 그뿐만 아니라, 고체산화물 전해전지(SOEC)에도 적용돼 기존 대비 2배 높은 단위면적당 15.8 mL/min의 탁월한 그린 수소 생산 능력을 보이며, 해당 신소재의 실제 소자에의 적용 가능성을 증명했다.
이강택 교수는 “이번 연구에서 개발된 산소 이온 전도체 신소재는 중저온 영역대에서도 안정적으로 높은 전도도를 유지할 수 있어 세라믹 소자의 높은 작동온도를 획기적으로 낮추는 데 활용될 것으로 기대되며, 탄소중립 실현을 위한 에너지/환경 소자 상용화에 본 기술을 적용할 수 있을 것”이라며 연구의 의미를 강조했다.
기계공학과 유형민 박사과정, 정인철 박사, 장승수 박사과정이 공동 제1 저자로 참여했으며 한국에너지기술연구원 이찬우 박사 연구팀이 공동으로 참여한 이번 연구는 전 세계적으로 권위있는 국제 학술지인 ‘어드벤스드 머티리얼스(Advanced Materials)’ (IF : 29.4) 10월 17일 字 온라인판에 게재됐다. (논문명 : Lowering the Temperature of Solid Oxide Electrochemical Cells Using Triple-doped Bismuth Oxides).
한편 이번 연구는 과학기술정보통신부 수소에너지혁신기술개발사업과 나노 및 소재 기술개발사업의 지원으로 수행됐다.
2023.11.22
조회수 6510
-
고성능 비 백금계 연료전지 촉매 개발
연료전지는 부산물로 물 만을 배출하는 친환경적인 에너지 변환 장치로, 다양한 연료전지 중 양성자 교환막 연료전지(PEMFC)는 수송용 및 발전용 연료전지로 현재 상용화가 진행 중이다. 다만 연료전지의 촉매로 사용되는 백금 촉매는 자원의 희소성으로 인한 높은 가격 때문에 대량 생산 및 전 세계적인 보급에 문제점을 갖고 있었다.
우리 대학 생명화학공학과 이진우 교수 연구팀이 국민대학교 장세근 교수 연구팀, 서강대학교 백서인 교수 연구팀과 공동연구를 통해 비백금계 촉매 기반 고 전력밀도의 양성자 교환막 연료전지를 개발했다고 7일 밝혔다.
상대적으로 다른 비 백금계 촉매들에 비해 좋은 성능을 가진다고 알려져 백금을 대체하고 기존 연료전지 비용을 줄이기 위한 가장 유력한 후보 물질로 주목받아 온 M-N-C계 촉매는 PEMFC 연료전지에서 높은 전력밀도를 구현하는 데는 많은 한계가 있었다.
이진우 연구팀은 기존 백금 촉매를 대체할 수 있는 비 백금계 Fe-N-C 촉매의 높은 성능을 구현해 매우 뛰어난 가격 경쟁력과 높은 전력밀도의 연료전지 성능을 달성했다.
연구팀은 M-N-C 촉매 중 하나인 Fe-N-C 촉매 나노입자의 활성점 주변의 결함 정도를 조절하여 높은 성능의 Fe-N-C 촉매를 합성했다. 탄소 기반의 물질을 특정 양의 이산화탄소(CO2)를 흘려주면서 열처리를 진행하는 이산화탄소 활성화 방법을 통해 탄소 기반 촉매 내부의 결함 정도를 미세 조정했고 그에 따른 최적화된 촉매가 활성화되는 것을 확인했다.
연구팀은 결과적으로 적절한 결함을 가질 때 철 단일원자 활성점의 전자구조가 최적화되면서 결함을 만들지 않은 기존 Fe-N-C 촉매에 비해 매우 우수한 전기화학적 성능을 제공하는 것을 확인해 결함과 활성점의 성능 상관관계에 대하여 규명했다.
연구팀이 개발을 한 최적화된 Fe-N-C촉매는 PEMFC 연료전지에서 기존에 개발이 된 Fe-N-C촉매보다 44% 향상된 높은 전력 밀도를 보였으며 현재 사용이 되고 있는 백금 촉매를 대체를 할 수 있음을 PEMFC단전지에서 보여주었다.
연구팀이 개발한 비 백금계 Fe-N-C촉매는 높은 전기화학적 특성으로 기존의 백금 촉매 대체를 통해 연료전지의 스택 가격 감소와 그에 따른 상용화에 이바지할 수 있을 것으로 기대된다.
KAIST 생명화학공학과 이승엽 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 머티리얼스 (Advanced materials)' 10월 13일 온라인으로 게재됐다. (논문명: Insight into Defect Engineering of Atomically Dispersed Iron Electrocatalysts for High-Performance Proton Exchange Membrane Fuel Cell)
이진우 교수는 "비 백금계 Fe-N-C 촉매의 결함과 성능의 관계를 밝히고 결함 조절을 통해서 백금을 전혀 사용하지 않고 높은 전력밀도의 양성자 교환막 연료전지를 개발한 것은 큰 의미가 있으며 개발된 촉매 및 합성 방법은 향후 다양한 종류의 연료전지에서 귀금속인 백금을 대체하여 적용할 수 있을 것으로 기대된다ˮ 라고 말했다.
한편 이번 연구는 한국연구재단 중견연구자지원사업과 한국전력 사외공모 기초연구지원사업의 지원을 받아 수행됐다.
2023.11.07
조회수 5985
-
세계 최고 전기차 이차전지 수명 획기적 연장
전기차 시대의 가속화에 따라 1회 충전에 긴 주행거리를 가능하게 하거나 전 세계 평균 기온에 속하는 넓은 온도 범위(-20~60도)에서 충전과 방전을 할 수 있는 고용량, 고에너지밀도 이차전지 개발의 중요도가 커지고 있다.
우리 대학 생명화학공학과 최남순 교수 연구팀이 넓은 온도 범위에서 리튬금속 전지의 높은 효율과 에너지를 유지하는 세계 최고 수준의 전해액 기술을 개발했다고 4일 밝혔다. 개발된 전해액은 기존에 보고되지 않은 새로운 *솔베이션 구조를 형성했으며 안정적인 전극-전해질 계면 반응을 확보할 수 있는 첨가제 기술을 통해 리튬금속 전지의 수명 특성을 획기적으로 향상시켰다.
☞ 솔베이션 구조 : 일반적으로 염(이온성 화합물) 농도가 낮은 전해액에서는 양이온이 전하를 띠지 않은 용매에 의해 둘러싸여 동심원의 껍질(Shell)을 형성하는데 이를 솔베이션 구조라고 함. 이러한 솔베이션 구조 개선 기술은 염 농도를 증가시키지 않고 배터리의 작동 온도 범위를 넓히는 매우 중요한 인자임.
최남순 교수 연구팀은 기존에 보고된 전해액 내 리튬 이온의 이동이 제한적이고 구동할 수 있는 온도 범위의 한계가 있는 전해액들과는 달리 넓은 온도 범위(-20~60도)에서 안정적으로 작용할 수 있는 용매 조성 기술과 전극계면 보호기술을 적용해 기존 연구 결과보다 현저하게 향상된 *가역 효율 (영하 20도 300회 99.9%, 상온 200회 99.9%, 고온 45도 100회 99.8%)을 달성했다.
☞ 가역 효율 : 매 사이클마다 전지의 방전용량을 충전용량으로 나누어 백분율로 나타낸 값으로 배터리의 가역성을 의미함. 가역 효율이 높을수록 매 사이클마다 배터리 용량 손실이 적음을 의미함. 아무리 높은 용량을 구현하는 배터리라도 가역성이 높지 않다면 실용화가 어려움.
또한, 완전 충전-완전 방전조건에서 첫 사이클 방전 기준 용량 80%가 나오는 횟수까지를 배터리 수명으로 보고 있는데 개발된 전해액 기술은 상온(25도)에서 200회 충·방전 후에 첫 번째 사이클의 방전용량 대비 85.4%의 높은 방전용량 유지율을 보였다. 또한, 고온(45도)에서 100회 충·방전 후 91.5% 발현, 저온(영하 20도) 구동에서도 300회 충·방전 후 72.1% 발현하는 등 완전 충전-완전 방전조건에서 기존 상용 기술 대비 약 20% 높은 용량 유지율을 보여줬다.
이번 연구에서 개발된 새로운 솔베이션 구조를 가지는 전해액(partially and weakly solvating electrolyte; PWSE) 기술은 리튬 코발트 산화물 양극을 사용해 영하 20도에서 60도의 넓은 온도 범위에서 극대화된 성능을 얻었다는 점에서 그 의미가 크다. 여기에 더해 60도와 80도 고온 저장에서도 저장 성능이 유지됨도 확인했다. 특히 리튬금속 전지용 전해액 기준 프레임을 제시한바, 이는 리튬이차전지 전해액 시장에서 게임 체인저가 될 것이라고 연구진은 설명했다.
이번 논문의 공동 제1 저자인 우리 대학 생명화학공학과 김세훈 박사과정은 "새로운 솔베이션 구조에 의한 리튬 이온의 이동도 향상과 구동 온도 범위의 확장 그리고 전해액 첨가제에 의한 안정적인 전극-전해질 계면 형성의 시너지 효과에 의해 기존에 보고된 리튬금속 전지용 전해액 기술 개발의 한계를 뛰어넘는 기술을 개발하게 됐다ˮ라고 말했다.
최남순 교수는 "개발된 전해액 기술은 기존에 보고된 전해액들과는 달리 리튬이온을 끌어당기는 힘이 다른 두 개의 용매를 사용하여 리튬이온이 잘 이동하게 하고 전극 표면에서도 원하지 않는 부반응을 감소시키는 새로운 솔베이션 구조를 형성해 리튬금속 전지 구동 온도 범위를 넓힌 획기적인 시도ˮ라며 "이러한 솔베이션 구조 개선 기술과 전해액 첨가제에 의한 안정적인 전극-전해질 계면 형성의 시너지 효과는 고에너지 밀도 리튬금속 전지에서의 난제들을 효과적으로 해결하고 전해액 설계에 있어서 새로운 방향을 제시했다ˮ라고 연구의 의미를 강조했다.
생명화학공학과 최남순 교수와 김세훈, 이정아, 김보근, 변정환 연구원과 경상국립대학교 나노신소재융합공학과 이태경 교수, UNIST 에너지화학공학과 강석주 교수, 백경은 연구원, 이현욱 교수, 김주영 연구원 진행한 이번 연구는 국제 학술지 `에너지 & 인바이론멘탈 사이언스 (Energy & Environmental Science)'에 9월 13일 字로 온라인 공개됐다 (논문명 : Wide-temperature-range operation of lithium-metal batteries using partially and weakly solvating liquid electrolytes).
한편 이번 연구 수행은 솔베이 스페셜티 폴리머즈 코리아 (Solvay Specialty Polymers Korea)의 지원과 ㈜후성으로부터 첨가제 합성 지원을 받아 수행됐다.
2023.10.04
조회수 6705
-
수소차 연료전지 촉매 1000배 이상 저렴해진다
미래 에너지원으로 주목받고 있는 수소 연료전지를 기존 귀금속 백금 소재 대비 1,000배 이상 저렴한 소재로 개발하여 화제다.
우리 대학 신소재공학과 조은애 교수 연구팀이 POSTECH 화학공학과 한정우 교수 연구팀과 공동연구를 통해 백금을 대체할 수 있는 비귀금속 촉매를 개발하고, 해당 소재의 고활성 메커니즘을 규명하는 데 성공했다고 22일 밝혔다.
수소차에 사용되는 양이온 교환막 연료전지(proton exchange membrane fuel cell, PEMFC)는 전극 촉매로 많은 양의 백금 촉매를 사용한다. 특히, 연료전지 공기극에서의 전기화학 반응은 속도가 매우 느려, 이를 높이기 위해 전극에 많은 양의 백금 촉매가 필요하다.
공동연구팀은 백금을 대체할 수 있는 공기극용 ‘단일 원자 철-질소-탄소-인 소재’를 개발하고, 활성 메커니즘을 규명했다고 밝혔다. 이 촉매는 상용제품에 적용되고 있는 양이온 교환막 연료전지(PEMFC) 뿐만 아니라, 차세대 연료전지인 음이온 교환막 연료전지(anion exchange membrane fuel cell, AEMFC)에도 적용이 가능하다는 점에서 더욱 의미가 있다고 할 수 있다. 새롭게 개발한 소재는 탄소에 미량의 철 원소가 원자 단위로 분산돼 있고, 그 주변을 질소와 인이 결합하고 있는 구조다.
조은애 교수는 “기존의 단일원자 철-질소-탄소 촉매의 활성부에 인을 첨가함으로써 한계를 극복하고 성능 향상에 성공했다”라고 설명하며, “연료전지는 복잡한 반응 장치라서 새로운 촉매가 개발되더라도 실제 연료전지에 적용하는 것은 어려운 경우가 많은데, 이번에 개발한 촉매는 양이온 교환막 연료전지와 음이온 교환막 연료전지에 적용해서 모두 성능을 높이는데 성공했다”라고 말했다.
신소재공학과 노정한 박사과정이 제1 저자로, POSTECH 조아라 박사가 공동 제1 저자로 참여한 이번 연구 결과는 미국화학회 촉매 분야 저명 국제 학술지 ‘에이씨에스 카탈리시스(ACS Catalysis)’ 2023년 7월 3일자 온라인판에 출판됐다. 또한, 그 우수성을 인정받아 해당 학술지 보조 표지 논문(Supplementary front cover)로 게재됐다. (논문명: Transformation of the Active Moiety in Phosphorus-Doped Fe-N-C for Highly Efficient Oxygen Reduction Reaction)
한편, 이번 연구는 한국에너지기술평가원이 추진하는 에너지인력양성사업과 한국연구재단이 추진하는 미래소재디스커버리사업의 지원을 받아 이뤄졌다.
2023.08.23
조회수 4617
-
색이 변하는 고효율 스마트 유연전지 개발
스마트 전자 기기 및 웨어러블 시장의 급속한 발전에 따라, 단순한 에너지저장 기능을 가진 이차전지를 넘어서 색깔이 변하는 스마트 이차전지 시스템이 주목받고 있다. 하지만 기존 전기변색소자는 낮은 전기전도도로 인해 전자와 이온의 이동효율 및 에너지 저장 용량이 낮고 플랙서블/웨어러블 에너지 기술에 적용하기 어려운 한계가 있었다.
우리 대학 신소재공학과 김일두 교수와 명지대학교(총장 유병진) 신소재공학과 윤태광 교수로 구성된 공동 연구팀이 전자와 이온의 이동효율을 높여주는‘파이(π) 결합 간격재(Spacer)’가 내장된 전기변색 고분자 양극재 개발을 통해, 충전․방전 과정을 시각화하는 스마트 전기변색-아연 이온 전지를 개발했다고 21일 밝혔다.
전기변색 기능이 접목된 전지는 충전과 방전 상태를 색 변화로 시각화하고, 태양광 흡수량을 조절해 실내 냉방 에너지 소비량을 절감하는 디스플레이 소자로 활용할 수 있는 획기적인 스마트 전지다. 공동연구팀은 장시간 공기 노출 및 기계적 변형에도 전기변색 성능과 우수한 전기화학 특성이 유지되는 유연 전기변색-스마트 아연 이온전지 구현에 성공했다.
공동 연구팀은 전자와 이온의 이동효율을 극대화하기 위해‘파이(π) 결합 간격재(Spacer)’가 내장된 고분자 양극재를 이론적인 모델링을 바탕으로 설계하고 최초로 합성했다. 파이(π) 결합은 구조 내 전자이동을 향상시켜 이온 이동 속도가 매우 빨라지고, 이온 흡착효율이 극대화되어 에너지 저장 용량 또한 높이는 효과가 있다.
‘파이(π) 결합 간격재(Spacer)’가 내장된 고분자 양극재 기반 전지는 간격재가 없는 경우와 비교했을 때 간격재가 공간을 마련해주어 이온 이동 속도를 빠르게 하여 고속충전이 가능하며 아연 이온 성능이 방전용량 110 mAh/g로 기존보다 40% 이상 저장용량도 확대되고 충·방전시 남색에서 투명색으로 빠르게 바뀌는 변색 성능도 30%가 상승한 결과를 나타냈다. 아울러 투명 유연전지 기술을 스마트 윈도우에 적용하면, 낮시간 동안 태양에너지를 흡수하는 과정에서 짙은 색을 띄게되어 자외선과 눈부신 태양빛을 차단하는 커튼 기능이 포함된 미래형 에너지 저장 기술로 쓰일수 있다.
신소재공학과 김일두 교수는 ‘파이(π) 결합 간격재(Spacer)’가 내장된 고분자를 개발해 우수한 변색효율과 높은 에너지 용량의 스마트 아연이온전지 개발에 성공했다ˮ고 밝혔으며 "에너지 저장의 역할만을 수행하는 기존 전지의 개념을 넘어서, 스마트 전지 및 웨어러블 기술의 혁신을 가속화하는 미래형 에너지 저장 시스템으로 활용될 것을 기대한다ˮ 고 말했다.
이번 연구 결과는 윤태광 교수(KAIST 신소재공학과 졸업), 이지영 박사(現 노스웨스턴 대학교 박사 후 연구원), 충북대학교 신소재공학과 김한슬 교수가 공동 제1 저자로 참여하였으며, 국제 학술지 `어드밴스드 머티리얼즈 (Advanced Materials)' 에 인사이드 표지 논문(Inside Cover)으로 8월 3일 (35권, 31호)에 게재되었다. (논문명 : A π-Bridge Spacer Embedded Electron Donor–Acceptor Polymer for Flexible Electrochromic Zn-Ion Batteries)
이번 연구는 과학기술정보통신부 나노소재기술개발사업, 한국연구재단 나노 및 소재 기술개발사업, 교육부 학문후속세대양성사업과 산업통산자원부의 알키미스트 프로젝트의 지원을 받아 수행됐다.
2023.08.21
조회수 5970
-
차세대 연료전지용 초고성능 ‘만능 전극’ 개발
연료전지란 청정에너지원인 수소를 이용해 고효율로 전력을 생산하는 장치로, 다가오는 수소 사회에서 중요한 역할을 하는 기술로 여겨진다. 차세대 연료전지에 모두 적용 가능하고 기존에 비해 700시간 구동에도 끄떡없는 우수한 전극 소재가 개발되어 화제다.
우리 대학 신소재공학과 정우철, 기계공학과 이강택 교수와 홍익대학교 김준혁 교수 공동 연구팀이 산소 이온 및 프로톤 전도성 고체산화물 연료전지에 모두 적용 가능한 전극 소재 개발에 성공했다고 9일 밝혔다.
세라믹 연료전지는 전해질로 이동하는 이온의 종류에 따라 산소 이온 전도성 고체산화물 연료전지(SOFC)와 프로토닉 세라믹 연료전지(PCFC) 2가지로 나뉜다. 또한, 두 형태에 대해 모두 전력과 수소 간의 변환이 가능하므로 총 네 가지 소자로 구분될 수 있다. 해당 소자들은 수소전기차, 수소 충전소, 발전 시스템 등에 활용할 수 있는 탄소중립 사회를 위한 차세대 핵심 기술로 떠오르고 있다.
하지만, 이러한 소자들은 구동 온도가 낮아짐에 따라 가장 느린 전극 반응의 속도가 저하돼 소자의 효율이 크게 떨어지는 고질적인 문제점이 있었다. 이를 해결하기 위해 다양한 연구가 진행되고 있지만, 보고된 대부분의 전극 소재는 촉매 활성도가 떨어질뿐더러 소재의 활용이 특정 소자에 집중되어 있어 전력 변환 및 수소 생산이 가역적으로 필요한 고체산화물 연료전지에 적용되기에 한계가 있었다.
연구팀은 문제해결을 위해 그동안 주목받지 못했던 페로브스카이트 산화물 소재에 높은 원자가 이온(Ta5+)을 도핑해 매우 불안정한 결정구조를 안정화하는 데 성공했고, 이를 통해 촉매 활성도가 100배 이상 향상됨을 확인했다.
연구팀이 개발한 전극 소재는 산소이온 전도성 고체산화물 연료전지(SOFC)와 프로토닉 세라믹 연료전지의 전력 생산 및 수소 생산 총 4가지 소자에 모두 적용됐다. 또한 해당 소자들의 효율이 현재까지 보고된 소자 중 가장 우수하고 기존 100시간 운전에도 열화되던 소재에 비해 장기간(700시간) 구동에도 안정적으로 구동해, 개발된 전극 소재의 우수성이 입증됐다.
우리 대학 김동연, 안세종 박사과정 학생, 홍익대학교 김준혁 교수가 공동 제 1 저자로 참여한 이번 연구 결과는 재료·화학 분야의 세계적 권위지인 영국 왕립학회 ‘에너지 & 인바이런멘탈 사이언스, Energy & Environmental Science’(IF:32.5) 7월 12일 字 온라인판에 게재됐다. (논문명: An Universal Oxygen-Electrode for Reversible Solid Oxide Electrochemical Cells at Reduced Temperatures)
정우철 교수는 “문제점을 해결하기 위해서 완전히 새로운 소재를 개발해야 한다는 틀을 깨고 기존에 주목받지 못했던 소재의 결정구조를 잘 제어하면 고성능 연료전지를 개발할 수 있다는 아이디어를 제시한 의미있는 결과다”고 말했다.
또한 이강택 교수는 “하나의 소자에만 응용되었던 기존 소재들에 비해 총 4가지 소자에 모두 적용될 수 있는 유연성을 가지고 있어 추후 연료전지, 물 분해 수소 생산 장치 등 친환경 에너지기술 상용화에 크게 기여할 것으로 기대된다”라고 말했다.
한편 이번 연구는 과학기술정보통신부 원천기술개발사업 그리고 나노 및 소재 기술개발사업의 지원으로 수행됐다.
2023.08.09
조회수 6638
-
백금보다 80배 저렴한 수소전지 대체 촉매 개발
탄소 중립에 도달하기 위해 수소가 미래 에너지원으로 주목받고 있다. 수소 연료전지는 수소와 공기 중의 산소를 반응시켜 전기를 생산하는 발전장치로, 중소형 발전뿐만 아니라 승용차, 버스, 선박 등과 같은 운송 수단의 동력원으로 개발되고 있다. 그러나, 현재 전극 재료로 귀금속인 백금을 사용하고 있어 가격을 낮추는 데 걸림돌이 되고 있다.
우리 대학 신소재공학과 에너지 변환 및 저장재료 연구실 조은애 교수 연구팀이 백금을 대체할 수 있는 저렴하지만 고성능을 가진 전극 소재를 개발하는 데 성공했다고 11일 밝혔다.
조은애 교수 연구팀은 차세대 연료전지로 개발되고 있는 음이온 교환막 연료전지용 전극 소재로 백금보다 우수한 성능을 갖는 `니켈-몰리브데넘 소재'를 개발했다고 밝혔다. 특히, 신규 개발 촉매를 실제 연료전지에 적용하는 경우 다양한 변수에 의해 실성능을 얻지 못하는 경우가 많다. 그러나, 연구팀은 이번 연구에서 이를 극복하고 실제 연료전지에 신규 개발 촉매를 적용하는 것에 성공했다.
니켈은 음이온 교환막 연료전지용 비귀금속 전극 소재로 주목받았으나, 백금 성능의 100분의 1에도 미치지 못하여 실제 적용되지 못하고 있었다. 그러나 이번에 연구팀이 개발한 니켈-몰리브데넘 촉매는 백금보다 성능이 우수하고 (백금: 1.0 mA/cm2, 니켈-몰리브데넘 촉매: 1.1 mA/cm2), 가격은 80분의 1에 불과하여 백금을 대체할 수 있을 것으로 기대된다. 연구팀은 니켈-몰리브데넘 촉매를 연료전지에 적용하여 성능을 확보하는 데에도 성공하였다.
조은애 교수는 "순수한 니켈은 성능이 낮지만, 산화 몰리브데넘을 이용해 니켈의 전자구조를 변화시켜 성능을 비약적으로 향상했다ˮ고 설명하며 “공정 특성상 대량 생산에도 적합하며 향후 음이온 교환막 연료전지에 적용할 수 있을 것으로 기대한다”고 말했다.
신소재공학과 권용근 박사가 제1 저자로 참여한 이번 연구 결과는 재료 분야 저명 국제 학술지 `어플라이드 카탈리시스 비: 엔바이론멘탈(Applied Catalysis B: Environmental)' 2023년 4월 5일 자 온라인판에 게재됐다. (논문명: A Ni-MoOx composite catalyst for the hydrogen oxidation reaction in anion exchange membrane fuel cell)
한편, 조은애 교수팀이 수행한 이번 연구는 한국연구재단이 추진하는 중 나노 및 소재기술개발사업의 지원을 받아 이뤄졌다.
2023.05.11
조회수 7492