-
뇌 구조를 정확히 볼 수 있는 3차원 분석기술 개발
우리 대학 바이오및뇌공학과 백세범 교수 연구팀이 뇌신경과학 연구에서 광범위하게 사용되는 실험용 쥐의 뇌 절편 영상을 자동으로 보정하고 규격화하여 신경세포의 3차원 분포정보를 정확하게 얻을 수 있는 핵심 분석 기술을 개발했다.
이 기술은 실험자의 경험에 의존하던 기존 분석 방식의 문제점을 해결하는 한편 여러 개체에서 얻은 뇌 이미지를 표준적인 3차원 지도상에서 비교 분석할 수 있도록 한다. 이는 기존의 개체별 분석에서는 관측하기 힘든 뇌세포 간 상호 연결 형태의 정확한 공간적 분포를 발견할 수 있는 길을 열었다는 점에서 의미가 크다.
연구팀은 생명과학과 이승희 교수팀과의 협력 연구를 통해 실험에서 얻어진 쥐의 뇌 절편 데이터를 분석했는데, 이 기술을 적용한 결과 시각시스템의 초기구조인 외측 슬상핵(Lateral geniculate nucleus)과 시각피질 (Visual cortex) 사이의 정확한 연결 구조 분포를 측정할 수 있었다. 기존 분석 방식으로는 불가능했던 다중 개체로부터 얻어진 데이터의 표준화를 통해 뇌 전역에 걸친 신경세포의 연결성을 분석할 수 있음을 확인한 것이다.
뇌인지공학프로그램 최우철 박사과정과 송준호 연구원이 공동 제1 저자로 참여한 이번 연구결과는 국제 학술지 `셀(cell)'의 온라인 자매지 `셀 리포츠(Cell Reports)' 5월 26일 자에 게재됐다. (논문명 : Precise mapping of single neurons by calibrated 3-D reconstruction of brain slices reveals topographic projection in mouse visual cortex).
이에 앞서 연구팀은 이 기술을 활용해 UC 버클리대학의 양단(Yang Dan) 교수와의 공동연구에도 참여했고 그 결과를 국제 학술지 `사이언스 (Science)' 1월 24일 자에 발표했다. (논문명: A Common Hub for Sleep and Motor Control in the Substantia Nigra).
통상 쥐의 뇌 절편 영상을 이용한 연구에서는 특정 단백질에 형광물질을 발현시킨 뇌를 잘라 신경세포의 분포 등을 분석하는 방법이 광범위하게 사용된다. 이때 형광을 발현하는 신경세포를 현미경을 통해 연구자의 육안으로 관측하고, 얼마나 많은 신경세포가 뇌의 어느 특정 영역에 위치하는지 일일이 수동적으로 분석한다. 이런 방법은 연구자의 경험에 크게 의존하여 오차가 클 수밖에 없고, 각각의 개체에서 관측된 신경세포의 위치나 수량을 표준적인 공통의 방법으로 동시에 분석할 수 없다는 한계를 갖고 있다.
백 교수 연구팀은 미국의 Allen Brain Atlas 프로젝트에서 제공한 쥐 두뇌의 3차원 표준 데이터에 기반하여, 임의의 각도에서 잘라낸 뇌 절편 이미지들을 SURF(Speeded Up Robust Feature Points) 특징점과 HOG(Histogram of Oriented Gradients descriptor) 형상 기술자를 이용하여 데이터베이스와 비교하는 계산적인 분석 방법을 사용했다.
그 결과, 실험에서 얻은 뇌 이미지와 가장 잘 일치하는 데이터베이스의 3차원 위치를 100마이크로미터(μm), 1도 이내의 오차로 찾아낼 수 있었다. 연구팀은 이를 통해 각 2차원 뇌 이미지의 위치 정보를 3차원 공간상의 위치로 정확히 계산하고, 여러 개체에서 얻어진 신경 세포의 위치를 동일한 3차원 공간에 투영해 정확하게 분석할 수 있음을 확인했다.
따라서 이 기술을 활용하면 다양한 기법으로 생성된 뇌 슬라이스 이미지를 이용해 신경세포의 3차원 위치를 뇌 전체에서 자동적으로 계산할 수 있어, 기존의 방법으로는 분석하기 어려운 수천~수만 개의 신경세포들의 정확한 뇌 내 분포 위치 및 상대적 공간 배열을 한번에 분석하는 것이 가능하다.
또 신경세포들의 연결성을 표준적으로 보정된 3차원 공간에서 표현할 수 있어 특정 뇌 영역 간의 연결은 물론 뇌 전역의 네트워크 분포를 여러 개체의 데이터를 사용해 동시분석도 가능하다. 따라서 기존 방식의 동물실험 분석에서 요구되던 시간과 비용을 크게 줄일 수 있을 것으로 기대된다.
올 6월 현재 백 교수 연구팀의 이 기술은 KAIST내 여러 실험실과 미국 MIT, 하버드(Harvard), 칼텍(Caltech), UC 샌디에고(San Diego) 등 세계 유수 대학의 연구 그룹에서 진행하는 뇌 신경 세포의 네트워크 분석에 활용되고 있다.
백세범 교수는 "이번 연구를 통해 개발된 기술은 형광 뇌 이미지를 이용하는 모든 연구에 바로 적용할 수 있을 뿐만 아니라 그 밖에 다양한 종류의 이미지 데이터에도 광범위하게 적용 가능하다ˮ면서 "향후 쥐의 뇌 슬라이스를 이용하는 다양한 분석에 표준적인 기법으로 자리 잡을 수 있을 것으로 기대된다ˮ고 말했다.
이번 연구는 한국연구재단의 이공분야기초연구사업 및 원천기술개발사업, KAIST의 모험연구사업의 지원을 받아 수행됐다.
2020.06.08
조회수 14656
-
박찬범, 스티브 박 교수, 혈액 기반 알츠하이머병 멀티플렉스 진단센서 개발
KAIST(총장 신성철) 신소재공학과 박찬범 교수와 스티브 박 교수 공동 연구팀이 혈액으로 알츠하이머병을 진단할 수 있는 센서를 개발하는 데 성공했다.
연구팀이 개발한 진단 센서를 활용해 혈액 내에 존재하는 베타-아밀로이드 및 타우 단백질 등 알츠하이머병과 관련한 4종의 바이오마커 농도를 측정·비교하면 민감도는 90%, 정확도 88.6%로 중증 알츠하이머 환자를 구별해 낼 수 있다.
김가영 박사과정·김민지 석사과정이 공동 1저자로 참여한 이번 연구 결과는 국제 학술지‘네이처 커뮤니케이션스(Nature communications)’1월 8일 자 온라인판에 게재됐다. (논문명: Clinically accurate diagnosis of Alzheimer’s disease via multiplexed sensing of core biomarkers in human plasma)
알츠하이머병은 치매의 약 70%를 차지하는 대표적인 치매 질환이다. 현재 전 세계 65세 이상 인구 중 10% 이상이 이 질병으로 인해 고통을 받고 있다. 하지만 현재의 진단 방법은 고가의 양전자 단층촬영(PET) 또는 자기공명영상진단(MRI) 장비를 사용해야만 하기에 많은 환자를 진단하기 위해서는 저렴하면서도 정확한 진단 기술개발의 필요성이 제기돼 왔다.
연구팀은 랑뮤어 블라젯(Langmuir-blodgett)이라는 기술을 이용해 고밀도로 정렬한 탄소 나노튜브(Carbon nanotube)를 기반으로 한 고민감성의 저항 센서를 개발했다. 탄소 나노튜브를 고밀도로 정렬하게 되면 무작위의 방향성을 가질 때 생성되는 접합 저항(Tube-to-tube junction resistance)을 최소화할 수 있어 분석물을 더 민감하게 검출할 수 있다.
실제로 고밀도로 정렬된 탄소 나노튜브를 이용한 저항 센서는 기존에 개발된 탄소 나노튜브 기반의 바이오센서들 대비 100배 이상의 높은 민감도를 보였다.
연구팀은 고밀도로 정렬된 탄소 나노튜브를 이용해 혈액에 존재하는 알츠하이머병의 바이오마커 4종류를 동시에 측정할 수 있는 저항 센서 칩을 제작했다. 알츠하이머병의 대표적인 바이오마커인 베타-아밀로이드 42 (β-amyloid42,), 베타-아밀로이드 40 (β-amyloid40), 총-타우 단백질 (Total tau proteins) 및 과인산화된 타우 단백질 (Phosphorylated tau proteins)은 그 양이 알츠하이머병의 병리와 직접적인 상관관계를 가지기 때문에 알츠하이머병 환자를 구별해 내는 데 매우 유용하다.
고밀도로 정렬된 탄소 나노튜브 기반 센서 칩을 이용해 실제 알츠하이머 환자와 정상인의 혈액 샘플 내에 존재하는 4종의 바이오마커 농도를 측정 하고 비교한 결과, 민감도와 선택성은 각각 90%, 그리고 88.6%의 정확도를 지녀 중증 알츠하이머 환자를 상당히 정확하게 진단할 수 있음을 확인했다. 연구팀이 개발한 고밀도로 정렬된 탄소 나노튜브 센서는 측정방식이 간편하고, 제작비용도 저렴하다.
박찬범 교수는“본 연구는 알츠하이머병으로 이미 확정된 중증환자들을 대상으로 진행하였다. 향후 실제 진료 환경에 활용하기 위해서는 경도인지장애 (Mild cognitive impairment) 환자의 진단 가능성을 테스트하는 것이 필요하다”며“이를 위하여 경도인지장애 코호트, 치매 코호트 등의 범국가적인 인프라 구축이 필수적이며, 국가 공공기관의 적극적인 연구 네트워크 구축 및 지원의 장기성 보장이 요구된다”고 강조했다.
한편 이번 연구는 과학기술정보통신부 리더연구자 지원사업과 충남대병원 및 충북대병원 인체자원은행의 지원을 받아 수행됐다.
□ 그림 설명
그림 1. 혈액 내에 존재하는 총 4종의 바이오마커 농도를 측정해 알츠하이머병 환자를 구별하는 고밀도로 정렬된 카본 나노튜브 기반 저항 센서의 모식도
그림 2. 진단 센서 성능
2020.01.15
조회수 18313
-
김희탁 김상욱 교수, 멤브레인 필요 없는 새로운 물 기반 전지 개발
우리 대학 생명화학공학과 김희탁 교수와 신소재공학과 김상욱 교수 공동 연구팀이 전기화학 소자의 핵심 부품인 멤브레인을 사용하지 않고도 에너지 효율 80% 이상을 유지하면서 1천 번 이상 구동되는 새로운 개념의 물 기반 아연-브롬 전지를 개발했다.
이번 연구를 통해 일본, 미국의 수입에 의존해 온 다공성 분리막이나 불소계 이온교환막을 사용하지 않는 기술로, 해당 기술에 대한 대외 의존도를 낮출 수 있을 것으로 기대된다.
이주혁 박사과정과 변예린 박사후연구원이 공동 1 저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced materials)’12월 27일자 표지논문에 선정됐다.(논문명: High-Energy Efficiency Membraneless Flowless Zn-Br Battery: Utilizing the Electrochemical-Chemical growth of Polybromides)
최근 태양광, 풍력 등 신재생에너지의 불안정한 전력 공급을 해결하기 위해 전기 에너지를 미리 저장했다가 필요한 시간대에 사용할 수 있는 에너지저장장치(ESS)가 주목받고 있다.
현재는 리튬이온전지가 에너지저장장치용 이차전지로 사용되고 있으나 발화성 유기 전해액 및 리튬계 소재로 인한 발화의 위험성을 지니고 있다. 지난 2017년부터 올해 10월까지 총 21건의 에너지저장장치 화재사고가 발생했으며, 전체 에너지저장장치 시설 1천 490개 중 35%인 522개의 가동이 중단되기도 했다.
이러한 이유로 물을 전해질로 사용한 비 발화성 물 기반 이차전지 기술이 에너지저장장치용 차세대 이차전지로 주목받고 있다. 특히 다양한 물 기반 전지 기술 중 아연과 브롬을 활물질로 사용하는 아연-브롬 레독스 흐름 전지는 높은 구동 전압 및 높은 에너지 밀도를 가져 1970년대부터 지속해서 개발돼왔다.
그러나 아연-브롬 레독스 전지는 브롬이 아연과 반응해 전지 수명을 단축시키는 문제로 인해 상용화가 지연됐다. 이러한 반응을 억제하기 위해 펌프를 이용해 브롬이 함유된 전해질을 외부 탱크로 이송해 왔으나, 이는 펌프 구동을 위한 에너지 소모 및 브롬에 의한 외부 배관이 부식되는 문제를 동반한다.
브롬을 포획하는 전해질 첨가제 및 브롬의 이동을 차단할 수 있는 멤브레인에 대한 개발이 진행됐으나, 가격증가 및 출력 저하의 문제점이 발생했다.
김희탁 교수와 김상욱 교수 공동 연구팀은 일본, 미국에 의존하던 값비싼 멤브레인 소재와 어떠한 첨가제도 사용하지 않는 새로운 물 기반 아연-브롬 전지를 개발했다.
전해질 내의 이온과 외부 전기회로 사이의 전자를 주고받는 한정된 역할만 수행하던 전극의 기능에 멤브레인과 첨가제가 담당하던 브롬을 포획할 수 있는 기능을 추가했다.
질소가 삽입된 미세기공 구조를 전극 표면에 도입해 미세기공 내부에서 비극성 브롬을 극성 폴리브롬화물로 전환한 뒤, 질소 도핑 카본과 폴리브롬화물간 쌍극자-쌍극자 상호 작용을 통해 폴리브롬화물을 기공 내부에 고정했다.
이 기술은 멤브레인의 기능을 전극이 담당하므로 고가의 멤브레인이 필요 없으며, 브롬을 외부 탱크가 아닌 전극 내부에 저장함으로써 펌프 및 배관을 제거할 수 있어 가격 저감 및 에너지 효율을 증대했다.
연구팀이 개발한 다기능성 전극을 이용한 멤브레인을 사용하지 않는 물 기반의 아연-브롬 전지는 리튬-이온 전지보다 45배 저렴할 뿐 아니라, 에너지 효율 83% 이상을 보이며 1천 사이클 이상 운전이 가능하다.
김상욱 교수는 “차세대 물 기반 전지의 한계를 극복하기 위한 나노소재 기술을 이용한 새로운 해결책을 제시했다”라고 말했다.
김희탁 교수는 “이번 연구를 통해 기존보다 안전하고 경제적인 에너지저장장치의 개발이 가속화되기를 기대한다”라고 말했다.
이번 연구는 KAIST 나노융합연구소, 에너지클라우드 사업단, 과학기술정보통신부 리더연구자지원사업인 다차원 나노조립제어 창의연구단의 지원을 받아 수행됐다.
그림 1. 브롬 활물질을 전극내부에서 폴리브롬화물로 전환하여 저장하는 다기능성 전극의 메커니즘의 모식도와 멤브레인을 장착하지 않고 구동되는 전지의 실제 모습
그림 2. 질소가 도핑된 미세기공이 코팅된 다기능성 전극의 제조 과정
2020.01.08
조회수 17019
-
신병하 교수, 홀 효과 한계 보완한 새 반도체 분석기술 개발
〈 신병하 교수, 배성열 박사과정 〉
우리 대학 신소재공학과 신병하 교수와 IBM 연구소의 오키 구나완(Oki Gunawan) 박사 공동 연구팀이 반도체 특성 분석의 핵심 기술인 홀 효과(Hall effect)의 한계를 넘을 수 있는 새로운 반도체 정보 분석 기술을 개발했다.
이번 연구는 140년 전에 처음 발견된 이래로 반도체 연구 및 재료 분석의 토대가 된 홀 효과 측정에 대한 새로운 발견으로 향후 반도체 기술 개발에 이바지할 수 있을 것으로 기대된다.
신병하 교수와 오키 구나완 박사가 교신 저자로, 배성열 박사과정이 2 저자로 참여한 이번 연구 결과는 국제 학술지‘네이처(Nature)’ 10월 07일 자 온라인판에 게재됐으며 11월 07일 정식 게재됐다. (논문명: Carrier-Resolved Photo Hall Effect)
1879년 에드윈 홀(Edwin Hall)이 발견한 홀 효과는 물질의 전하 특성(유형, 밀도, 이동성 또는 속도)에 대한 중요한 정보를 제공한다. 이는 반도체 소자를 이해하고 설계하는 데 필요한 가장 기본적인 특성들이다.
이러한 이유로 홀 효과는 지난 100년이 넘는 시간 동안 가장 일반적인 반도체 특성 분석 기법의 하나며 전 세계의 반도체 연구기관에서 보편적으로 사용되고 있다.
그러나 현재까지의 분석 기법으로는 홀 효과를 통해 다수 운반체(Majority carrier)와 관련한 특성만 파악할 수 있고, 태양 전지와 같은 소자의 구동 원리 파악에 필수인 소수 운반체(Minority carrier) 정보는 얻을 수 없다는 한계를 가지고 있었다.
연구팀은 문제 해결을 위해 ‘포토 홀 효과(Carrier-Resolved Photo-Hall" (CRPH))’ 기술을 개발했다. 이 기술을 사용하면 한 번의 측정으로 다수 운반체 및 소수 운반체에 대한 많은 정보를 동시에 추출할 수 있다.
기존 홀 측정에서는 세 가지 정보를 얻을 수 있었다면 연구팀의 새로운 기술은 실제 작동 조건을 포함한 여러 광도에서 광여기 전하의 농도, 다수 운반체 및 소수 운반체의 전하 이동도, 재결합 수명, 확산 거리 등 최대 일곱 개의 중요한 정보를 얻을 수 있다.
연구팀의 이 기술은 태양 전지, 발광 다이오드와 같은 광전자 소자 분야에서 사용 가능한 신소재 개발 및 최적화에 핵심적인 역할을 할 것으로 기대된다.
신 교수는 “지난 2년간의 연구가 좋은 결심을 맺게 되어 기쁘고, 이 기술을 통해 새로운 광소자 물질의 전하 수송 특성을 이해하고 더 나은 소자를 개발하는 데 큰 도움이 되리라 믿는다”라고 말했다.
이번 연구는 한국연구재단 기후변화대응기술개발사업, 산업통상자원부와 한국에너지기술평가원(KETEP) 에너지기술개발사업의 지원을 통해 수행됐다.
□ 그림 설명
그림1. 포토 홀 효과 개념도
2019.11.14
조회수 13290
-
이의진 교수, 차량 대화형서비스 안전성 향상 기술 개발
〈 이의진 교수, 김아욱 박사과정 〉
우리 대학 산업및시스템공학과 이의진 교수 연구팀이 차량용 인공지능이 능동적으로 운전자에게 대화 서비스를 어느 시점에 제공해야 하는지 자동으로 판단할 수 있는 기술을 개발했다.
연구팀은 차량에서 수집되는 다양한 센서 데이터와 주변 환경 정보를 통합 분석해 언제 운전자에게 말을 걸어야 하는지 자동 판단하는 인공지능 기술을 개발했다.
차량 대화형서비스가 가진 문제를 해결하는 데 중점을 둔 이번 연구는 인공지능의 자동판단 기술을 통해 대화형서비스로 인한 운전자 주의분산 문제를 해결함으로써, 부적절한 시점에 운전자에게 대화를 시도하다가 발생할 수 있는 교통사고 등을 방지하는 기반기술이 될 것으로 기대된다.
이번 연구결과는 유비쿼터스 컴퓨팅 분야 국제 최우수학회인 ACM 유비콤(UbiComp)에서 9월 13일 발표됐다. 김아욱 박사과정이 1저자로 참여하고 최우혁 박사과정, 삼성리서치 박정미 연구원, 현대자동차 김계윤 연구원과의 공동 연구로 이뤄졌다. (논문명: Interrupting Drivers for Interactions: Predicting Opportune Moments for In-vehicle Proactive Auditory-verbal Tasks)
차량 대화형서비스는 편의와 안전을 동시에 제공해야 한다. 운전 중에 대화형서비스에만 집중하면 전방 주시에 소홀하거나 주변 상황에 주의를 기울이지 못하는 문제가 발생한다. 이는 운전뿐만 아니라 대화형서비스 사용 전반에도 부정적인 영향을 줄 수도 있다.
연구진은 말 걸기 적절한 시점 판단을 위해 ▲현재 운전상황의 안전도 ▲대화 서비스 수행의 성공률 ▲운전 중 대화 수행 중 운전자가 느끼는 주관적 어려움을 통합적으로 고려한 인지 모델을 제시했다.
연구팀의 인지 모델은 개별 척도를 다양하게 조합해 인공지능 에이전트가 제공하는 대화형서비스의 유형에 따른 개입 시점의 판단 기준을 설정할 수 있다.
일기예보 같은 단순 정보만을 전달하는 경우 현재 운전상황의 안전도만 고려해 개입 시점을 판단할 수 있고, ‘그래’, ‘아니’ 같은 간단한 대답을 해야 하는 질문에는 현재 운전상황의 안전도와 대화 서비스 수행의 성공률을 함께 고려한다. 매우 보수적으로 세 가지 척도를 모두 함께 고려해 판단할 수 있다. 이 방식은 에이전트와 운전자가 여러 차례의 상호작용을 통해 의사결정을 할 때 사용한다.
정확도 높은 자동판단 인공지능 기술 개발을 위해서는 실제 도로 운전 중 에이전트와의 상호작용 데이터가 필요하기 때문에 연구팀은 반복적인 시제품 제작 및 테스트를 수행해 실제 차량 주행환경에서 사용 가능한 내비게이션 앱 기반 모의 대화형서비스를 개발했다.
자동판단을 위해 대화형서비스 시스템과 차량을 연동해 운전대 조작, 브레이크 페달 조작 상태 등 차량 내 센서 데이터와 차간거리, 차량흐름 등 주변 환경 정보를 통합 수집했다.
연구팀은 모의 대화형서비스를 사용해 29명의 운전자가 실제 운전 중에 음성 에이전트와 수행한 1천 3백 88회의 상호작용 및 센서 데이터를 구축했고, 이를 활용해 기계학습 훈련 및 테스트를 수행한 결과 적절 시점 검출 정확도가 최대 87%에 달하는 것을 확인했다.
연구팀의 이번 기술 개발로 대화형서비스로 인한 운전자 주의분산 문제를 해결할 수 있을 것으로 전망된다. 이 기술은 대화형서비스를 제공하는 차량 인포테인먼트 시스템에 바로 적용할 수 있다. 운전 부주의 실시간 진단 및 중재에도 적용될 수 있을 것으로 기대된다.
이의진 교수는 “앞으로의 차량 서비스는 더욱더 능동적으로 서비스를 제공하는 형태로 거듭나게 될 것이다”라며 “자동차에서 생성되는 기본 센서 데이터만을 활용해 최적 개입 시점을 정확히 찾을 수가 있어 앞으로는 안전한 대화 서비스 제공이 가능할 것이다”라고 밝혔다.
이번 연구는 한국연구재단 차세대정보컴퓨팅기술개발사업과 현대NGV의 지원을 통해 수행됐다.
□ 그림 설명
그림1. 실차 데이터 수집장비 및 실제 실험 모습
그림2. 모의 대화형서비스 개념도
그림3. 차량 대화형서비스의 안전성 증진 기술 개념도
2019.11.12
조회수 16162
-
이성주 교수, 스마트폰으로 사물 두드려 인식하는 노커(Knocker) 기술 개발
〈 왼쪽부터 공태식 박사과정, 조현성 석사과정, 이성주 교수 〉
우리 대학 전산학부 이성주 교수 연구팀이 스마트폰을 사물에 두드리는 것만으로 사물을 인식할 수 있는 ‘노커(Knocker)’ 기술을 개발했다.
이번 연구 결과는 기존 방식과 달리 카메라나 외부 장치를 사용하지 않아 어두운 곳에서도 식별에 전혀 지장이 없고, 추가 장비 없이 스마트폰만으로 사물 인식을 할 수 있어 기존 사물 인식 기술의 문제를 해결할 수 있을 것으로 기대된다.
공태식 박사과정, 조현성 석사과정, 인하대학교 이보원 교수가 참여한 이번 연구 결과는 9월 13일 유비쿼터스 컴퓨팅 분야 국제 최우수학회 ‘ACM 유비콤(ACM UbiComp)’에서 발표됐다. (논문명 : Knocker: Vibroacoustic-based Object Recognition with Smartphones)
기존의 사물 인식 기법은 일반적으로 두 종류로 나뉜다. 첫째는 촬영된 사진을 이용하는 방법으로 카메라를 이용해 사진을 찍어야 한다는 번거로움과 어두운 환경에서는 사용하지 못한다는 단점이 있다. 둘째는 RFID 등의 전자 태그를 부착해 전자신호로 구분하는 방법으로 태그의 가격 부담과 인식하고자 하는 모든 사물에 태그를 부착해야 한다는 비현실성 때문에 상용화에 어려움을 겪었다.
연구팀이 개발한 노커 기술은 카메라와 별도의 기기를 쓰지 않아도 사물을 인식할 수 있다. 노커 기술은 물체에 ‘노크’를 해서 생긴 반응을 스마트폰의 마이크, 가속도계, 자이로스코프로 감지하고, 이 데이터를 기계학습 기술을 통해 분석해 사물을 인식한다.
연구팀은 책, 노트북, 물병, 자전거 등 일상생활에서 흔히 접할 수 있는 23종의 사물로 실험한 결과 혼잡한 도로, 식당 등 잡음이 많은 공간에서는 83%의 사물 인식 정확도를 보였고, 가정 등 실내 공간에서의 사물 인식 정확도는 98%에 달하는 것을 확인했다.
연구팀의 노커 기술은 스마트폰 사용의 새로운 패러다임을 제시했다. 예를 들어 빈 물통을 스마트폰으로 노크하면 자동으로 물을 주문할 수 있고, IoT 기기를 활용하여 취침 전 침대를 노크하면 불을 끄고 알람을 자동 설정하는 등 총 15개의 구체적인 활용 방안을 선보였다.
이성주 교수는 “특별한 센서나 하드웨어 개발 없이 기존 스마트폰의 센서 조합과 기계학습을 활용해 개발한 소프트웨어 기술로, 스마트폰 사용자라면 보편적으로 사용할 수 있어 의미가 있다”라며 “사용자가 자주 이용하는 사물과의 상호 작용을 보다 쉽고 편하게 만들어 주는 기술이다”라고 말했다.
이 연구는 한국연구재단 차세대정보컴퓨팅기술개발사업과 정보통신기획평가원 정보통신․방송 기술개발사업 및 표준화 사업의 지원을 통해 수행됐다.
연구에 대한 설명과 시연은 링크에서 확인할 수 있고, ( https://www.youtube.com/watch?v=SyQn1vr_HeQ&feature=youtu.be ) 자세한 정보는 프로젝트 웹사이트에서 볼 수 있다. ( https://nmsl.kaist.ac.kr/projects/knocker/ )
□ 그림 설명
그림1. 물병에 노크 했을 때의 '노커' 기술 예시
그림2. 23개 사물에 대해 스마트폰 센서로 추출한 노크 고유 반응 시각화
2019.10.01
조회수 11937
-
정연식, 전덕영, 장민석 교수, 팝콘 구조의 퀀텀닷 나노복합 소재 개발
우리 대학 신소재공학과 정연식 교수, 전덕영 교수, 전기 및 전자공학부 장민석 교수 공동 연구팀이 팝콘처럼 내부에 공기주머니가 가득한 고분자 매질과 퀀텀닷이 융합된 새로운 발광 소재를 개발하는 데 성공했다.
연구팀은 이 기술을 활용해 퀀텀닷의 광 발광(Photoluminescence) 특성이 순수 퀀텀닷 필름과 비교해 최대 21배까지 증가하는 것을 확인했다.
김건영, 김신호, 최진영 연구원이 1 저자로 참여한 이번 연구는 미국 화학회가 발간하는 국제학술지 ‘나노 레터스(Nano letters)’ 9월 3일 자 온라인판에 게재됐다. (논문명: Order-of-Magnitude, Broadband-Enhanced Light Emission from Quantum Dots Assembled in Multiscale Phase-Separated Block Copolymers)
수년 전 국내 대기업이 퀀텀닷 LED TV를 출시하고 차세대 퀀텀닷 올레드(OLED) TV 출시를 발표하면서 퀀텀닷 소재는 디스플레이용 핵심 소재로 떠올랐다. 하지만 일반적으로 순수 퀀텀닷 필름은 광흡수도와 광추출도가 높지 못하고 인접한 퀀텀닷 간의 상호작용으로 광 효율이 매우 낮아지는 문제가 있었다.
문제 해결을 위해 공동 연구팀은 블록공중합 고분자를 습도가 제어된 환경에서 코팅해, 고분자와 물 입자 사이를 미세하게 분리했다.
이후 수분을 빠르게 증발시키면서 형성되는 미세한 공극 구조에 퀀텀닷이 고르게 배열된 소재를 개발하는 데 성공했다. 이는 마치 옥수수를 가열하면 내부의 수분이 수증기로 팽창해 빠져나가면서 속이 빈 팝콘 구조가 형성되는 원리와 유사하다.
연구팀은 이 다공성 고분자 매질을 활용하면 빛과 고분자 매질의 상호작용이 극대화돼 퀀텀닷 복합소재의 광흡수도와 광추출도가 각각 4~5배씩 증가하는 것을 발견했다.
또한, 블록 공중합 고분자는 수 나노미터(nm) 크기의 상분리 구조를 스스로 내부에 형성해 퀀텀닷 입자들을 고르게 분산시켜 줌으로써 퀀텀닷 간 상호작용에 의한 발광 강도 감소 현상도 크게 낮춰 준다.
연구팀은 이번 연구 결과를 청색 LED 발광 소재로 적용했을 때 순수 퀀텀닷 대비 7배 이상의 발광 강도 향상 및 45% 이상의 내구도 향상 효과가 있음을 확인해 차세대 마이크로 LED 디스플레이로 적용 가능성을 기대한다고 밝혔다. 이번 기술은 국내 특허로 등록됐으며, 미국 등 해외 특허 심사 중이다.
정연식 교수는“개발한 복합소재 매질은 가시광 전 파장 범위에서 발광 강도 증대 효과가 있어 퀀텀닷 이외에도 다양한 발광 소재에 적용될 수 있을 것으로 기대한다”라며 "이 기술을 활용하면 값비싼 발광 소재를 적게 사용하고도 우수한 발광 특성을 구현할 수 있어 차세대 디스플레이 원가 경쟁력 향상에 기여할 수 있다”라고 말했다.
이번 연구는 과학기술정보통신부 한국연구재단이 추진하는 미래소재디스커버리사업(단장 최성율)의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 블록공중합 고분자 및 퀀텀닷으로 이뤄진 나노 복합소재
그림2. 블록공중합 고분자 및 퀀텀닷으로 이뤄진 나노 복합소재 개념도
2019.09.30
조회수 11621
-
김범준 교수, 빛에 반응해 모양과 색 변하는 스마트 마이크로 입자 개발
〈 김범준 교수, 이준혁 박사, 구강희 박사 〉
우리 대학 생명화학공학과 김범준 교수 연구팀이 빛에 의해 모양과 색을 바꿀 수 있는 스마트 마이크로 입자 제작기술을 개발했다.
아주 작은 입자의 모양이나 색을 원하는 대로 가공(fabrication)할 수 있게 되면 군용장비의 위장막(artificial camouflage), 병든 세포만 표적하는 약물전달캡슐, 투명도 및 색이 변하는 스마트 윈도우나 외부 인테리어 등에 활용할 수 있다.
마이크로 입자의 모양과 색 변화 연구는 주로 약물전달이나 암세포 진단과 같은 생물학적 응용을 위해 산도(pH), 온도, 특정 생체분자 같은 물리화학적 자극과 관련해 주로 이뤄졌다.
하지만 이런 자극들은 의도하는 국소부위에만 전달하기 어렵고 자극 스위치를 명확하게 켜고 끄기 어려운 것이 단점이었다.
반면 빛은 원하는 시간 동안 특정부위에만 쬐어줄 수 있고 파장과 세기를 정밀하게 조절, 선택적·순차적으로 입자 모양을 변형시킬 수 있어 해상도 높은 자극으로 주목받는다.
하지만 기존 빛에 감응하는 스마트 입자는 제작방법이 복잡하고, 편광방향으로의 길이 연장만 가능한 등 정밀한 모양변화가 어려워 활용에 한계가 있었다.
연구팀은 빛에 의해 분자구조가 변해 친수성 정도나 광학적 특성을 조절할 수 있는 계면활성제*를 개발하고 이들의 자가조립방식을 기반으로 빛에 반응해 모양과 색깔이 변하는 수 마이크로미터 크기의 스마트 입자를 대량으로 제작하는 데 성공했다.
빛을 쬐어준 시간과 파장에 따라 구형에서 타원체, 튤립, 렌즈형태 등으로 변화시킬 수 있는 한편 입자의 색도 조절할 수 있다.
또한 100μm 이하의 국소 부위에만 빛을 조사함으로써 원하는 위치에서 원하는 모양을 정교하게 유도할 수 있다.
특히 반응하는 빛의 파장이 서로 다른 계면활성제를 활용하면 입자 모양의 변화를 여러 단계로 조절하거나 원래의 모양으로 되돌리는 변화가 가능하다.
이러한 스마트 입자로 만들어진 박막이나 용액은 그 성질을 정밀하게 조절할 수 있어 정보를 담거나 신호를 넣을 수 있는 스마트 소재로도 활용할 수 있다.
과학기술정보통신부와 한국연구재단이 추진하는 미래소재디스커버리사업, 글로벌프론티어사업 및 중견연구자지원사업의 지원으로 수행된 이번 연구의 결과는 화학 분야 국제학술지 잭스(JACS, Journal of the American Chemical Society)에 9월 4일 게재되는 한편 표지 논문으로 선정됐다.
김범준 교수는 “빛을 이용해 모양과 색이 조절되는 스마트 입자 제작 플랫폼을 개발한 것으로 빛을 신호로 국소부위 입자의 성질을 정밀하게 조절할 수 있어 스마트 디스플레이, 센서, 도료, 약물전달 등에 응용될 수 있을 것으로 기대된다.”고 설명했다.
□ 그림 설명
그림1. 김범준 교수 연구성과 개념도
2019.09.09
조회수 13876
-
생명화학공학과 대학원생들, 시스템 대사공학 전략 발표
〈 양동수 박사과정, 박다현 석사과정, 최경록 박사과정, 조재성 박사과정, 장우대 박사과정 〉
우리 대학 생명화학공학과 대학원생 다섯 명이 대사공학과 시스템 생물학, 합성 생물학의 결합 시스템 등 대사공학 전반의 전략에 대한 논문을 발표했다.
생명화학공학과는 최근 박사학위를 마친 최경록 연구원과 장우대, 양동수, 조재성 박사과정, 박다현 석사과정이 친환경 화학물질 생산을 위해 필수적인 미생물 공장을 개발하는 전략을 총정리했다.
이 연구의 결과는 셀(Cell)지가 발행하는 생명공학 분야 권위 리뷰 저널인 ‘생명공학의 동향(Trends in Biotechnology)’ 8월호 표지논문 및 주 논문 (Feature review)에 게재됐다. (논문명 : Systems Metabolic Engineering Strategies: Integrating Systems and Synthetic Biology with Metabolic Engineering)
시스템 대사공학은 기존의 석유화학산업을 대체할 바이오산업의 핵심이 되는 미생물 균주를 보다 효과적으로 개발하기 위해 KAIST 생명화학공학과의 이상엽 특훈교수가 창시한 연구 분야다.
전통적 대사공학에 시스템 생물학, 합성 생물학 및 진화 공학 기법을 접목한 시스템 대사공학은 직관적 전략이나 무작위 돌연변이 유발에 의존하는 기존의 대사공학과 비교해 적은 비용과 인력, 짧은 시간 내에 산업에서 이용 가능한 고성능 균주 개발을 가능하게 만든다.
연구 기획 단계에서부터 실제 공장에서 균주의 발효 공정 및 발효를 통해 생산된 물질의 분리/정제 공정까지 고려함으로써 산업 균주 개발 도중 불필요한 시행착오를 최소화할 수 있다.
본 논문에서는 시스템 대사공학 전략을 연구의 흐름에 따라 ▲프로젝트 디자인 ▲균주 선정 ▲대사회로 재구성 ▲표적 화합물에 대한 내성 향상 ▲대사 흐름 최적화 ▲산업 수준으로의 생산 규모 확대 등 일곱 단계로 나누고, 각 단계에서 활용할 수 있는 최신 도구 및 전략들을 총망라했다.
더불어 바이오 기반 화합물 생산의 최신 동향과 함께 고성능 생산 균주를 보다 효과적으로 개발하기 위해 시스템 대사공학이 나아가야 할 방향도 함께 제시했다.
주저자인 최경록 연구원은 “기후 변화가 커지며 기존의 석유화학 산업을 친환경 바이오산업으로 대체하는 것이 불가피하다”라며 “시스템 대사공학은 산업에서 활용 가능한 고성능 생산 균주의 개발을 촉진해 바이오산업 시대의 도래를 앞당길 것이다”라고 말했다.
지도교수인 이상엽 특훈교수는 “그간 우리 연구실과 전 세계에서 수행한 수많은 대사공학연구를 우리가 제시한 시스템 대사공학 전략으로 통합해 체계적으로 분석 및 정리하고 앞으로의 전략을 제시했다는 점에서 큰 의미가 있다”라며 “권위 있는 학술지에 주 논문이자 표지논문으로 게재된 훌륭한 연구를 수행한 학생들이 자랑스럽다”라고 말했다.
이상엽 특훈교수 연구팀은 실제로 시스템 대사공학 전략을 이용해 천연물, 아미노산, 생분해성 플라스틱, 환경친화적 플라스틱 원료, 바이오 연료 등을 생산하는 고성능 균주들을 다수 개발한 바 있다.
이번 연구는 과학기술정보통신부가 지원하는 기후변화대응기술개발사업의 ‘바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제’ 및 한화케미칼이 지원하는 KAIST-한화 미래 기술 연구소의 지원을 받아 수행됐다.
2019.07.24
조회수 19635
-
박준성 연구원, 알츠하이머병의 새로운 원인 규명
〈 박준성 박사 〉
우리 대학 의과학대학원 박준성 박사(지도교수 : 이정호 교수), KISTI(한국과학기술정보연구원) 국가슈퍼컴퓨팅본부 유석종 박사 공동 연구팀이 노화 과정에서 발생하는 후천적 뇌 돌연변이가 알츠하이머병의 새 원인이 될 수 있다는 이론을 제시했다.
연구팀은 52명의 알츠하이머병 환자에게 얻은 사후 뇌 조직에서 전장 엑솜 유전체 서열(whole-exome sequencing) 데이터 분석을 통해 알츠하이머병에 존재하는 뇌 체성 유전변이를 찾아냈다. 또한, 뇌 체성 돌연변이가 알츠하이머병의 중요 원인으로 알려진 신경섬유다발 형성을 비정상적으로 증가시킴을 확인했다.
박준성 박사와 KISTI 이준학 박사가 공동 1 저자로 참여한 이번 연구는 국제 학술지 네이처 커뮤니케이션(Nature Communications) 7월 12일자 온라인판에 게재됐다. (논문명 : Brain somatic mutations observed in Alzheimer's disease associated with aging and dysregulation of tau phosphorylation)
노인성 치매의 가장 흔한 원인으로 알려진 알츠하이머병은 전 세계 GDP의 1%를 차지할 정도로 사회, 경제적 소모비용이 큰 질환이다. 하지만 여전히 알츠하이머병을 일으키는 분자 유전학적 원인은 명확하게 규명되지 않고 있다.
기존의 알츠하이머병 유전체 연구는 주로 환자의 말초조직인 혈액에서 전장유전체 연관분석(Genome-wide association study)을 하거나, 이미 가족력이 있는 환자에서 발견된 일부 유전자들(e.g., APP, PSEN1/2)에 대한 유전자 패널 분석 등이 주를 이루었다.
연구팀은 산발성 알츠하이머병 환자들에게 내후각피질에서 신경섬유다발이 공통으로 나타나는 현상에 주목해 알츠하이머병 환자의 뇌 조직에서 직접 엑솜 유전체 데이터를 생성해 알츠하이머병 뇌-특이적 체성 유전변이를 발굴했다.
연구팀은 알츠하이머병 환자와 정상인의 해마 형성체 부위를 레이저 현미 해부법을 통해 정밀하게 오려냈고, 저빈도의 체성 유전변이(Somatic mutation)를 정확하게 찾아내기 위해 대용량 고심도 엑솜 시퀀싱 데이터를 생성하고 저빈도 체성 유전변이 분석에 특화된 분석 파이프라인을 독자적으로 구축했다.
이러한 새 방법론을 통해 실제로 알츠하이머병 환자의 뇌에 체성 유전변이가 실제로 존재함을 체계적으로 규명함과 동시에 체성 유전변이의 누적속도 및 신경섬유다발 형성과의 관련성도 함께 밝혀냈다.
연구팀의 발견은 알츠하이머병의 발병에 체성 유전변이가 주요한 역할을 할 수 있음을 강력하게 시사하는 것으로, 알츠하이머병 유전체 연구에 대한 새로운 틀을 제시함과 동시에 향후 다른 신경퇴행성뇌질환의 연구에도 기여할 수 있을 것으로 기대된다.
연구팀은 이번 연구 결과를 바탕으로 교원 창업 기업(소바젠, 대표 김병태)을 통해 알츠하이머 질환의 진단과 치료제 개발에 나설 예정이다.
KISTI 유석종 박사는 연구팀이 구축한 저빈도 체성 유전변이 분석 파이프라인 및 빅데이터 분석을 위한 슈퍼컴퓨팅 기술을 통해 알츠하이머병의 새로운 발병 원리를 밝혀냈다라며 타 유전체 기반 연구에 활용할 수 있는 기반을 마련했다라고 말했다.
이번 연구는 서경배 과학재단, 보건복지부 및 한국과학기술정보연구원의 지원을 받아 수행됐고, 신속한 유전체 빅데이터 분석을 위해 KISTI의 슈퍼컴퓨터 5호기 누리온 시스템이 활용됐다.
□ 그림 설명
그림1. 본 연구에서 사용된 체성 유전변이 분석 파이프라인
그림2. 신경섬유성다발 형성에 관여하는 체성 유전변이
그림3. PIN1 유전자에 발생한 병원성 뇌 체성유전변이와 신경섬유다발 형성과의 관계 규명
2019.07.17
조회수 14570
-
이상엽 특훈교수, 김현욱 교수, 인공지능 이용한 효소기능 예측 기술 개발
우리 대학 생명화학공학과 이상엽 특훈교수와 김현욱 교수의 초세대 협업연구실 공동연구팀이 딥러닝(deep learning) 기술을 이용해 효소의 기능을 신속하고 정확하게 예측할 수 있는 컴퓨터 방법론 DeepEC를 개발했다.
공동연구팀의 류재용 박사가 1 저자로 참여한 이번 연구결과는 국제학술지 ‘미국 국립과학원 회보(PNAS)’ 6월 20일 자 온라인판에 게재됐다. (논문명 : Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers)
효소는 세포 내의 생화학반응들을 촉진하는 단백질 촉매로 이들의 기능을 정확히 이해하는 것은 세포의 대사(metabolism) 과정을 이해하는 데에 매우 중요하다.
특히 효소들은 다양한 질병 발생 원리 및 산업 생명공학과 밀접한 연관이 있어 방대한 게놈 정보에서 효소들의 기능을 빠르고 정확하게 예측하는 기술은 응용기술 측면에서도 중요하다.
효소의 기능을 표기하는 시스템 중 대표적인 것이 EC 번호(enzyme commission number)이다. EC 번호는 ‘EC 3.4.11.4’처럼 효소가 매개하는 생화학반응들의 종류에 따라 총 4개의 숫자로 구성돼 있다.
중요한 것은 특정 효소에 주어진 EC 번호를 통해서 해당 효소가 어떠한 종류의 생화학반응을 매개하는지 알 수 있다는 것이다. 따라서 게놈으로부터 얻을 수 있는 효소 단백질 서열의 EC 번호를 빠르고 정확하게 예측할 수 있는 기술은 효소 및 대사 관련 문제를 해결하는 데 중요한 역할을 한다.
작년까지 여러 해에 걸쳐 EC 번호를 예측해주는 컴퓨터 방법론들이 최소 10개 이상 개발됐다. 그러나 이들 모두 예측 속도, 예측 정확성 및 예측 가능 범위 측면에서 발전 필요성이 있었다. 특히 현대 생명과학 및 생명공학에서 이뤄지는 연구의 속도와 규모를 고려했을 때 이러한 방법론의 성능은 충분하지 않았다.
공동연구팀은 1,388,606개의 단백질 서열과 이들에게 신뢰성 있게 부여된 EC 번호를 담고 있는 바이오 빅데이터에 딥러닝 기술을 적용해 EC 번호를 빠르고 정확하게 예측할 수 있는 DeepEC를 개발했다.
DeepEC는 주어진 단백질 서열의 EC 번호를 예측하기 위해서 3개의 합성곱 신경망(Convolutional neural network)을 주요 예측기술로 사용하며, 합성곱 신경망으로 EC 번호를 예측하지 못했을 경우 서열정렬(sequence alignment)을 통해서 EC 번호를 예측한다.
연구팀은 더 나아가 단백질 서열의 도메인(domain)과 기질 결합 부위 잔기(binding site residue)에 변이를 인위적으로 주었을 때, DeepEC가 가장 민감하게 해당 변이의 영향을 감지하는 것을 확인했다.
김현욱 교수는 “DeepEC의 성능을 평가하기 위해서 이전에 발표된 5개의 대표적인 EC 번호 예측 방법론과 비교해보니 DeepEC가 가장 빠르고 정확하게 주어진 단백질의 EC 번호를 예측하는 것으로 나타났다”라며 “효소 기능 연구에 크게 이바지할 것으로 기대한다”라고 말했다.
이상엽 특훈교수는 “이번에 개발한 DeepEC를 통해서 지속해서 재생되는 게놈 및 메타 게놈에 존재하는 방대한 효소 단백질 서열의 기능을 보다 효율적이고 정확하게 알아내는 것이 가능해졌다”라고 말했다.
이번 연구는 과학기술정보통신부가 지원하는 기후변화대응기술개발사업의 바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제 및 바이오·의료기술 개발 Korea Bio Grand Challenge 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 인공지능 기반의 DeepEC를 이용한 효소 기능 EC 번호 예측
2019.07.03
조회수 19112
-
윤동기 , 김형수 교수, DNA 마이크로패치 제작 기술 개발
〈 윤동기 교수, 김형수 교수, 박순모 연구원 〉
우리 대학 화학과/나노과학기술대학원 윤동기, 기계공학과 김형수 교수 공동 연구팀이 마이크로 크기의 DNA 2차원 마이크로패치 구조체를 제작하고 이를 제어, 응용하는 기술을 개발했다.
윤 교수 연구팀은 커피가 종이에 떨어지고 물이 마르면 동그랗게 환 모양이 생기는 이른바 ‘커피링 효과’라 불리는 현상을 DNA 수용액에 적용해 세계 최초로 DNA 기반의 마이크로패치를 제작했다.
차윤정 박사, 박순모 박사과정 학생이 공동 1 저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 6월 7일 자 온라인판에 게재됐다. (논문명 : Microstructure arrays of DNA using topographic control)
유전 정보를 저장하는 기능을 하는 DNA는 이중나선 구조와 나노미터 주기의 규칙적인 모양을 가져 소재 분야에서 일반적인 합성방법으로는 구현하기 힘든 정밀한 구조재료이다. 정밀한 DNA 합성과 오리가미(Origami) 기술을 이용해 스마일 패치(smile patch) 등의 재미있는 모양을 구현해 왔지만, 재료의 가격이 높아 실제 응용에 어려움을 겪었다.
윤 교수 연구팀은 이를 극복하기 위해 연어에서 추출한 DNA 물질을 이용해 기존보다 1천 배 이상 저렴한 비용으로 잘 정렬된 뜨개질(knit) 혹은 아이스크림콘 모양의 기존에 없던 마이크로패치 구조체를 대면적에서 구현했다.
연구팀은 DNA가 물에 녹으면 마치 물풀과 끈적끈적해지면서 서로 적당한 힘으로 끌어당기며 일정한 방향으로 정렬하는 액정상(liquid crystal phase)을 보인다는 점에 주목했다.
액정 표시장치(LC display 혹은 LCD)에서 액정분자들이 전기장을 통해 방향성이 제어되는 것처럼 수용액 상태의 DNA 액정상이 두 기판 사이에서 문질러지며 물의 증발이 이뤄질 때 DNA 나노 구조체들이 원하는 방향으로 정렬하게 된다. 과일 잼을 식빵에 바르면 과일 알맹이(pulp)가 한 방향으로 잘 펴 발라지면서 마르는 현상과 유사하다.
연구팀은 DNA가 한 방향으로 문질러져서 마를 때 바닥에 평평한 기판 대신 일정한 모양을 갖는 수 마이크론 크기의 기둥(혹은 요철)들이 있는 기판을 사용하면 2차원의 뜨개질 모양, 아이스크림콘 모양 등 좀 더 흥미로운 들을 제작할 수 있음을 확인했다.
또한, 금 나노막대와 같은 플라즈몬 공명(plasmon resonance)을 나타내는 소재와 결합해 디스플레이 소자에 응용을 시도했다. 플라스몬 공명은 금속으로 만들어진 기판에 빛을 쪼일 때 그 표면 위에서 전자가 일정하게 진동하면서 자신의 에너지와 일치하는 빛에만 반응하는 현상으로 특정한 색만 반사하여 선명도와 표현력을 높이는 데 사용된다.
이 방식에서 가장 중요한 점은 어떤 방향으로 금 나노막대가 정렬하는지를 나타내는 배향(orientation)이다. 즉 막대들이 한 방향으로 나란히 정렬될 때 광학·전기 특성이 극대화된다. 윤 교수 연구팀은 이러한 점에 착안해 DNA 마이크로패치를 일종의 틀로 삼아 금 나노막대들을 독특한 형태로 배향하고 플라즈몬 컬러 기판을 제작하는 데 성공했다.
연구팀이 개발한 DNA 2차원 마이크로패치 제작 기술은 DNA를 구조재료 및 전자소재로써 활용할 수 있는 단서를 마련했을 뿐 아니라 증발 현상과 DNA 액정물질이 접목될 때 나타나는 독특한 형태의 복잡한 분자 거동 해석에 대한 단서를 제공할 것으로 기대된다.
윤 교수는 “연구를 통해 밝힌 것처럼 DNA가 금 나노막대와 같은 광학 소재와 복합체를 쉽게 만들 수 있는 만큼, 자연계에 무한히 존재하는 DNA를 디스플레이 관련 분야의 신소재로서 응용할 수 있을 것으로 기대한다”라고 말했다.
이번 연구는 과학기술정보통신부-한국연구재단의 전략과제, 멀티스케일 카이랄 구조체 연구센터, 미래유망 융합기술 파이오니아사업과 신진연구 과제의 지원을 받아 수행됐다.
□ 그림 설명
그림1. DNA 분자 배향 모식도
그림2. DNA-금 막대 입자 복합체의 배향 양상과 나타나는 플라즈모닉 광학 현상
2019.06.18
조회수 17258