본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%ED%98%84%EB%AF%B8%EA%B2%BD
최신순
조회순
인공지능 이용해 3차원 홀로그래피 현미경의 박테리아 신속 식별 기술 개발
우리 대학 물리학과 박용근 교수 연구팀이 홀로그래피 현미경과 인공지능을 이용한 신속 박테리아 병원균 식별 기술을 개발했다고 27일 밝혔다. 병원균의 조기 식별은 감염질환 치료에 필수적이다. 치명적인 상태로 진행되기 전에 감염균에 맞는 효과적인 항생제의 선택과 투여가 가능해지기 때문이다. 하지만 현재의 일상적 병원균 식별은 통상 수일이 소요된다. 이로 인해 감염 초기 식별 결과 없이 실증적인 처방으로 항생제를 투여하는 사례가 빈번하며, 이로 인해 패혈증의 경우 치명률이 50%에 달하며 항생제 남용으로 인한 슈퍼박테리아 문제도 발생한다. 기존 방법으로 병원균 식별이 오래 걸리는 원인은 긴 박테리아 배양 시간이다. 질량 분석기로 대표되는 식별 기술들은 일정량 이상의 박테리아 표본이 확보되어야 균종과 관련된 분자적 신호를 검출할 수 있다. 이로 인해, 환자에서 추출한 시편을 하루 이상 배양해야만 검출이 될 정도의 박테리아 개수가 확보된다. 광학 분야의 저명 학술지인 `빛: 과학과 응용(Light: Science & Applications), (IF = 17.782)'에 게재된 이번 연구(논문명: Rapid species identification of pathogenic bacteria from a minute quantity exploiting three-dimensional quantitative phase imaging and artificial neural network)에서 박용근 교수 연구팀은 3차원 홀로그래피 현미경과 인공지능 알고리즘을 활용해서 단일 세포 수준의 표본으로도 병원균의 균종을 정확히 알아낼 수 있음을 입증했다. 홀로그래피 현미경으로 측정되는 3차원 굴절률 영상 정보에 내재된 균종과 관련된 특성을 인공지능 알고리즘으로 학습해 종을 구분하는 것이 핵심 아이디어다. 연구팀은 종별로 500개 이상의 박테리아의 3차원 굴절률 영상을 측정했고, 이를 인공지능 신경망을 통해 학습시켰다. 연구팀은 개발한 방법을 이용해 주요한 혈액 감염균을 신속하게 식별함으로써 실제 진단에도 응용될 가능성을 검증했다. 구체적으로 그람 음성 및 양성, 구균 및 간균을 모두 포함한 총 19가지 균종으로 혈액 감염 사례의 90% 이상의 원인이 되는 균들이다. 한 개의 병원균 혹은 병원균 덩어리를 측정한 단일 3차원 굴절률 영상에서는 약 82.5%의 정확도로 균종 판별이 가능했다. 연구팀은 또한 여러 영상을 확보할 수 있을 때 정확도가 증가해, 7개의 박테리아 영상이 확보된다면 99.9%의 정확도를 얻을 수 있었다. 연구진의 책임자이자 논문의 교신저자인 박용근 교수는 "홀로그래피 현미경의 세포 감별 능력을 인공지능으로 극대화해 감염 진단 기술로서의 가능성을 확인한 것이 의미ˮ라고 말했다. 제1 저자인 물리학과 김건 박사과정 학생은 "100,000분의 1 수준의 표본량으로도 질량 분석기의 균종 검출률과 비슷한 정확도를 얻었고 환자 시편에서 다양한 병원균을 식별하는 플랫폼 기술이 될 것으로 기대된다ˮ라고 덧붙였다. 이번 연구는 KAIST-삼성서울병원-토모큐브 팀의 수년간의 공동 연구를 통해 진행됐다. 물리학과 박용근 교수 연구팀의 기술에 다양한 기관의 경험과 비전을 반영함으로써 완성할 수 있었다. 삼성서울병원 진단검사의학과 이남용 교수, 진단검사의학과 허희재 교수, 감염내과 정두련 교수 연구팀, 서울성모병원 진단검사의학과 유인영 교수, 분당 차병원 응급의학과 김규석 교수, 우리 대학 나노과학기술대학원 정현정 교수 등 다양한 분야와 기관이 모여, 실험적 검증을 효과적으로 진행할 수 있었다. 또한 KAIST 교원 창업 기업인 ㈜토모큐브의 3차원 홀로그래피 기술 지원도 필수적인 역할을 했다. 한편 이번 연구는 한국연구재단 창의연구사업, 과학기술일자리진흥원의 지원을 받아 수행됐다.
2022.06.27
조회수 7142
리튬이온전지 충방전 과정을 나노스케일에서 영상화 성공
리튬이온전지는 스마트폰과 전기차 그리고 드론을 비롯한 각종 이동 수단에 필수적인 에너지 저장 매체로 사용되고 있다. 기후변화와 코로나 팬데믹이 키워드가 되는 시대가 도래하면서 급증하는 수요에 대응하기 위해 리튬이온전지의 에너지 용량, 충전 속도 등의 전기화학적 특성을 향상하려는 연구들이 이뤄지고 있지만, 기존의 전기화학 특성 평가 방법으로는 나노미터 수준의 미시세계에서 벌어지고 있는 현상들을 이해하기 어렵다. 따라서, 전기화학 특성에 대한 통합적인 이해를 위해 나노스케일 수준에서 리튬이온의 농도 및 전기전도도 분석 기술의 개발은 필수적이다. 우리 대학 신소재공학과 홍승범 교수 연구팀이 독일의 아헨공과대학교 플로리안 하우센(Florian Hausen) 교수와 독일 뮌스터 대학교 카린 클라이너(Karin Kleiner) 교수와 협업하여 고용량 리튬이온배터리를 충‧방전할 때 리튬이온이 움직이는 모습과 그로 인해서 전자들이 움직이는 전도 경로 그리고 격자들의 움직임을 원자간력 현미경과 엑스레이 회절 및 흡수 패턴을 분석해 영상화하는 데 성공했다고 28일 밝혔다. 홍 교수 연구팀은 원자간력 현미경의 모드 중에서 전기화학적 변형 현미경(Electrochemical Strain Microscopy, 이하 ESM)과 전도성 원자간력 현미경(Conductive Atomic Force Microscopy, 이하 C-AFM)을 활용해, 친환경차 배터리에 적용되는 고용량 양극재인 NCM622 시료의 충방전상태(State of Charge, SOC)에 따른 리튬이온의 나노스케일 분포도를 영상화했으며, 이를 근단엑스선형광분광계(Near Edge X-ray Absorption Fluorescence Spectroscopy, NEXAFS)와 엑스선회절패턴(X-ray Diffraction Pattern, XRD pattern)과 비교 분석해 리튬이온이 양극재에 확산하여 들어갈 때 산소팔면체에 들어가면서 니켈과 산소의 결합이 이온 결합에서 공유결합으로 바뀌면서 전기전도도가 낮아지는 현상을 검증하고, 이를 ESM, C-AFM 영상과 비교하면서 상당한 상관관계가 있음을 밝혀냈다. 교신 저자인 홍승범 교수는 "배터리 소재 내에서 리튬이온의 확산을 영상화하고 이를 통해서 일어나는 현상들을 다중스케일에서 이해하는 것은 향후 신뢰성이 높고 수명이 긴 고속 충‧방전 배터리 소재를 디자인하는 데 있어 매우 중요하다ˮ라며 "향후 신소재 영상화 기술과 머신러닝 기술을 융합하는 것이 20년 걸리던 배터리 소재 개발기간을 5년 이내로 단축할 수 있을 것이다ˮ 라고 말했다. 신소재공학과 알비나 제티바예바(Albina Jetybayeva) 연구원이 제1 저자로 참여한 이번 연구는 국제 학술지 `ACS 어플라이드 에너지 머티리얼스 (ACS Applied Energy Materials)'에 게재됐다. (논문명: Unraveling the State of Charge-Dependent Electronic and Ionic Structure−Property Relationships in NCM622 Cells by Multiscale Characterization) 이번 연구는 KAIST 글로벌 특이점 사업과 한국연구재단의 거대과학연구개발사업의 지원을 받아 수행됐다.
2022.04.29
조회수 9403
형광 염색 없이 분자 정보를 보는 AI 현미경 개발
우리 대학 물리학과 박용근 석좌교수 연구팀이 형광 염색 없이 세포의 분자 정보를 볼 수 있는 인공지능 현미경 기술을 개발했다고 20일 밝혔다. 광학 현미경은 수백 년 전부터 현재에 이르기까지 생물학 및 의학에서 가장 중요하게 쓰이는 기술 중 하나로, 이미지 형성 원리에 따라 여러 형태로 발전해왔다. 최근 수십 년간 분자생물학이 눈부시게 발전하면서 세포 내의 특정 구조를 형광(fluorescence) 으로 표지하는 것이 가능해졌고, 이처럼 높은 생화학적 특이성(biochemical specificity) 덕분에 형광 현미경은 현재 가장 폭넓게 쓰이는 광학 현미경 기술이 됐다. 그러나 형광 현미경은 형광 표지 자체가 세포를 변형하는 것이기 때문에 세포에 부담을 주게 되고, 밝기와 세포독성, 안정성 문제 때문에 초고속 또는 장기간 측정이 힘들며, 제한된 색깔로 인해 다양한 구조를 동시에 보는 것이 어려운 근본적인 한계가 있다. 이와는 대조적으로, 각 물질과 빛의 상호작용을 결정하는 근본적인 특성인 굴절률(refractive index)을 이용해 아무런 염색을 하지 않아도 되는 현미경 기술 또한 꾸준히 발전해왔다. 굴절률로부터 파생되는 빛의 흡수, 위상차 등을 이용한 전통적인 현미경은 물론, 최근에는 굴절률 자체를 3차원 상에서 정량적으로 측정하는 다양한 홀로그래픽 현미경(holographic microscopy) 기술이 박용근 교수 연구팀에서 개발돼 상용화된 바 있다. 이러한 비표지(label-free) 현미경 기술은 형광 현미경과 비교해 여러 가지 장점을 갖고 있지만, 굴절률과 세포 내 구조들의 관계가 명확하지 않아 분자 특이성이 떨어진다는 단점이 있었다. 박용근 교수 연구팀에서는 2012년 초부터 조영주 졸업생(제1 저자, 물리학과·수리과학과 학사 11학번·KAIST 총장 장학생, 現 스탠퍼드대학교 응용물리학과 박사과정) 주도로 홀로그래픽 현미경 분야에 인공지능을 도입해 특이성 문제를 해결하려는 일련의 연구가 시작됐다. 우선 형태적으로는 비슷하나 생화학적인 구성에 차이가 있는 시료(여러 종의 박테리아, 다양한 분류의 백혈구 등)의 굴절률 영상은 사람 눈에는 비슷하게 보이는데, 흥미롭게도 인공지능은 이를 높은 정확도로 분류할 수 있음을 보였다(2013-2014년 KAIST 학부연구프로그램(URP) 이후, 2015년 Optics Express, 2017년 Science Advances, 2020년 ACS Nano 등 게재). 이러한 결과는 매우 다양한 생체 시료에서 일관되게 관찰됐고, 따라서 연구팀은 생화학적 특이성이 높은 정보가 굴절률의 공간 분포에 숨겨져 있다는 가설을 세웠다. 세포생물학 분야 최고 권위지인 `네이처 셀 바이올로지(Nature Cell Biology, IF 28.82)'에 12월 7일 발표된 이번 연구(논문명: Label-free multiplexed microtomography of endogenous subcellular dynamics using generalizable deep learning)에서, 연구팀은 홀로그래픽 현미경 영상으로부터 형광 현미경 영상을 직접 예측할 수 있음을 보임으로써 이 가설을 증명했다. 인공지능이 찾아낸 굴절률 공간 분포와 세포 내 주요 구조 간의 정량적인 관계를 이용해 굴절률의 공간 분포 해독이 가능해졌고, 놀랍게도 이러한 관계는 세포 종류와 관계없이 보존돼 있음을 확인했다. 이 과정에서 만들어진 `인공지능 현미경'은 홀로그래픽 현미경과 형광 현미경의 장점만을 갖는다. 즉, 형광 표지 없이 형광 현미경의 특이적인 영상을 얻을 수 있다. 따라서 자연 상태 그대로의 세포에서 동시에 수많은 종류의 구조를 3차원으로 볼 수 있으며, 밀리초(ms) 수준의 초고속 측정과 수십 일 수준의 장기간 측정이 가능해졌다. 더욱이 기존 데이터에 포함되지 않은 새로운 종류의 세포에도 즉시 적용이 가능하기에, 다양한 생물학 및 의학 연구에 응용이 가능할 것으로 기대된다. 이번 연구는 조영주 박사과정과 박용근 교수가 지난 10여 년간 발전시켜온 광학 및 인공지능 기술력 이외에도, 다학제적 접근과 KAIST 기술을 바탕으로 한 창업 덕분에 가능했다. 생명과학과 허원도 교수(공동 교신저자)와 박외선 박사(공동 제1 저자)가 오랜 기간 발전시켜온 분자생물학 및 형광 현미경 기술 덕분에 인공지능 학습에 필요한 데이터를 얻을 수 있었으며, 조영주 박사과정이 허원도 교수 연구팀에서 2015년 1년간 연구했던 경험 덕분에 구체적인 아이디어가 나오게 됐다. 또한 박용근 교수 연구팀 홀로그래픽 현미경 기술로 창업한 ㈜토모큐브를 통해 현미경 및 데이터 형식이 규격화돼 대규모 인공지능 학습이 용이했고, 이를 바탕으로 ㈜토모큐브 조형주 연구원(공동 제1 저자) 및 민현석 연구원(공동 교신저자) 등 인공지능 전문 인력이 합류하면서 최신 인공지능 기법들의 빠른 도입이 가능했다. 한편 이번 연구는 한국연구재단의 창의연구사업, 과학기술정보통신부의 정보통신방송 기술개발사업 (홀로그램핵심기술), 일자리진흥원의 연구장비개발 및 고도화지원사업, 한국보건산업진흥원의 보건의료기술 연구개발사업의 지원을 받아 수행됐다.
2021.12.20
조회수 8623
고체 전해질 내부 나노 단위 영상화 성공
오늘날 리튬이온전지는 휴대용 전자 장비와 전기차를 비롯한 각종 이동 수단에 필수적인 에너지 저장 매체로 사용되고 있다. 폭발적인 수요에 발맞춰 리튬이온전지의 에너지 용량, 충전 속도 등의 전기화학적 특성을 향상하려는 연구들이 가속화되고 있다. 그러나 기존의 전기화학 특성 평가 방법은 소재 혹은 소자 특성의 평균값을 측정하는 것에 집중되어 있기에, 나노미터 수준의 미시세계에서 벌어지고 있는 현상들을 이해하기에는 충분하지 않다. 따라서 전기화학 특성에 대한 통합적인 이해를 위해 미시적 수준에서 공간 분해능을 가진 분석 기술의 개발은 필수적이다. 우리 대학 신소재공학과 홍승범 교수 연구팀이 원자간력 현미경(Atomic force microscope, AFM)의 한 모드인 전기화학 변위 현미경(Electrochemical strain microscopy, ESM)을 이용해 리튬이온전지 소재 내부의 이온 이동 특성을 나노미터 수준에서 정량적으로 측정하는 방법을 개발했다고 13일 밝혔다. 전기화학 변위 현미경은 나노 크기의 탐침에 전압을 가했을 때, 이온의 이동이 유발하는 시료 표면의 변형(displacement)을 측정하는 기술로서 이 변형을 발생시킨 이온의 양과 이온의 이동도 등을 간접적으로 측정할 수 있게 도와주는 기술이다. 홍 교수 연구팀은 비행시간형 2차 이온 질량 분석법(Time-of-flight secondary ion mass spectroscopy, ToF-SIMS)과 유도결합 플라즈마 분광분석기(Inductively coupled plasma optical emission spectrometer, ICP-OES)를 이용해 고체 전해질 시료의 깊이에 따른 이온 분포를 정량적으로 계산하고, 전기화학 변위 현미경 결과와의 캘리브레이션(calibration, 계측기 등의 눈금을 표준기 등을 사용해 바로잡는 일)에 성공했다. 이후, 연구진에 의해 고안된 직류 전압 펄스(pulse)를 시료의 깊이에 따라 가했으며, 전기장에 의해 표면으로 이동했다가 다시 내부 쪽으로 확산하는 이온을 전기화학 변위 현미경으로 영상화했다. 특히, 해당 펄스를 설계하는 과정에서 기존 전기화학 변위 현미경 사용에 대한 오류를 지적하고, 개선된 사용 방법에 대해 안내했다. 그 결과, 연구팀은 시간 및 거리의 함수로 이온의 이동 과정을 영상화하는 데 성공했으며, 이 결과를 이용해 깊이 및 이온의 농도에 따라 변화하는 확산계수 값을 정량적으로 보여줬다. 홍승범 교수는 "이온의 움직임을 나노미터 수준에서 정량적으로 관찰할 수 있는 방법론이 다양한 이온 거동의 메커니즘을 규명하는데 기여할 것ˮ이라며, "추후 다양한 실제 소자 구동 환경을 모사한 상태에서 이번 방법론을 적용하는 후속 연구를 진행할 것ˮ이라고 설명했다. 우리 대학 신소재공학과 박건 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 ACS 어플라이드 에너지 머티리얼스(ACS Applied Energy Materials)에 게재됐다. (논문명: Quantitative Measurement of Li-Ion Concentration and Diffusivity in Solid-State Electrolyte) 한편 이번 연구는 과학기술정보통신부·한국연구재단 거대과학연구개발사업 및 KAIST 글로벌특이점연구 지원으로 수행됐다.
2021.04.13
조회수 60846
그래핀 이용해 아쿠아리움처럼 액체 내 물질을 관찰하는 현미경 기술 개발
우리 대학 신소재공학과 육종민 교수 연구팀이 그래핀을 이용해 유체 내 물질들의 분자, 원자 단위 고해상도 영상을 획득할 수 있는 전자현미경 기술을 개발했다고 19일 밝혔다. 이번 연구 결과로 유체에서 일어나는 다양한 반응들의 분자 단위, 원자 단위에서의 관찰이 쉬워졌으며, 그동안 관찰하지 못했던 물질의 합성 과정을 밝히고 바이러스 및 단백질들의 상호작용과 같은 생명 현상 규명의 실마리를 제공할 수 있는 등 기초 과학 및 공학 분야에서 다양하게 활용될 수 있을 것으로 기대된다. 우리 대학 신소재공학과 구건모 박사, 박정재 박사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 머티리얼스(Advanced Materials)'에 내지 삽화와 함께 1월 14일 字 게재됐다. (논문명 : Liquid-Flowing Graphene Chip-Based High-Resolution Electron Microscopy). 전자빔을 광원으로 이용하는 전자현미경 기술은 일반 광학현미경보다 약 수천 배가량 높은 배율에서 물질을 관찰할 수 있어, 나노미터(nm, 10억분의 1미터) 단위로 집적화되고 있는 반도체 공정에서 품질 관리와 코로나 바이러스와 같은 생체 분자의 구조를 규명하는 데 활발히 이용되고 있다. 그렇지만 전자현미경을 구동하기 위해서는 매우 높은 수준의 진공 상태가 필요하다. 진공에서 쉽게 증발하는 액체 샘플은 관찰하기가 힘들어 기존에는 액체 시료를 건조시키거나 시료를 급격히 냉동시키는 초저온 전자현미경 방식으로 관찰이 이뤄졌다. 하지만 이런 방식들은 시료가 정지된 상태에서 구조적인 정보만을 주기 때문에, 액상 전자현미경 기술과 같이 액체 내에서 일어나는 역동적인 현상을 관찰할 수 있는 기술에 관한 관심이 높아지고 있다. 전자현미경을 이용해 액체를 관찰하는 것은 아쿠아리움에서 물고기들을 관찰하는 것으로 비유할 수 있다. 물고기들을 선명하게 관찰하기 위해서는 높은 투과도를 가지고 수압을 견딜 수 있는 튼튼한 유리가 필요한 것처럼, 액상 투과전자현미경에서는 전자빔에 대해서 투명하며 높은 진공 상태를 견딜 수 있는 물질을 필요로 한다. 기존의 액상 전자현미경 기술은 약 50나노미터(nm) 두께의 질화 실리콘 막을 이용해 액체를 고진공으로부터 보호했지만, 이러한 막은 전자빔에 대해서 반투명하므로 물질을 흐릿하게 만들어 원자 단위의 관찰을 방해하고, 특히 단백질이나 바이러스와 같은 생체 분자들의 경우 명암을 높이는 염색 과정 없이는 쉽게 관찰할 수 없었다. 2012년 육 교수 연구팀은 이를 해결하기 위해 차세대 소재로 주목받고 있는 그래핀 두 층 사이에 액체를 가두는 그래핀 액상 셀 기술을 세계 최초로 도입했고, 이번 연구에서 이를 개선해 자유로운 액체 순환이 가능한 그래핀 아쿠아리움 전자현미경 이미징 플랫폼을 개발하는 데 성공했다. 연구팀이 투과 막으로 이용한 그래핀은 원자 단위의 두께를 가지고 강철보다 200배 높은 강도를 가지고 있다. 또한 연구팀은 자유로운 액체 순환과 교환을 위해 30~100나노미터(nm) 두께의 액상 수로를 가지는 구조체를 반도체 제작 공정인 리소그래피 공정으로 구현해 그래핀 액상 유동 칩을 제작했다. 연구팀의 그래핀 액상 유동 칩은 약 4기압에 달하는 압력 차를 견딜 수 있으며, 기존보다 20배 빠른 액체 유동 조건에서도 안정적인 작동이 가능하다. 또한 기존 막보다 100배 정도 얇은 그래핀은 전자빔에 대해 투명하기 때문에 이를 이용해 원자 단위에서 물질을 선명하게 관찰할 수 있으며, 박테리아 및 생체 분자를 염색 과정 없이 온전히 관찰할 수 있다. 연구팀이 개발한 그래핀 액상 유동 칩은 체내의 혈관과 같은 역할을 할 수 있으므로 코로나 바이러스가 어떻게 감염을 일으키는지, 알츠하이머와 같은 퇴행성 뇌 질환의 발병 원인으로 여겨지는 아밀로이드 섬유화가 어떻게 진행되는지 등과 같이 기존 기술로는 관찰할 수 없었던 현상들의 직접적인 관찰과 신약 개발에 도움을 줄 수 있을 것으로 기대된다. 육 교수는 "새로운 이미징 플랫폼의 개발은 과학 기술 발전의 토대가 되는 것으로, 액체 내 물질들을 분자 및 원자 단위로 관찰하면 자연의 가장 작은 단위에서 시작되는 다양한 현상들을 규명할 수 있으며, 이를 토대로 미지에 싸여있던 생명 현상의 비밀을 밝힐 수 있을 것으로 기대한다ˮ 라고 말했다. 한편 이번 연구는 삼성 미래기술 육성 센터의 지원을 받아 수행됐다.
2021.01.19
조회수 73048
암 진단에 필요한 새로운 형광 증폭 기술 개발
우리 대학 신소재공학과 장재범 교수 연구팀이 암 진단에 필요한 새로운 형광 신호 증폭 기술을 개발했다고 17일 밝혔다. 연구 결과는 국제 학술지인 영국왕립화학회(Royal Society of Chemistry)의 `나노스케일(Nanoscale)'誌 11월 13일 字에 게재됐다. (논문명: FRACTAL: Signal amplification of immunofluorescence via cyclic staining of target molecules) ※ 저자 정보: 조예린(신소재공학과 학사과정 학생, 제1 저자), 서준영(신소재공학과 박사과정 학생, 제2 저자), 장재범 교수(교신저자) 등 총 8명 최근 3D 전체 조직 영상화(이미징)를 가능하게 하는 생체조직 *팽창 기술(ExM) 및 투명화 기술(CLARITY, 3DISCO, CUBIC)은 복잡한 세포 간 상호작용 및 역할을 밝혀내는 핵심적인 역할을 하고 있다. 하지만 큰 부피 내부의 세포 변화를 관찰하기 위해서는 약한 형광 신호를 증폭해 높은 이미지 처리량을 갖는 기술이 필요하다. ※ 팽창 현미경 (Expansion Microscopy): 조직을 팽창시켜 일반 현미경으로 초고해상도를 얻을 수 있는 기술 ※ 조직 투명화 기술 (Tissue Clearing System): 빛의 산란을 최소화하고 투과도를 극대화하여 3D 전체 조직을 이미징하는 기술 지금까지 신호 증폭 기술은 다양한 화학 반응으로 개발돼왔는데, 이들 중 많은 기술은 단일 화학 반응을 이용하기 때문에 다중 표지 신호 증폭 영상화를 위해서는 단일 신호 증폭과 비활성화 과정을 채널별로 반복해야 하는 단점이 있고, 유전자(DNA) 기반의 신호 증폭 기법은 서로 다른 항체에 대한 유전 물질 분자 결합의 최적화 과정이 필요하므로 일반적인 생물 실험실에서 사용이 어렵다. 장재범 교수 연구팀은 이러한 문제점 개선을 위해 현재 상용화돼 있는 형광 분자가 표지된 항체를 사용해, 추가적인 최적화 과정이 필요 없는 신호 증폭 기술에 주목했다. 결과적으로 연구팀은 `프랙탈(FRACTAL, Fluorescence signal amplification via repetitive labeling of target molecules)'이라는 새로운 신호 증폭 기술을 개발했다. 프랙탈 기술은 항체 기반의 염색 방법으로, 신호 증폭 과정이 매우 간단하다는 특징이 있다. 이 기술은 신호 증폭을 위해 특수한 화학 물질을 필요로 하지 않으며, 형광 분자가 표지된 2차 항체의 반복적인 염색을 통해 형광 신호를 증폭시킨다. 이 기술은 한 종류의 1차 항체, 두 종류의 2차 항체, 총 세 종류의 항체를 이용하는 아주 간단한 기술이다. 신호 증폭 과정은 표적 단백질에 대한 1차 항체 및 첫 번째 2차 항체 염색으로 시작되며, 그다음으로 첫 번째 2차 항체에 결합하는 두 번째 2차 항체의 염색이 이뤄진다. 두 번째 2차 항체의 숙주(host)와 1차 항체의 숙주(host)는 같으며, 그다음 염색은 다시 두 번째 2차 항체에 결합하는 첫 번째 2차 항체의 염색으로 이어진다. 예를 들어 토끼의 1차 항체를 사용하고 당나귀의 항-토끼 2차 항체를 첫 번째 2차 항체로 사용했다면 토끼의 항-당나귀 2차 항체를 두 번째 2차 항체로 사용하게 된다. 그러면 두 번째 2차 항체에는 첫 번째 2차 항체가 결합하게 되고 그 반대의 경우로도 결합해 염색을 이어나가게 된다. 이 과정의 반복을 통해 연구팀은 기존 형광 신호를 9배 이상 증폭시켰으며, 이는 같은 밝기를 얻는 데 필요한 영상화 시간을 9배 이상 줄일 수 있다는 결과를 얻었다. 연구팀은 초고해상도 현미경(STORM) 분석을 통해 염색 횟수에 따라 항체가 균일한 결합 층을 형성하며 형광 신호를 증폭시키는 현상을 확인했다. 연구팀은 이 기술을 서로 다른 종으로부터 유래된 직교적인(orthogonal) 항체 쌍에 적용해, 동시 다중 표지 신호 증폭 영상화를 구현했으며, 팽창 현미경에도 적용해 팽창 후에도 높은 형광의 강도를 갖는 형광 신호 증폭 기술을 구현했다. 이 기술은 간단한 항체-항원 반응에 기반해 형광 신호를 증폭시키는 기술로, 영상을 통한 생체조직의 분석 및 치료기술 개발, 다지표 검사, 의료 및 신약 개발 분야에 이바지할 것으로 연구진은 기대하고 있다. 제1 저자인 조예린 학생은 "높은 이미지 처리량을 가진 이 기술은 디지털 병리 분야의 발전에 중추적인 영향을 미칠 것ˮ이며, "생체 내 다중지표에 대한 정보를 정밀하게 제공해 현대 의약 분야의 의약품 분석 및 치료 시스템에 직접적으로 응용될 수 있다ˮ라고 말했다. 장재범 교수도“이 기술은 환자 생체 검사 조직 내부에서 매우 중요하지만 낮은 수준으로 발현되는 바이오마커들을 정확하게 이미징 할 수 있게 해주기 때문에, 암 진단 및 면역 항암제 반응률 예측 등에 큰 도움이 될 것으로 기대된다.”라고 강조했다 한편 이번 연구는 과학기술정보통신부가 지원하는 뇌과학원천기술개발 과제와 KAIST 학부연구생프로그램(URP)의 지원을 받아 수행됐다.
2020.12.18
조회수 49151
열을 전기로 변환하는 하프호이즐러 물질의 나노구조 제어 성공
우리 대학 신소재공학과 최벽파 교수 연구팀이 경북대 이승훈 교수(신소재공학과) 연구팀과 공동연구를 통해 *준 안정상을 활용, *하프호이즐러 *열전재료의 나노구조를 제어하는 새로운 방법을 개발했다고 11일 밝혔다. ☞ 준 안정상(metastable phase): 어떤 물질의 가장 안정한 상(고체, 액체, 기체 등)은 아니지만 꽤나 안정하여 유지되는 상. ☞ 하프호이즐러(half-Heusler) 화합물: 금속 간 화합물(합금)의 일종으로 열전발전, 태양광 발전, 자성재료 등의 에너지 재료로 각광을 받는 물질. ☞ 열전발전: 온도 차에 의해 생긴 전위차를 이용해 전기를 생산하는 발전방식. 열전 소자는 열에너지를 전기로 직접적으로 변환시키는 에너지 소자다. 소자의 양단에 온도 차가 존재할 때 내부의 전하가 이동함으로써 전기를 발생시킨다. 좋은 열전재료가 되기 위해서는 소자 양단의 온도 차는 오래 유지돼야 하고 전하는 잘 이동해야 하므로 열전도도는 낮아야 하고 전기 전도도는 높아야 한다. 다양한 열전재료 중 하나인 하프호이즐러 물질은 폐열(에너지의 생산, 소비 과정에서 사용되지 못하고 버려지는 열)이 풍부하고 중온 영역(300~800℃)에서 높은 효율의 열전발전이 가능하다. 특히 열 안정성과 기계적 특성(강도)이 우수하고 높은 제벡 계수(온도 차이를 전력으로 변환하는 정도)와 출력 계수를 지니고 있는데 독성이 없고 지구에 풍부하게 매장된 원소로 이뤄져 있다. 하지만 상대적으로 높은 열전도도로 인해 낮은 열전성능을 갖는다는 점이 약점이다. 열 전도도를 낮추기 위해서는 포논(입자)의 산란을 극대화해야 하는데 이를 위해서는 서로 다른 상의 경계를 만든 후 나노 결정화를 통해 달성할 수 있다. 이 때문에 기존에는 하프호이즐러 합금을 제조한 뒤 물리적으로 파쇄해 나노분말을 제조하고 이를 가열해 굳히는 방법을 사용해왔다. 하지만 이 방법은 나노결정의 크기 제어는 물론 복잡한 미세구조 형성이 어렵기 때문에 열전도도를 획기적으로 감소시키기는 매우 어렵다. 최 교수 연구팀은 문제해결을 위해 준 안정상(비정질)의 결정화 방법을 활용했다. 준 안정상은 안정상에 비해 상대적으로 덜 안정한 상을 의미하는데 열처리를 통해 안정상(고체, 액체, 기체 등)으로 쉽게 상변화를 일으킬 수 있다. 이때, 열처리 온도에 따라 준 안정상(비정질)의 결정화 거동은 다양하게 변화하고 이를 이용해 나노결정의 크기와 상을 제어할 수 있다. 구체적으로 연구팀은 급속냉각 공정을 이용해 하프호이즐러(NbCo1.1Sn) 조성을 가진 비정질(준 안정상)을 제조한 뒤 비교적 저온에서 짧은 열처리를 통해 하프호이즐러 물질 내부에 풀호이즐러(NbCo2Sn) 나노 석출물이 존재하는 복잡한 나노구조를 만들었다. 최 교수 연구팀이 새로 개발한 이 방법은 기존의 방법과는 달리 고온에서의 장시간의 열처리가 필요 없으므로 쉽고 경제적이면서도 더욱 복잡하고 세밀한 나노구조의 형성이 가능하다. 연구팀은 특히 이번 연구에서 3차원 원자 탐침 현미경(Atom probe tomography)과 투과 전자 현미경(Transmission electron microscope)을 활용했는데 하프호이즐러 물질 내부에 존재하는 수 나노미터의 풀호이즐러 석출물의 존재를 규명하는 데도 성공했다. 최벽파 교수는 "이번 연구에서 새롭게 제안된 방법을 활용해 만든 열전재료는 기존 대비 복잡한 나노구조를 갖고 있어 3배 이상의 열전도도 감소 와 함께 열전발전 성능도 획기적으로 증가하는 효과가 있을 것으로 기대된다ˮ고 말했다. 신소재공학과 정찬원 박사과정이 제1 저자로 참여한 이번 연구는 국제학술지인 `나노 에너지(Nano Energy, IF: 16.602)' 10월 20일 字 온라인 판에 실렸다. (논문명: Tailoring nanostructured NbCoSn-based thermoelectric materials via crystallization of an amorphous precursor) 한편 이번 연구는 한국연구재단 과학기술 분야 기초연구사업인 기초연구실지원사업 (중온(300-800 ℃) 작동형 합금 기반 half-Heusler계 고성능/고강도 열전소재 개발)의 지원을 통해 수행됐다.
2020.11.12
조회수 32457
비알콜성 지방간 진행 영상화 기술 개발
우리 대학 의과학대학원 김필한 교수 연구팀이 3차원 생체현미경 기술을 통해 비알콜성 지방간에서 간세포 내 *지방구 형성과 미세혈관계를 동시에 고해상도의 영상으로 촬영하는 데 성공했다고 14일 밝혔다. ☞ 지방구(Lipid droplet): 지방 방울이라고도 하며, 간세포의 세포질에 구 형태로 축적된 지방을 뜻한다. 김 교수 연구팀은 이에 앞서 살아있는 비알콜성 지방간 동물모델에서 질환이 진행될수록 간세포 내의 지방구가 축적되며 크기가 증가하는 과정에서 개개의 지방구를 3차원으로 정밀하게 분석할 수 있는 생체현미경 기술을 개발, 이번 연구에 활용했다. 비알콜성 지방간은 서구화된 식습관 및 비만율 증가로 국내에서 급속히 증가하고 있는데 단순 지방간부터 만성 지방간염 및 간경변증(간경화)에 이르는 넓은 범위의 간 질환을 포함한다. 정상인에게서도 최대 24%, 비만인에서는 최대 74%까지 높은 유병률이 보고되고 있어 심각한 간 질환으로 진행되지 않도록 적극적인 관리가 요구된다. 그동안 비알콜성 지방간 질환 연구들은 대부분이 절제된 간 조직을 사용한 조직병리학적 분석을 통해 이뤄졌다. 하지만 이 같은 방식으로는 질환이 장기간에 걸쳐 진행되는 동안 간 내부의 간세포와 주변 미세환경에서 일어나는 다양한 분자세포 수준의 변화를 3차원으로 정밀하게 분석하고 그 원리를 밝히는 것이 어려웠다. 글로벌 차원의 집중적인 연구개발 투자에도 불구하고 비알콜성 지방간 질환의 새로운 치료제의 개발이 지연되고 주된 이유다. 김필한 교수 연구팀은 독자적으로 개발한 초고속 레이저 공초점·이광자 생체현미경을 사용해 살아있는 비알콜성 지방간 질환 동물모델에서 질환 진행에 따른 간세포 내 지방구의 형성 및 축적과 주변 미세 간 혈관계를 동시에 고해상도를 지닌 3차원 영상으로 촬영하는 데 성공했다. 연구팀이 개발한 생체현미경 시스템은 시속 380Km 이상의 초고속으로 회전하는 다각 거울을 이용해 살아있는 생체 내부 간 조직의 움직임을 실시간으로 추적하고 보정이 가능해 크기가 마이크로미터(μm·100만분의 1미터) 이하인 극히 작은 지방구까지 고해상도로 영상화가 가능하다. 연구팀은 또 비알콜성 간 질환에서 질환 진행으로 간세포 내 지방구의 축적률이 증가하고 개개의 지방구 크기가 증가하는 현상을 영상화하는 데 성공했다. 이와 함께 지방구의 크기 증가가 간세포 핵의 위치변화를 일으키고 결국 간세포 모양의 변화를 일으키는 현상을 고해상도 영상화를 통해 확인했다. 김 연구팀이 독자적으로 개발한 최첨단 고해상도 3차원 생체현미경 기술은 살아있는 생체 내부 간의 미세환경을 이루는 다양한 구성성분(세포, 혈관, 지질, 콜라겐 외 생체분자)들을 동시에 실시간으로 영상촬영이 가능해 비알콜성 지방간 질환을 비롯한 다양한 간 질환 연구와 치료제 개발과정에 다양하게 활용될 것으로 기대된다. 특히 이 3차원 생체현미경 기술은 우리 대학 교원창업기업인 아이빔테크놀로지(IVIM Technology, Inc)를 통해 상용화돼 올 인원 생체현미경 모델명인 'IVM-CM'과 'IVM-MS'로 2019년 10월부터 출시되고 있는데 기초 의·생명 연구의 차세대 첨단 영상장비로서 미래 글로벌 바이오헬스 시장의 핵심 장비로 벌써부터 주목받고 있다. ※ MCD diet는 지방간을 유도하기 위한 특수 사료를 의미하며 생쥐에게 섭취시키면 빠르게 지방간이 생긴다. 김 교수는 "비알콜성 지방간을 포함한 다양한 질환의 3차원 생체현미경을 이용한 실시간 고해상도 영상기술은 질환의 진행에 따른 세포 수준의 다양한 변화의 정밀한 관찰이 가능하다ˮ라며 "3차원 생체현미경은 미래 바이오헬스 산업에서 여러 인간 질환의 진단 및 치료제 개발에 획기적인 도움을 줄 것ˮ이라고 말했다. 나노과학기술대학원 문지은 박사과정 학생이 제1 저자로 참여한 연구팀 논문은 미국광학회가 발간하는 국제 학술지 '바이오메디컬 옵틱스 익스프레스(Biomedical Optics Express)' 誌 8월 19일 字에 실리는 한편 편집장 선정(Editor's pick) 우수 논문으로 주목받았다. (논문명 : Intravital longitudinal imaging of hepatic lipid droplet accumulation in a murine model for nonalcoholic fatty liver disease) 한편 이번 연구는 과학기술정보통신부의 이공분야기초연구사업의 지원을 받아 이뤄졌다.
2020.09.14
조회수 26372
청량음료가 치아 건강에 해롭다는 사실을 과학적으로 뒷받침하다
우리 연구진이 여름철 자주 찾는 청량음료가 치아 건강에 해롭다는 사실을 과학적으로 뒷받침하는 논문을 발표했다. 우리 대학 신소재공학과 홍승범 교수 연구팀이 청량음료가 치아에 미치는 기계적 특성, 즉 거칠기(roughness)와 탄성 계수(elastic modulus) 변화를 원자간력 현미경(AFM, Atomic Force Microscopy)으로 관측하고 이를 영상화하는 데 성공했다고 21일 밝혔다. ☞ 원자간력 현미경(AFM): 대표적인 주사형 프로브 현미경(SPM, Scanning Probe Microscope, SPM)의 하나로, 캔틸레버(cantilever) 끝에 설치돼있는 뾰족한 프로브와 시료 표면 간에 작용하는 원자간력을 이용해 시료 표면의 삼차원 상을 얻는 장치 ☞ 거칠기: 재질 표면에 나 있는 규칙 또는 불규칙한 요철의 정도 ☞ 탄성 계수: 인장력 또는 압축력에 대한 재료의 저항 정도 원자간력 현미경은 나노미터(nm, 100만분의 1 밀리미터) 수준의 탐침으로 재료의 표면을 스캔해 표면형태나 상태를 관측하는 장비로 주로 활용된다. 이 현미경은 또 탐침을 이용해 물질 표면에 힘을 가해 변형되는 정도 등 여러 기계적인 특성(거칠기, 탄성 계수 등)에 대한 측정이 가능하다. 최근 인구의 고령화에 따라 사람들의 건강에 관한 관심이 다방면으로 급증하고 있다. 그중 치아는 치료 비용도 비싸고, 손상됐을 때 복구하기가 쉽지 않다. 또 제대로 치료가 되지 않으면 다른 질환의 발병률도 높여 삶의 질을 크게 떨어뜨린다. 이 때문에 치아에 관한 관심이 날로 증가하는 추세며 치아 건강을 위한 다양한 의료 기술의 개발과 건강한 치아를 유지하기 위한 예방법들도 많이 소개되고 있다. 치아는 다양한 구조로 이뤄져 있는데, 이중 가장 바깥쪽에 있는 곳을 치아 법랑질(에나멜, enamel)이라고 한다. 법랑질은 치아의 구성분 중에서 가장 단단해 음식을 씹을 때 치아의 손상을 방지하고, 외부 환경으로부터 치아를 보호하는 역할을 한다. 하지만 치아 법랑질이 손상되면 보호막 역할을 할 수 없어 일반적인 음식을 먹을 때에도 극심한 통증을 유발하게 된다. 따라서 치아 법랑질의 손상을 예방할 방법뿐만 아니라 손상 원인 및 손상 과정을 규명하는 연구가 필요하다. 홍승범 교수 연구팀은 치아 법랑질이 청량음료에 노출됐을 때, 노출된 시간에 따라서 치아 법랑질 표면이 받는 영향을 원자간력 현미경의 다양한 기능을 활용해 분석했다. 청량음료는 현대 사회에서 빼놓을 수 없는 기호 식품이며, 연령대와 성별을 가리지 않고 많이 소비되고 있다. 홍 교수팀은 이번 연구에서 주변에서 손쉽게 구할 수 있는 콜라·사이다·오렌지주스 등 3종의 청량음료를 사용했다. 3종의 청량음료에 치아를 각각 담갔다가 꺼내서 부식된 정도를 나타내는 표면의 거칠기와 재료(물질)에 힘을 가했을 때 변형된 정도를 나타내는 탄성 계수의 변화를 시간대별로 측정했다. 연구팀은 우선 청량음료에 노출된 치아 법랑질을 노출된 시간별로 초기 상태부터 10분까지 거칠기의 변화와 5분까지의 탄성 계수 변화를 측정했다. 치아 법랑질의 표면 거칠기는 청량음료에 노출된 시간이 10분이 됐을 때, 초깃값보다 약 5배 정도 거칠어졌고 탄성 계수는 노출된 지 5분 동안 약 5배 정도나 떨어지는 결과를 얻었다. 연구팀은 특히 원자간력 현미경으로 영상화한 사진을 통해 치아 법랑질의 부식 과정을 분석했는데 흠집이 있는 치아의 경우 부식속도가 훨씬 빠르게 진행된다는 사실도 확인했다. 치아 법랑질의 부식 정도와 청량음료에 노출된 시간이 상호 밀접한 관계가 있음을 밝힌 이번 연구 결과는 청량음료가 치아 건강에 해롭다는 기존 학설을 원자간력 현미경을 이용한 실험과 영상관찰을 통해 증명하고 제시했다는 점에서 주목을 받고 있다. 홍승범 교수는 "원자간력 현미경을 이용해 청량음료에 의해 치아 법랑질이 부식됨에 따라 표면 성질이 변하는 과정을 영상화했다ˮ라며 "실제 치아의 부식 과정은 구강 환경이나 보호막 역할을 하는 침에 의해 연구 결과만큼 심각하지 않을 수 있지만, 장시간 청량음료에 노출된 치아는 부식에 의해 표면이 거칠어지고 또 탄성 계수 등 기계적 특성 또한 저하될 수 있다ˮ고 말했다. 신소재공학과 판판 리(Panpan Li) 연구원과 오충익 연구원이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `Journal of the Mechanical Behavior of Biomedical Materials'誌 지난달 29일 字에 게재됐다. (논문명: Nanoscale effects of beverages on enamel surface of human teeth: An atomic force microscopy study) 한편 이번 연구는 한국연구재단 해외우수신진연구자유치사업, 과학기술정보통신부 G-CORE 연구사업, 한국과학기술원 KUSTAR-KAIST 교육연구원 국제공동연구의 지원으로 이뤄졌다. 또 KAIST 클리닉의 조수빈 치과의사와 캐나다 치과병원 Smile Well Dental 소속 신상민 박사, 서울대학교 치의학 대학원 김각균 교수로부터 각각 자문을 받았다.
2020.07.22
조회수 23683
육종민 교수팀, 살아있는 세포의 전자현미경 관찰 성공
우리 대학 신소재공학과 육종민 교수 연구팀이 경북대학교(총장 김상동) ITA 융합대학원 한영기 교수 연구팀과 공동연구를 통해 살아 있는 세포를 전자현미경을 통해 실시간으로 관찰하는 데 성공했다고 29일 밝혔다. 이번 연구를 통해 살아 있는 다양한 세포의 실시간 분자 단위 관찰이 가능해져, 그동안 관찰하지 못했던 살아 있는 세포의 전이·감염에 관한 전 과정을 규명할 수 있게 돼 신약 개발 등을 더욱 촉진할 수 있을 것으로 기대된다. 신소재공학과 구건모 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `나노 레터스(Nano Letters)' 5월 5일 字 온라인판에 게재됐으며 6월 호 표지논문으로 선정됐다. (논문명: Live-Cell Electron Microscopy Using Graphene Veils) 전 세계적으로 대유행하고 있는 코로나바이러스감염증(COVID-19) 등은 수십~수백 나노미터(nm, 1 나노미터는 100만 분의 1밀리미터) 크기의 바이러스로 인해 일어나는 질병이다. 바이러스의 전이·감염 과정을 분석하고 이에 대처하는 신약 개발을 위해서는 바이러스의 미시적인 행동을 실시간으로 관찰하는 것이 매우 중요하다. 수십~수백 나노미터 크기의 바이러스 등을 비롯해 세포와 세포를 이루는 기관들은 가시광선을 이용하는 일반 광학현미경으로는 관찰이 어려워 해상력이 매우 높은 전자선을 이용하는 전자현미경 기술을 이용한다. 그렇지만 전자현미경 기술은 효율적인 작동을 위해 매우 강력한 진공상태가 필요하며 또 가시광선보다 수천 배 이상 높은 에너지를 가지는 전자를 이용하기 때문에 관찰 시 세포의 구조적인 손상이 불가피하다. 따라서 현재로서는 2017년 노벨화학상을 수상한 기술인 극저온 전자현미경을 통해 고정 작업 및 안정화 작업을 거친 표본만 관찰이 가능하다. 최근 학계에서는 사멸해 고정된 것이 아닌 온전한 상태의 살아 있는 세포등 다양한 생체물질을 전자현미경을 이용해 분자 단위로 관찰 가능한지에 대한 논쟁이 전개되고 있다. 육 교수 연구팀은 지난 2012년 개발한 그래핀 액상 셀 전자현미경 기술을 응용해 전자현미경으로도 살아있는 대장균 세포를 관찰하는데 성공했고, 이를 재배양시킴으로써 전자와 진공에 노출됐음에도 불구하고 대장균 세포가 생존한다는 사실을 밝혀냈다. 육 교수 연구팀이 이번 연구에서 활용한 그래핀은 층상 구조인 흑연에서 분리하는 등의 방법으로 얻어내는 약 0.2 나노미터(nm) 두께의 원자 막이다. 여러 분야에서 차세대 소재로 주목받고 있는 그래핀은 강철보다 200배 강한 강도와 높은 전기 전도성을 가지며, 물질을 투과시키지 않는 성질을 가진다. 육 교수 연구팀은 이러한 그래핀 성질을 이용, 세포 등을 액체와 함께 감싸주면, 고진공의 전자현미경 내부에서 탈수에 의한 세포의 구조변화를 막아줄 수 있음을 밝혀냈다. 뿐만 아니라, 그래핀이 전자빔에 의해 공격성이 높아진 활성 산소들을 분해하는 효과도 지니고 있어 그래핀으로 덮어주지 않은 세포보다 100배 강한 전자에 노출되더라도 세포가 활성을 잃지 않는다는 결과를 확인했다. 육 교수는 "이번 연구 결과는 세포보다 더 작은 단백질이나 DNA의 실시간 전자현미경 관찰로까지 확대될 수 있어, 앞으로 다양한 생명 현상의 기작을 근본적으로 밝힐 수 있을 것이라 기대한다ˮ고 밝혔다. 한편, 이번 연구는 삼성전자 미래기술육성센터의 지원을 받아 수행됐다.
2020.06.29
조회수 19642
원자간력 현미경(AFM)을 이용한 배터리 전극의 구성 성분 분포 영상화 기법 개발
우리 대학 신소재공학과 홍승범 교수 연구팀이 원자간력 현미경(AFM, Atomic Force Microscope)을 이용해 배터리 전극의 구성성분 분포를 파악하는 영상화 기법을 개발하는 데 성공했다. 관련 기술은 차세대 배터리로 주목받는 전고체전지 설계를 용이하게 할 수 있고 다른 전기화학 소재에도 제조 공정을 크게 혁신하는 토대가 될 것으로 기대된다. 김홍준 연구원이 제1 저자로 참여한 이번 연구는 국제 학술지 `ACS 어플라이드 에너지 머티리얼스(ACS Applied Energy Materials)'지 4월 27일 字에 게재됐다. (논문명: Visualization of Functional Components in a Lithium Silicon Titanium Phosphate-Natural Graphite Composite Anode) 리튬이온전지는 휴대용 장비와 전기자동차 등 여러 분야에서 강력한 전기 에너지저장장치(ESS)로 사용되고 있다. 그러나 액체나 젤 형태의 전해질을 사용하는 리튬이온전지는 충격이나 압력으로 인한 발화 가능성이 크고 충전소요 시간이 길어지는 취약점을 안고 있다. 따라서 지난 13일 국내 1, 2위 대기업인 삼성그룹과 현대차 그룹 수장들이 첫 단독 회동을 통해 협업을 논의한 사례에서 보듯 고체 전해질을 이용한 전고체전지가 가장 유망한 차세대 배터리로 주목을 받고 있다. 전고체전지는 양극과 음극 사이의 전해질을 액체가 아닌 고체로 대체한 전지다. 전고체전지는 특히 부피를 절반으로 줄이면서 대용량 구현이 가능해 완전 충전 시 최대 주행거리가 800Km에 달하기 때문에 글로벌완성차 업체와 배터리 업체를 중심으로 기술 상용화를 위한 연구개발(R&D) 움직임이 활발하다. 다만 전고체전지가 차세대 배터리로 확고히 자리를 잡기 위해서는 낮은 이온전도도와 전극-전해질 계면의 접합성 문제를 해결해야 한다. 이를 위해 리튬이온전도체가 분산된 복합 전극에 관한 연구가 활발히 진행되고 있다. 또 전지 구동 성능에 큰 영향을 미치는 복합 전극의 재료적 특성을 이해하기 위해서는 미시적 규모로 혼합된 활물질, 이온전도체, 바인더 그리고 도전재와 같은 구성성분들의 형상과 분포를 파악할 수 있는 기술이 필요하다. 홍승범 교수 연구팀이 개발한 영상화 기법은 이러한 문제점들을 거시·미시적 다중 스케일에서 전기화학 변위 현미경과 횡력 현미경 등 원자간력 현미경의 다양한 기능을 활용해 위치에 따른 검출 신호의 감도 차이로 구성성분들의 영역을 구별해 해결했다. 기존 전극과 복합 전극을 비교해서 결과를 제시했으며, 영역들의 구별뿐만 아니라 단일 영역 내에서 나노 스케일의 이온 반응성 세기 분포와 마찰력 세기 분포의 상관관계 파악을 통해 바인더 구성 비율이 이온 반응성에 미치는 영향을 파악했다. 또 기존 전자 현미경을 이용해 관찰할 경우, 진공 환경이 필수적으로 필요하고, 분석을 위한 시편 제작 시 매우 얇은 막 형태로 제작 및 백금 입자를 코팅해야 하는 등 특별한 사전처리 절차가 필요했다. 반면 홍 교수 연구팀이 이번 연구를 통해 제시한 관찰 방법은 일반적인 환경에서 수행할 수 있고, 특별한 사전처리 절차가 필요하지 않다. 이와 함께 다른 영상화 장비보다 관찰의 준비 과정이 편리하며, 공간 분해 능력과 검출 신호의 세기 분해 능력이 월등하고, 성분 관찰 시에는 3차원 표면 형상 정보가 제공된다는 장점이 있다. 홍승범 교수는 "원자간력 현미경을 이용해 개발된 분석 기법은 복합 소재 내의 각 구성성분이 물질의 최종적인 성질에 기여하는 역할을 정량적으로 이해하는 데 유리하다ˮ 면서 "이 기술은 차세대 전고체전지의 설계 방향을 다중 스케일에서 제시할 뿐만 아니라, 다른 전기화학 소재의 제조 공정에도 혁신의 기틀을 마련할 수 있을 것으로 기대된다ˮ 고 강조했다. 한편 이번 연구는 과학기술정보통신부·한국연구재단 거대과학연구개발사업, 웨어러블 플랫폼 소재 기술센터 지원 기초연구사업 및 KAIST 글로벌특이점연구 지원으로 수행됐다.
2020.05.19
조회수 13265
초음파를 내비게이션으로 사용하는 광학현미경 개발
생체 내부를 꿰뚫어볼 수 있는 새로운 현미경이 나왔다. 바이오 및 뇌공학과 장무석 교수 연구팀이 기초과학연구원 분자 분광학 및 동력학 연구단 최원식 부연구단장 연구팀과의 공동 연구를 통해 초음파를 이용해 기존 현미경으로 볼 수 없었던 생체 내부의 미세구조를 관찰하는 기법을 개발했다. 연구결과는 국제학술지 네이처 커뮤니케이션즈(Nature Communications)2월 5일자 온라인 판에 게재됐다. 사람의 눈은 250㎜ 떨어진 거리에 70㎜의 간격을 두고 놓인 물체를 구분할 수 있다. 이보다 작은 미세구조를 관찰하기 위해서는 광학현미경이 필요하다. 광학현미경은 눈으로 볼 수 없는 작은 미세구조를 확대해서 보여준다. 하지만 생체조직을 관찰할 때는 이야기가 달라진다. 빛이 생체 조직을 투과할 때 직진광과 산란광이라는 두 종류의 빛이 생겨난다. 직진광은 말 그대로 생체 조직의 영향 없이 직진하는 빛이며, 산란광은 생체 조직 내 세포나 세포 내 구조의 영향에 의해 진행 방향이 무작위로 굴절된 빛이다. 광학 현미경으로 생체 조직 깊은 곳을 관찰하려면 직진광에 비해 산란광이 강해져 이미지 정보가 흐려진다는 치명적인 단점이 있다. 안개 속을 볼 수 없듯, 생체 조직의 수많은 세포와 구조들이 빛을 산란시켜 이미지를 흐리게 만들기 때문이다. 반면, 초음파 영상은 태아를 감별할 수 있을 정도로 생체 내부 깊은 곳까지 이미징할 수 있지만, 해상도가 낮아 미세한 구조를 볼 수 없다는 단점이 있다. 연구진은 광학 현미경과 초음파 영상의 장점을 결합하여, 생체 내부 깊은 곳을 높은 해상도로 관찰할 수 있는 초음파 결합 광학 현미경을 개발했다. 초음파 결합 현미경은 생체 조직 내부를 잘 침투하는 초음파를 집속시킨 후, 초음파의 초점을 지나는 빛만 측정하는 방식으로 산란광의 세기를 크게 감쇄시킬 수 있다. 초음파가 광학현미경에게 관찰 경로를 알려주는 일종의 내비게이션 역할을 하는 셈이다. 초음파는 생체 조직을 응축, 팽창시켜 굴절률을 변조하는 방식으로 빛의 진행에 영향을 준다. 연구진은 이런 초음파의 특성을 응용해 초음파의 초점을 통과하는 빛만을 선택적으로 측정하는 기술을 개발하고, 이 기술을 공간 게이팅(space-gating)이라 명명했다. 초음파는 생체 내부의 ‘빛 거름망’ 역할을 하며 무작위로 산란되던 빛을 차폐한다. 공간 게이팅 기술을 통해 연구진은 산란광을 100배 이상 감쇄시키며 생체 조직 내에서 광학 이미지가 흐려지는 문제를 극복할 수 있었다. 장무석 교수는 “촘촘한 거름망을 사용하면 더 고운 가루만 남는 것처럼 초음파의 초점을 작게 할수록 산란광을 더 많이 감쇄시킬 수 있다”며 “향후 산란광을 1000~1만 배 수준까지 감쇄시켜 더 선명한 이미지를 얻게 될 것으로 기대한다”고 말했다. 연구진은 개발한 현미경을 이용해 별도의 형광 표지 없이 부화한지 30일 된 성체 제브라피시의 척추 안쪽 근육 조직 이미지를 얻는데 성공했다. 기존 기술은 제브라피시의 장기, 척추 등 내부 구조에서 산란 현상이 일어나 절단을 통해서만 내부 근육 결을 관찰할 수 있었다. 이와 달리 개발된 현미경은 자연 상태 그대로 살아있는 제브라피쉬 내부 조직을 꿰뚫어볼 수 있다. 연구진은 인체 조직에도 사용할 수 있는 공간 게이팅 기술을 구현해나갈 계획이다. 향후 현미경을 소형화하고 이미징 속도를 증가시키면, 실시간 질병 진단에도 응용할 수 있을 것으로 기대된다. 이번 연구를 이끈 최원식 부연구단장은 “초음파 결합 광학 현미경은 기존 광학 현미경의 얕은 이미징 깊이 문제를 해결하는 획기적인 기술”이라며 “공간 게이팅 기술을 더욱 발전시켜 빛의 산란 현상을 이해하고, 의생명 광학 기술 분야 활용 범위를 넓혀나갈 것”이라고 말했다.
2020.02.21
조회수 12201
<<
첫번째페이지
<
이전 페이지
1
2
3
>
다음 페이지
>>
마지막 페이지 3