-
설명해주는 인공지능 구현을 위한 초저전력 하드웨어 기술 개발
우리 대학 신소재공학과 김경민 교수 연구팀이 다양한 멤리스터* 소자를 이용한 설명 가능한 인공지능 (XAI) 시스템을 구현하는데 성공했다고 25일 밝혔다.
*멤리스터 (Memristor): 메모리 (Memory)와 저항 (Resistor)의 합성어로, 입력 신호에 따라 소자의 저항 상태가 변하는 소자
최근 인공지능 (AI) 기술의 급속한 발전이 다양한 분야에서 성과를 이루고 있다. 이미지 인식, 음성 인식, 자연어 처리 등에서 AI의 적용 범위가 확대되며 우리의 일상생활에 깊숙이 자리 잡고 있다.
AI는 인간의 뉴런 구조를 모방해 만든 ‘인공신경망’을 기반으로, 적게는 수백만 개에서 많게는 수조 개에 달하는 매개변수를 통해 데이터를 분석하고 의사 결정을 내린다. 그러나 이 많은 매개변수로 인해 AI 모델의 동작 원리를 정확하게 이해하기 어렵고, 이는 통상적으로 블랙박스에 비유되곤 한다. AI가 어떤 기준으로 결정을 내는지 알 수 없다면, AI에 결함이나 오작동이 발생했을 때 이를 해결하기 어렵고, 이로 인해 AI가 적용되는 다양한 산업 분야에서 문제가 발생할 수 있다.
이에 대한 해답으로 제시된 것이 바로 설명 가능한 인공지능 (XAI)이다. XAI는 AI가 어떠한 결정을 내렸을 때, 그 근거가 무엇인지를 사람이 이해할 수 있도록 만드는 기술이다. <그림1> 생성형 AI 등 점점 더 복잡해지는 AI 기술의 등장으로 개발자, 사용자, 규제 기관 모두에게 XAI 시스템의 필요성이 강조되고 있다. 하지만, XAI는 일반적으로 엄청난 양의 데이터 처리를 요구하기 때문에, 이를 보다 효율적으로 동작할 수 있는 하드웨어 개발이 필요한 상황이다.
김경민 교수 연구팀은 교란(Perturbation) 기반 XAI 시스템을 서로 다른 멤리스터 소자를 이용해 하드웨어로 구현하는데 성공하였다. 세 가지 멤리스터 소자는 각각 휘발성 저항변화 특성, 아날로그 비휘발성 저항변화 특성, 아날로그 휘발성 저항변화 특성을 가지며 <그림 2>, 각 소자는 교란 기반 XAI 시스템의 필수적인 기능인 입력 데이터 교란, 벡터곱 연산, 그리고 신호 통합 기능을 수행한다.
연구팀은 개발된 XAI 하드웨어를 평가하기 위해, 흑백 패턴을 인식하는 신경망을 설계하였다. 여기에 개발한 XAI 하드웨어 시스템으로 설계한 신경망이 흑백 패턴을 인식하는 근거를 설명하였다. <그림3> 그 결과 기존 CMOS 기술 기반 시스템 대비 에너지 소비를 24배 감소하여 AI 판단의 이유를 제공하는 것을 확인하였다. <그림4>
KAIST 김경민 교수는 “AI 기술이 일상화되면서 AI 동작의 투명성 및 해석가능성이 중요해지고 있는데, 이번 연구는 다양한 종류의 멤리스터 소자를 이용해 AI 판단에 대한 근거를 제공하는 XAI 하드웨어 시스템을 구현할 수 있었다는 점에 큰 의의가 있다”며 “이 연구는 AI 의사 결정에 도달하는 과정을 이해하기 쉽게 설명을 제공함으로써 AI 시스템의 신뢰성 향상에 기여할 수 있어, 향후 의료, 금융, 법률 등 민감한 정보를 다루는 AI 기반 서비스에 적용될 수 있을 것으로 기대된다”고 밝혔다.
이번 연구는 KAIST 신소재공학과 송한찬 박사과정, 박우준 박사과정 학생이 공동 제1 저자로 참여했으며, 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials, IF: 29.4)’에 03월 20일 字 온라인 게재됐으며, 한국연구재단 중견연구사업, 차세대지능형반도체기술개발사업, PIM인공지능반도체핵심기술개발사업, 나노종합기술원 및 KAIST 도약연구사업의 지원을 받아 수행됐다. (논문명: Memristive Explainable Artificial Intelligence Hardware, 논문링크: https://doi.org/10.1002/adma.202400977)
2024.03.25
조회수 5253
-
화합물 생성AI 기술로 신약 개발 앞당긴다
신약 개발이나 재료과학과 같은 분야에서는 원하는 화학 특성 조건을 갖춘 물질을 발굴하는 것이 중요한 도전으로 부상하고 있다. 우리 대학 연구팀은 화학반응 예측이나 독성 예측, 그리고 화합물 구조 설계 등 다양한 문제를 동시에 풀면서 기존의 인공지능 기술을 뛰어넘는 성능을 보이는 기술을 개발했다.
김재철AI대학원 예종철 교수 연구팀이 분자 데이터에 다중 모달리티 학습(multi-modal learning) 기술을 도입해, 분자 구조와 그 생화학적 특성을 동시에 생성하고 예측이 가능해 다양한 화학적 과제에 광범위하게 활용가능한 인공지능 기술을 개발했다고 25일 밝혔다.
심층신경망 기술을 통한 인공지능의 발달 이래 이러한 분자와 그 특성값 사이의 관계를 파악하려는 시도는 꾸준히 이루어져 왔다. 최근 비 지도 학습(unsupervised training)을 통한 사전학습 기법이 떠오르면서 분자 구조 자체로부터 화합물의 성질을 예측하는 인공지능 연구들이 제시되었으나 새로운 화합물의 생성하면서도 기존 화합물의 특성 예측이 동시에 가능한 기술은 개발되지 못했다.
연구팀은 화학 특성값의 집합 자체를, 분자를 표현하는 데이터 형식으로 간주해 분자 구조의 표현식과 함께 둘 사이의 상관관계를 아울러 학습하는 AI학습 모델을 제안했다. 유용한 분자 표현식 학습을 위해 컴퓨터 비전 분야에서 주로 연구된 다중 모달리티 학습 기법을 도입해, 두 다른 형식의 데이터를 통합하는 방식으로, 바라는 화합물의 성질을 만족하는 새로운 화합물의 구조를 생성하거나 주어진 화합물의 성질을 예측하는 생성 및 성질 특성이 동시에 가능한 모델을 개발했다.
연구팀이 제안한 모델은 50가지 이상의 동시에 주어지는 특성값 입력을 따르는 분자 구조를 예측하는 등 분자의 구조와 특성 모두의 이해를 요구하는 과제를 해결하는 능력을 보였으며, 이러한 두 데이터 정보 공유를 통해 화학반응 예측 및 독성 예측과 같은 다양한 문제에도 기존의 인공지능 기술을 뛰어넘는 성능을 보이는 것으로 확인됐다.
이 연구는 독성 예측, 후보물질 탐색과 같이 많은 산업계에서 중요하게 다뤄지는 과제를 포함해, 더 광범위하고 풍부한 분자 양식과 고분자, 단백질과 같은 다양한 생화학적 영역에 적용될 수 있을 것으로 기대된다.
예종철 교수는 “새로운 화합물의 생성과 화합물의 특성 예측 기술을 통합하는 화학분야의 새로운 생성 AI기술의 개척을 통해 생성 AI 기술의 저변을 넓힌 것에 자부심을 갖는다”고 말했다.
예종철 교수 연구팀의 장진호 석박통합과정이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’지난 3월 14일 자 온라인판에 게재됐다. (논문명 : Bidirectional Generation of Structure and Properties Through a Single Molecular Foundation Model)
한편 이번 연구는 한국연구재단의 AI데이터바이오선도기술개발사업으로 지원됐다.
2024.03.25
조회수 7576
-
인공지능이 상황에 따라 알아서 업데이트되다
최근 실생활에 활용되는 인공지능 모델이 시간이 지남에 따라 성능이 점차 떨어지는 현상이 다수 발견되었고, 이에 따라 지속가능한 인공지능 학습 기술에 대한 필요성이 커지고 있다. AI 모델이 꾸준히 정확한 판단을 내리는 것은 더욱 안전하고 신뢰할 수 있는 인공지능을 만들기 위한 중요한 요소이다.
우리 대학 전기및전자공학부 황의종 교수 연구팀이 시간에 따라 데이터의 분포가 변화하는 드리프트 환경에서도 인공지능이 정확한 판단을 내리도록 돕는 새로운 학습 데이터 선택 기술을 개발했다고 14일 밝혔다.
최근 인공지능이 다양한 분야에서 인간의 능력을 뛰어넘을 정도의 높은 성능을 보여주고 있지만, 대부분의 좋은 결과는 AI 모델을 훈련시키고 성능을 테스트할 때 데이터의 분포가 변하지 않는 정적인 환경을 가정함으로써 얻어진다. 하지만 이러한 가정과는 다르게 SK 하이닉스의 반도체 공정 과정에서 시간에 따른 장비의 노화와 주기적인 점검으로 인해 센서 데이터의 관측값이 지속적으로 변화하는 드리프트 현상이 관측되고 있다.
시간이 지나면서 데이터와 정답 레이블 간의 결정 경계 패턴이 변경되면, 과거에 학습되었던 AI 모델이 내린 판단이 현재 시점에서는 부정확하게 되면서 모델의 성능이 점차 악화될 수 있다.
본 연구팀은 이러한 문제를 해결하기 위해, 데이터를 학습했을 때 AI 모델의 업데이트 정도와 방향을 나타내는 그래디언트(gradient)를 활용한 개념을 도입하여 제시한 개념이 드리프트 상황에서 학습에 효과적인 데이터를 선택하는 데에 도움을 줄 수 있음을 이론적으로 실험적으로 분석했다. 그리고 이러한 분석을 바탕으로 효과적인 학습 데이터 선택 기법을 제안하여, 데이터의 분포와 결정 경계가 변화해도 모델을 강건하게 학습할 수 있는 지속 가능한 데이터 중심의 AI 학습 프레임워크를 제안했다.
본 학습 프레임워크의 주요 이점은, 기존의 변화하는 데이터에 맞춰서 모델을 적응시키는 모델 중심의 AI 기법과 달리, 드리프트의 주요 원인이라고 볼 수 있는 데이터 자체를 직접 전처리를 통해 현재 학습에 최적화된 데이터로 바꿔줌으로써, 기존의 AI 모델 종류에 상관없이 쉽게 확장될 수 있다는 점에 있다. 실제로 본 기법을 통해 시간에 따라 데이터의 분포가 변화되었을 때에도 AI 모델의 성능, 즉 정확도를 안정적으로 유지할 수 있었다.
제1 저자인 김민수 박사과정 학생은 "이번 연구를 통해 인공지능을 한번 잘 학습하는 것도 중요하지만, 그것을 변화하는 환경에 따라 계속해서 관리하고 성능을 유지하는 것도 중요하다는 사실을 알릴 수 있으면 좋겠다ˮ고 밝혔다.
연구팀을 지도한 황의종 교수는 “인공지능이 변화하는 데이터에 대해서도 성능이 저하되지 않고 유지하는 데에 도움이 되기를 기대한다”고 말했다.
본 연구에는 KAIST 전기및전자공학부의 김민수 박사과정이 제1 저자, 황성현 박사과정이 제2 저자, 그리고 황의종 교수(KAIST)가 교신 저자로 참여했다. 이번 연구는 지난 2월 캐나다 밴쿠버에서 열린 인공지능 최고 권위 국제학술 대회인 ‘국제 인공지능 학회(Association for the Advancement of Artificial Intelligence, AAAI)’에서 발표되었다. (논문명: Quilt: Robust Data Segment Selection against Concept Drifts)
한편, 이 기술은 SK 하이닉스 인공지능협력센터(AI Collaboration Center; AICC)의 지원을 받은 ‘노이즈 및 변동성이 있는 FDC 데이터에 대한 강건한 학습’ 과제 (K20.05) 와 정보통신기획평가원의 지원을 받은 ‘강건하고 공정하며 확장가능한 데이터 중심의 연속 학습’ 과제 (2022-0-00157) 와 한국연구재단의 지원을 받은 ‘데이터 중심의 신뢰 가능한 인공지능’ 과제 성과다.
2024.03.14
조회수 5271
-
GPU에서 대규모 출력데이터 난제 해결
국내 연구진이 인공지능(AI) 등에 널리 사용되는 그래픽 연산 장치(이하 GPU)에서 메모리 크기의 한계로 인해 초병렬 연산*의 결과로 대규모 출력 데이터가 발생할 때 이를 잘 처리하지 못하던 난제를 해결했다. 이 기술을 통해 향후 가정에서 사용하는 메모리 크기가 작은 GPU로도 생성형 AI 등 고난이도 연산이 대규모 출력을 필요한 경우 이를 빠르게 수행할 수 있다.
*초병렬 연산: GPU를 이용하여 수 십 만에서 수 백 만 개의 작은 연산들을 동시에 수행하는 연산을 의미
우리 대학은 전산학부 김민수 교수 연구팀이 한정된 크기의 메모리를 지닌 GPU를 이용해 수십, 수백 만개 이상의 스레드들로 초병렬 연산을 하면서 수 테라바이트의 큰 출력 데이터*를 발생시킬 경우에도 메모리 에러를 발생시키지 않고 해당 출력 데이터를 메인 메모리로 고속으로 전송 및 저장할 수 있는 데이터 처리 기술(일명 INFINEL)을 개발했다고 7일 밝혔다.
*출력데이터: 데이터 분석 결과 또는 인공지능에 의한 생성 결과물에 해당하는 데이터
최근 AI의 활용이 급속히 증가하면서 지식 그래프와 같이 정점과 간선으로 이루어진 그래프 구조의 데이터의 구축과 사용도 점점 증가하고 있는데, 그래프 구조의 데이터에 대해 난이도가 높은 초병렬 연산을 수행할 경우 그 출력 결과가 매우 크고, 각 스레드의 출력 크기를 예측하기 어렵다는 문제점이 발생한다.
또한, GPU는 근본적으로 CPU와 달리 메모리 관리 기능이 매우 제한적이기 때문에 예측할 수 없는 대규모의 데이터를 유연하게 관리하기 어렵다는 문제가 있다. 이러한 이유로 지금까지는 GPU를 활용해 ‘삼각형 나열’과 같은 난이도가 높은 그래프 초병렬 연산을 수행할 수 없었다.
김 교수팀은 이를 근본적으로 해결하는 INFINEL 기술을 개발했다. 해당 기술은 GPU 메모리의 일부 공간을 수백 만개 이상의 청크(chunk)라 불리는 매우 작은 크기의 단위들로 나누고 관리하면서, 초병렬 연산 내용이 담긴 GPU 커널(kernel) 프로그램을 실행하면서 각 스레드가 메모리 충돌 없이 빠르게 자신이 필요한 청크 메모리들을 할당받아 자신의 출력 데이터를 저장할 수 있도록 한다.
또한, GPU 메모리가 가득 차도 무중단 방식으로 초병렬 연산과 결과 출력 및 저장을 지속할 수 있도록 한다. 따라서 이 기술을 사용하면 가정에서 사용하는 메모리 크기가 작은 GPU로도 수 테라 바이트 이상의 출력 데이터가 발생하는 고난이도 연산을 빠르게 수행할 수 있다.
김민수 교수 연구팀은 INFINEL 기술의 성능을 다양한 실험 환경과 데이터 셋을 통해 검증했으며, 종래의 최고 성능 동적 메모리 관리자 기술에 비해 약 55배, 커널을 2번 실행하는 2단계 기술에 비해 약 32배 연산 성능을 향상함을 보였다.
교신저자로 참여한 우리 대학 전산학부 김민수 교수는 “생성형 AI나 메타버스 시대에는 GPU 컴퓨팅의 대규모 출력 데이터를 빠르게 처리할 수 있는 기술이 중요해질 것으로 예상되며, INFINEL 기술이 그 일부 역할을 할 수 있을 것”이라고 말했다.
이번 연구에는 김 교수의 제자인 박성우 박사과정이 제1 저자로, 김 교수가 창업한 그래프 딥테크 기업인 (주)그래파이 소속의 오세연 연구원이 제 2 저자로, 김 교수가 교신 저자로 참여하였으며, 국제 학술지 ‘PPoPP’에 3월 4일자 발표됐다. (INFINEL: An efficient GPU-based processing method for unpredictable large output graph queries)
한편, 이번 연구는 과기정통부 IITP SW스타랩 및 ITRC 사업, 한국연구재단 선도연구센터인 암흑데이터 극한 활용 연구센터의 지원을 받아 수행됐다.
2024.03.07
조회수 5280
-
정명수 교수 연구팀, 美 CES 2024에서 혁신상 수상작 CXL 탑재 AI 가속기 선보여
시스템에 무한대에 가까운 용량의 메모리 자원을 제공하여 대규모 AI 기반 서비스를 고속 처리하는 기술, ‘CXL 탑재 AI 가속기’가 개발되었다.
우리 대학 전기및전자공학부 정명수 교수 연구팀이 세계 최대 규모의 IT 박람회‘CES 2024’에서‘CXL 탑재 AI 가속기(CXL-Enabled AI Accelerator)’를 선보였다. 해당 제품으로 연구팀은 CES 2024 혁신상을 수상하였으며, ARM, 휴렛페커드(HPE), 어드밴스드 머터리얼스(Advanced Materials), 메타등 글로벌 대기업들로부터 단독 미팅을 제안받아 지속적으로 협업을 논의할 예정이다.
‘CXL 탑재 AI 가속기’는 컴퓨트익스프레스링크(Computer Express Link, CXL) 기술을 통해 시스템에 무한대에 가까운 용량의 빠른 메모리 자원을 제공하여, 대규모 AI 기반 서비스를 고속으로 처리할 수 있다. 대표적인 AI 기반 서비스인 이미지 검색을 이용한 평가에서, 연구팀은 CXL 기술이 적용된 가속 시스템이 기존의 SSD 기반 가속시스템 대비 101배 빠른 성능을 보였다고 밝혔다.
수상작의 핵심인 CXL은 데이터처리 가속기, 메모리 확장장치, 프로세서, 스위치 등 다양한 시스템 장치를 고속으로 연결하는 기술이다. 이 기술은 여러 가속기 및 메모리 확장장치의 내부 메모리를 시스템에 연결하여 AI 서비스에 확장가능한 메모리 자원을 제공할 수 있다. 덕분에 AI 서비스는 처리할 수 있는 데이터의 양을 대폭 증가시킬 수 있으며, 이릍 통해 정확도와 품질을 향상시킬 수 있다. 이는 기존 AI 가속기가 제한된 메모리 용량으로 인해, 대용량의 데이터 관리에 느린 저장장치를 사용해야하던 것과 대비된다. 추가적으로, 연구팀은 AI 가속기 내부를 이미지 검색에 특화된 하드웨어 모듈로 구성하여 시스템의 성능을 더욱 높였다. AI 기반 서비스의 정확도 및 품질은 경쟁적인 AI 업계에서 기업의 생존과 직결되는 만큼, 연구팀의 기술은 산업계 파급효과가 클 것으로 예상된다.
정명수 교수 연구팀은 이번 연구개발의 결과물을 지난주 미국 라스베가스에서 열린 CES 2024에서 전시하였다. 가속기는 기술의 우수성을 인정받아 CES 주관기관으로부터 CES 혁신상을 수상하였으며, IEEE Spectrum, Storage Newsletter, Blocks and Files, Design and Reuse, TechRadar, 등의 해외 언론, 조선일보, 조선비즈, 한국경제, 서울경제, 파이낸셜뉴스, ZDnet 등의 국내 유수 언론을 포함한 20개 이상의 언론사가 부스에 방문하고, 출품 소식을 전하였다.
특히 한국경제에서는 연구팀의 기술을 ‘AI 도입 비용 문제의 해결책’으로써 대중들에게 소개하였다.
연구팀의 권미령 박사는 EETimes Gary Hilson 기자와의 단독 인터뷰에서 “최신 CXL 표준을 지원하는 연구팀의 하드웨어/소프트웨어를 활용하면 데이터센터 수준의 고효율 메모리 확장을 실현할 수 있다”며 연구팀의 기술을 소개하기도 했다.
뿐만 아니라, 연구팀의 기술은 이번 CES에서 다양한 글로벌 대기업들로부터 집중적으로 관심을 받았다. 세계 최대 IP 기업 ARM으로부터 초청받아 프라이빗 미팅을 진행하였으며, 글로벌 클라우드/데이터센터 기업 HPE 본사로부터 단독 대규모 미팅 제의를 받아 이달 말 협업을 논의할 예정이다. 현지 부스를 통해서 연구팀은 마이크로소프트, 애플, 인텔, 케이던스 등 다양한 글로벌 대기업의 고위 임원들과 국내 귀빈등에게 CXL 선도기술을 소개한 것으로 알려졌다. 정명수 교수 연구팀은 이전에도 세계 최초로 CXL CPU, CXL 스위치, CXL 메모리 확장장치를 모두 포함한 CXL 기반의 전체 시스템을 발표하여 AMD, 메타 등 산업계로부터 러브콜을 받은 바 있다.
본 성과는 우리 대학 전기및전자공학부 정명수 교수 연구실 학생들과 파네시아가 공동연구를 진행한 결과이다. 파네시아는 카이스트 교원창업기업이자 세계 최초로 CXL 3.0 IP(반도체 설계기술)를 개발하는 등 CXL 기술을 선도하고 있는 반도체 팹리스 스타트업이다.
카이스트 스타트업인 파네시아는 오는 19일 대전에서 개최되는 CXL 테크데이 행사를 통해서 CES에 소개된 CXL이외에도 다양한 최신 CXL 기술들을 여러 학부생들과 공유할 예정이다 (관련소개 뉴스 링크: https://news.nate.com/view/20231229n21475?mid=n0105).
2024.01.17
조회수 5331
-
하운드(Hound) 로봇, 100m를 19.87초 주파, 기네스 기록
우리 대학 기계공학과의 박해원 교수 연구팀이 제작한 사족 로봇 하운드(Hound)의 사족 보행 로봇의 100m 달리기 기록이 기네스 세계 기록으로 인정받았다고 15일 밝혔다.
하운드(Hound)는 KAIST 동적 로봇 설계 및 제어 연구실(Dynamic Robot Control and Design Laboratory)에서 제작된 로봇으로, 지난 2023년 10월 26일에 측정된 실험을 통해 정지 상태에서 출발해 100미터 선을 19.87초 만에 통과한 후 완전히 멈추는 데 성공했다. 이 성과는 AI 방법론 중 하나인 강화학습을 이용해 시뮬레이션 가상환경에서 훈련된 단일 제어기를 통해 달성됐다.
연구팀은 하운드(Hound) 로봇이 고속으로 달릴 수 있도록, 액추에이터 출력의 한계를 최대한 이용하기 위해, 모터가 최대로 낼 수 있는 한계 토크와 속도 특성을 강화학습에 활용했다. 또한, 대칭적인 걸음새를 통해 모터의 출력을 고르게 분배하고, 로봇의 빠른 움직임을 위해 경량 발바닥을 설계했다. 이러한 종합적인 설계와 제어에 대한 접근방식을 통해 하운드(Hound)는 빠른 속도로 100미터를 주파할 수 있었다.
하운드(Hound)의 100미터 달리기 기록은 우리 대학 대운동장의 실외 육상 트랙에서 공식적으로 측정됐다.
하운드(Hound)는 실외뿐만 아니라 실내 러닝머신 위에서 6.5m/s (시속 23.4km)의 주행 속도를 기록했다. 이는 전기 모터 기반 사족 로봇의 최고속도이며, 기존 메사추세츠 공과대학교(MIT)의 치타 2(Cheetah 2)의 6.4m/s를 뛰어넘는 기록이다. 박해원 교수 연구팀은 이 성과 또한 기네스 기록 인증을 신청 중이다.
연구 책임자인 기계공학과 박해원 교수는 “KAIST의 기술로 직접 설계 제작된 사족 보행 로봇과 AI 학습 기반 제어기로 보행 로봇 세계 최고속도를 세움으로써 우리나라의 로봇 하드웨어 기술 및 로봇제어 AI 기술이 세계 최고 수준을 보여줬다는 데 의의가 있다”이라고 소감을 전했다.
한편 이번 연구는 2019년 국방과학연구소 미래도전국방기술 연구개발사업(912768601)의 지원을 받아 수행됐다.
기네스 기록 홈페이지 링크 : https://www.guinnessworldrecords.com/world-records/625586-fastest-100-m-by-a-quadrupedal-robot
기네스 Youtube 계정에 올라온 영상 : https://www.youtube.com/shorts/sdF1cn7iX0g
2023.12.15
조회수 5678
-
혹시 나도 수면 질환? AI로 간단히 검사해 보세요
각종 장비를 몸에 부착한 채 병원에서 하룻밤을 보내야 하는 번거로운 검사 없이 웹사이트를 통해 간단히 수면 질환 위험도를 파악할 방법이 나왔다. 우리 대학 수리과학과 김재경 교수 연구팀이 삼성서울병원 주은연‧최수정 교수팀, 이화여대 서울병원 김지현 교수팀과 공동 연구를 통해 개발한 세 가지 수면 질환을 예측할 수 있는 알고리즘 ‘슬립스(SLEEPS‧SimpLe quEstionnairE Predicting Sleep disorders)’를 12일 공개했다.
‘잠이 보약’이라는 말처럼 수면은 정신적‧신체적 건강에 주요한 영향을 미친다. 성인의 60%가량이 수면 질환을 앓고 있지만, 관련하여 전문 의료진에게 문의한 비율은 6% 수준에 불과하다. 병원 방문을 꺼리는 원인 중 하나로는 수면 질환 진단을 받기 위해 시행하는 수면다원검사가 번거롭다는 이유가 있다.
공동연구진은 약 5,000명의 수면다원검사 결과를 기계 학습을 통해 학습시켜 수면 질환 위험도를 예측하는 알고리즘 ‘슬립스’를 개발했다. 슬립스에서 나이, 성별, 키, 체중, 최근 2주간의 수면 시 어려움, 수면 유지 어려움, 기상 시 어려움, 수면 패턴에 대한 만족도, 수면이 일상 기능에 미치는 영향 등 간단한 9개의 질문에 답하는 것만으로 만성불면증, 수면호흡장애, 수면호흡장애를 동반한 불면증의 위험도를 90%의 정확도로 예측할 수 있다. 가령, 슬립스 검사 결과 수면호흡장애 위험도가 50%라는 결과가 나왔다면, 실제 수면다원검사를 시행했을 때 수면호흡장애가 발견될 확률이 50%임을 의미한다.
제1 저자인 하석민 미국 MIT 박사과정생(前 IBS 의생명 수학 그룹 연구원)은 “미국 하버드대 연구팀도 AI 기반 수면 질환 검사 알고리즘을 개발한 바 있으나, 이 시스템은 목둘레, 혈압 등 쉽게 답하기 어려운 문항이 포함되어 있어 사용이 까다로웠다”며 “또한, 하버드대 연구팀의 시스템은 예측 정확도도 70% 정도에 그쳤다”고 말했다.
슬립스 사이트(www.sleep-math.com)를 통해 누구나 수면 질환 여부를 예측해볼 수 있다. 현재 본인의 상태를 기준으로 몸무게 변화나 나이가 듦에 따른 수면 질환 위험도 변화도 살펴볼 수 있다.
김재경 교수는 “이번 연구는 수학으로 우리가 직면한 건강 문제를 해결해보고자 하는 시도에서 시작됐고, 중요하지만 쉽게 간과할 수 있는 수면 질환에 기계 학습을 접목했다”며 “수면 질환 진단의 복잡한 과정을 줄인 만큼, 많은 사람이 슬립스를 통해 자신의 수면 건강을 알 수 있는 계기가 되길 바란다”고 말했다.
주은연 삼성서울병원 교수는 “슬립스는 간편한 수면 질환 자가 검진 시스템”이라며 “향후 건강검진 항목에 AI 기반 자가 검진 시스템을 포함한다면 잠재적인 수면 질환 환자들을 스크리닝하여 수면 질환으로 인해 발생하는 수많은 질병을 선제적으로 예방할 수 있을 것”이라고 말했다.
슬립스 개발 성과는 지난 9월 의료 건강 분야 국제학술지 ‘Journal of Medical Internet Research’에 실린 바 있다.
2023.12.14
조회수 9790
-
2.4배 가격 효율적인 챗GPT 핵심 AI반도체 개발
오픈AI가 출시한 챗GPT는 전 세계적으로 화두이며 이 기술이 가져올 변화에 모두 주목하고 있다. 이 기술은 거대 언어 모델을 기반으로 하고 있다. 거대 언어 모델은 기존 인공지능과는 달리 전례 없는 큰 규모의 인공지능 모델이다. 이를 운영하기 위해서는 수많은 고성능 GPU가 필요해, 천문학적인 컴퓨팅 비용이 든다는 문제점이 있다.
우리 대학 전기및전자공학부 김주영 교수 연구팀이 챗GPT에 핵심으로 사용되는 거대 언어 모델의 추론 연산을 효율적으로 가속하는 AI 반도체를 개발했다고 4일 밝혔다.
연구팀이 개발한 AI 반도체 ‘LPU(Latency Processing Unit)’는 거대 언어 모델의 추론 연산을 효율적으로 가속한다. 메모리 대역폭 사용을 극대화하고 추론에 필요한 모든 연산을 고속으로 수행 가능한 연산 엔진을 갖춘 AI 반도체이며, 자체 네트워킹을 내장하여 다수개 가속기로 확장이 용이하다. 이 LPU 기반의 가속 어플라이언스 서버는 업계 최고의 고성능 GPU인 엔비디아 A100 기반 슈퍼컴퓨터보다 성능은 최대 50%, 가격 대비 성능은 2.4배가량 높였다. 이는 최근 급격하게 생성형 AI 서비스 수요가 증가하고 있는 데이터센터의에서 고성능 GPU를 대체할 수 있을 것으로 기대한다.
이번 연구는 김주영 교수의 창업기업인 ㈜하이퍼엑셀에서 수행했으며 미국시간 7월 12일 샌프란시스코에서 진행된 국제 반도체 설계 자동화 학회(Design Automation Conference, 이하 DAC)에서 공학 부문 최고 발표상(Engineering Best Presentation Award)을 수상하는 쾌거를 이뤘다.
DAC은 국제 반도체 설계 분야의 대표 학회이며, 특히 전자 설계 자동화(Electronic Design Automation, EDA)와 반도체 설계자산(Semiconductor Intellectual Property, IP) 기술 관련하여 세계적인 반도체 설계 기술을 선보이는 학회다. DAC에는 인텔, 엔비디아, AMD, 구글, 마이크로소프트, 삼성, TSMC 등 세계적인 반도체 설계 기업이 참가하며, 하버드대학교, MIT, 스탠퍼드대학교 등 세계 최고의 대학도 많이 참가한다.
세계적인 반도체 기술들 사이에서 김 교수팀이 거대 언어 모델을 위한 AI 반도체 기술로 유일하게 수상한 것은 매우 의미가 크다. 이번 수상으로 거대 언어 모델의 추론에 필요한 막대한 비용을 획기적으로 절감할 수 있는 AI 반도체 솔루션으로 세계 무대에서 인정받은 것이다.
우리 대학 김주영 교수는 “미래 거대 인공지능 연산을 위한 새로운 프로세서 ‘LPU’로 글로벌 시장을 개척하고, 빅테크 기업들의 기술력보다 우위를 선점하겠다”라며 큰 포부를 밝혔다.
2023.08.04
조회수 7476
-
포스트 AI 시대 문학 저작권 보호와 미래형 창작 패러다임 도출에 도전한다
소셜 미디어와 같은 새로운 방송 환경과 생성 AI의 등장으로 현재의 문화 예술 창작 패러다임은 큰 도전을 맞이하고 있다. 특히 인간의 저작물 이용에 따른 정당한 대가 지급은 지속적인 창작 동기를 유지하며 산업 발전을 이끌어낼 수 있는 저작권 체계의 핵심 전제인데, 저작물 이용이 활발한 방송분야에서 창작자들이 공정한 보상을 받을 수 있는 저작물 이용 모니터링과 정확한 정산·분배 시스템의 부재가 큰 문제로 제기되고 있다.
이런 상황을 개선하기 위하여 우리 대학 문화기술대학원의 박주용 교수(복합계 물리학) 연구팀은 “문학예술 저작물의 정산·분배를 위한 방송 모니터링 기술 개발(한국지식재산연구원 주관, 원아이디랩·무하유· 한국문학저작원협회 참여)” 프로젝트를 2023년 7월 1일부로 시작했다고 3일 발표하였다. 이 프로젝트에서는 방송에서 사용되는 문학예술 저작물(시, 소설, 수필 등)의 저작권료를 징수·분배하기 위한 시스템 수립을 위해 이용 콘텐츠는 즉각적으로 탐지하는 기술을 개발한다.
이 프로젝트에서는 국내 방송 및 라디오의 음성을 추출하고 이를 텍스트로 전환(Speech-To-Text, STT)하여 이용된 저작물을 정확하게 탐지한 뒤, 문학 저작물을 상세하게 구분·목록화함으로써 지적 재산권을 보호하고 관리하는 기초 기술을 연구하게 된다. 카이스트 박주용 연구팀은 문학 저작물에 사용되는 한국어와 영어 음성을 인식하는 기술을 개발하고, 다량의 저작물을 연계하여 검색할 수 있는 네트워크를 구축하게 된다. 이를 통해 ‘창작의 미래 기술’이라 불리며 큰 관심을 받고 있지만 지금까지는 인간 저작물을 무단·무분별하게 사용함으로써 비판받고 있는 ‘생성 AI’의 연구에 정당한 대가를 지불한 고품질의 적절한 저작물을 선별해 용도와 분야에 맞게 사용하는 것을 가능하게 할 것으로 기대되고 있다.
우리 대학 포스트 AI 연구소장이기도 한 박 교수는 “본 저작권 탐지 시스템과 이미 활발하게 진행 중인 문학 생성 AI 연구를 연계하여 인간 창의성 보호와 생성 AI의 고도화라는 두 마리 토끼를 잡음으로써 과학과 디지털 인문학이 긴밀하게 융합된 미래형 창작 패러다임을 설계하고 싶다”는 포부를 밝히기도 하였다.
이번 연구는 한국콘텐츠진흥원의 지원을 받아 30개월 동안 수행되며, 총 예산은 30억 원이다.
2023.08.03
조회수 4495
-
한국 법체계 발전 메커니즘 규명에 나선다
우리나라의 법률은 지난 30년간 법령 개수, 조문, 글자 수 등이 급격하게 늘어나면서 미국 연방 법전보다도 더욱 복잡해지며 법률 접근성이 떨어지고 있어 법령정보 제공의 지능화가 필요한 시점이다. 이에 현 법체계의 복잡성과 강건성(robustness)을 규명하고, 시대별 분석을 통해 우리 법이 어떻게 발전해왔는지 알아냄으로써 미래 입법 방향을 예측하는 연구가 필요하다.
우리 대학 문화기술대학원 박주용 교수(복합계 물리학), 문술미래전략대학원 박태정 교수(법 발전학) 공동연구팀은 국내 법령 데이터와 국제 조약 데이터를 전수 수집한 뒤 복합계 네트워크로 구성하여 분석하는 ‘포스트 AI 시대 법 발전학’ 연구를 수행해 우리 법체계의 안정성을 제고하고 대중의 법률에 대한 이해를 높일 수 있는 섬세한 시각화가 가능한 그래프 데이터베이스를 구축할 계획임을 16일 밝혔다.
법 발전학은 국가 발전을 위한 적절한 법과 제도를 설계하는 학문으로서, 법∙과학기술∙문화가 국가 발전에 미치는 영향을 종합적으로 예측하고 과학적 입법시스템을 고안하기 위한 노력이 국제적으로 활발히 이루어지고 있다. 특히 우리나라에서도 빅데이터, SNS, AI 등 생활 밀착형 정보 과학기술의 발달과법에 대한 대중들이 관심과 접근성이 증대하는 현실에서 과학과 법학이 함께 해야 한다는 목소리가 높아지고 있다.
이에 연구팀은 우리나라 법령데이터를 전수 수집하여 법률 사이의 연결관계를 나타내는 ‘복합계 네트워크’를 분석한 뒤 이를 기반으로 법률 전문가와 일반 국민이 원하는 법률정보를 손쉽고 빠르게 검색할 수 있는 그래프 형태의 데이터베이스를 2023년 6월 1일부터 3년에 걸쳐 구축할 계획이라고 밝혔다. 이러한 법학과 과학기술의 결합으로 법에 대한 일반 국민의 이해도를 높임으로써 일상생활에 도움이 되는 것은 물론, 조금 더 전문적인 과학기술기반 법률 서비스를 일컫는 ‘리걸테크(LegalTech)’ 분야에서 새로운 산업이 창출될 것으로 기대하고 있다.
우리 대학 포스트 AI 연구소장을 맡고 있는 이론물리학자 박주용 교수는 “법령끼리 서로를 인용하는 상호연결성에 주목해 법체계를 분석할 수 있는 과학적 방법론으로서 복합계 네트워크 과학, 기계학습∙자연어 처리 등의 AI 기술을 사용해 모든 일상생활에서 법의 적용을 받는 대중들이 사용하고 이해하기 쉬운 융합형 연구가 반드시 필요하다”고 밝혔다.
또한 법학자 박태정 교수는 “우리나라 법학계는 법의 적용과 해석에 관한 연구에 지나치게 편중되어 있고 입법학, 법정책학 및 법경제학 등 법이 나아가야 할 방향에 대한 연구는 상대적으로 미진한 편이다” 라고 지적하며 “법의 방향성을 연구하기 위해서는 법체계의 과학적 진단이 필수적이며 이러한 연구가 우리나라 입법 제도 발전에 큰 도움이 될 것으로 기대한다”고 밝혔다.
이번 연구는 한국연구재단의 지원을 받아 수행될 예정이며, 연구팀은 특히 학생과 젊은 연구원에 대한 적극적인 지원과, 국제심포지엄 개최 등을 통한 국제화에 힘을 쏟을 예정이다.
2023.06.16
조회수 5622
-
111배 빠른 검색엔진용 CXL 3.0 기반 AI반도체 세계 최초 개발
최근 각광받고 있는 이미지 검색, 데이터베이스, 추천 시스템, 광고 등의 서비스들은 마이크로소프트, 메타, 알리바바 등의 글로벌 IT 기업들에서 활발히 제공되고 있다. 하지만 실제 서비스에서 사용되는 데이터 셋은 크기가 매우 커, 많은 양의 메모리를 요구하여 기존 시스템에서는 추가할 수 있는 메모리 용량에 제한이 있어 이러한 요구사항을 만족할 수 없었다.
우리 대학 전기및전자공학부 정명수 교수 연구팀(컴퓨터 아키텍처 및 메모리 시스템 연구실)에서 대용량으로 메모리 확장이 가능한 컴퓨트 익스프레스 링크 3.0 기술(Compute eXpress Link, 이하 CXL)을 활용해 검색 엔진을 위한 AI 반도체를 세계 최초로 개발했다고 25일 밝혔다.
최근 검색 서비스에서 사용되는 알고리즘은 근사 근접 이웃 탐색(Approximate Nearest Neighbor Search, ANNS)으로 어떤 데이터든지 특징 벡터로 표현할 수 있다. 특징 벡터란 데이터가 가지는 특징들 각각을 숫자로 표현해 나열한 것으로, 이들 사이의 거리를 통해 우리는 데이터 간의 유사도를 구할 수 있다. 하지만 벡터 데이터 용량이 매우 커서 이를 압축해 메모리에 적재하는 압축 방식과 메모리보다 큰 용량과 느린 속도를 가지는 저장 장치를 사용하는 스토리지 방식(마이크로소프트에서 사용 중)이 사용되어 왔다. 하지만 이들 각각은 낮은 정확도와 성능을 가지는 문제가 있었다.
이에 정명수 교수 연구팀은 메모리 확장의 제한이라는 근본적인 문제를 해결하기 위해 CXL이라는 기술에 주목했다. CXL은 CPU-장치 간 연결을 위한 프로토콜로, 가속기 및 메모리 확장기의 고속 연결을 제공한다. 또한 CXL 스위치를 통해 여러 대의 메모리 확장기를 하나의 포트에 연결할 수 있는 확장성을 제공한다. 하지만 CXL을 통한 메모리 확장은 로컬 메모리와 비교해 메모리 접근 시간이 증가하는 단점을 가지고 있다.
데이터를 책으로 비유하자면 기존 시스템은 집에 해당하는 CPU 크기의 제한으로 서재(메모리 용량)를 무한정 늘릴 수 없어, 보관할 수 있는 책 개수에 제한이 있는 것이다. 이에 압축 방식은 책의 내용을 압축하여 더 많은 책을 보관하는 방법이고, 스토리지 방식은 필요한 책들을 거리가 먼 도서관에서 구해오는 것과 비슷하다. CXL을 통한 메모리 확장은 집 옆에 창고를 지어 책을 보관하는 것으로 이해될 수 있다.
연구진이 개발한 AI 반도체(CXL-ANNS)는 CXL 스위치와 CXL 메모리 확장기를 사용해 근사 근접 이웃 탐색에서 필요한 모든 데이터를 메모리에 적재할 수 있어 정확도를 높이고 성능 감소를 없앴다. 또한 근사 근접 이웃 탐색의 특징을 활용해 데이터 근처 처리 기법과 지역성을 활용한 데이터 배치 기법으로 CXL-ANNS의 성능을 한 단계 향상했다. 이는 마치 창고 스스로가 필요한 책들의 내용을 요약하고 정리해 전달하고, 자주 보는 책들은 서재에 배치해 집과 창고를 오가는 시간을 줄이는 것과 유사하다.
연구진은 CXL-ANNS의 프로토타입을 자체 제작해 실효성을 확인하고, CXL-ANNS 성능을 기존 연구들과 비교했다. 마이크로소프트, 메타, 얀덱스 등의 글로벌 IT 기업에서 공개한 검색 데이터 셋을 사용한 근사 근접 이웃 탐색의 성능 비교에서 CXL-ANNS는 기존 연구들 대비 평균 111배 성능 향상이 있었다. 특히, 마이크로소프트의 상용화된 서비스에서 사용되는 방식과 비교하였을 때 92배의 성능 향상을 보여줬다.
정명수 교수는 "이번에 개발한 CXL-ANNS는 기존 검색 엔진의 문제였던 메모리 용량 제한 문제를 해결하고, CXL 기반의 메모리 확장이 실제 적용될 때 발생하는 메모리 접근 시간 지연 문제를 해결했다ˮ며, “제안하는 CXL 기반 메모리 확장과 데이터 근처 처리 가속의 패러다임은 검색 엔진뿐만 아니라 빅 데이터가 필요한 고성능 컴퓨팅, 유전자 탐색, 영상 처리 등의 다양한 분야에도 적용할 수 있다ˮ라고 말했다.
이번 연구는 미국 보스턴에서 오는 7월에 열릴 시스템 분야 최우수 학술대회인 유즈닉스 연례 회의 `USENIX Annual Technical Conference, 2023'에 ‘CXL-ANNS’이라는 이름으로 발표된 예정이다. (논문명: CXL-ANNS: Software-Hardware Collaborative Memory Disaggregation and Computation for Billion-Scale Approximate Nearest Neighbor Search)
한편 해당 연구는 파네시아(http://panmnesia.com)의 지원을 받아 진행됐다.
2023.05.25
조회수 6873
-
생생한 3차원 실사 이미지 구현하는 ‘메타브레인’ 개발
우리 대학 전기및전자공학부 유회준 교수 연구팀이 실사에 가까운 이미지를 렌더링할 수 있는 인공지능 기반 3D 렌더링을 모바일 기기에서 구현, 고속, 저전력 인공지능(AI: Artificial Intelligent) 반도체*인 메타브레인(MetaVRain)’을 세계 최초로 개발했다고 7일 밝혔다.
* 인공지능 반도체 : 인식·추론·학습·판단 등 인공지능 처리 기능을 탑재하고, 초지능·초저전력·초신뢰 기반의 최적화된 기술로 구현한 반도체
연구팀이 개발한 인공지능 반도체는 GPU로 구동되는 기존 레이 트레이싱 (ray-tracing)* 기반 3D 렌더링을 새로 제작된 AI 반도체 상에서 인공지능 기반 3차원으로 만들어, 기존의 막대한 비용이 들어가는 3차원 영상 캡쳐 스튜디오가 필요없게 되므로 3D 모델 제작에 드는 비용을 크게 줄이고, 사용되는 메모리를 180배 이상 줄일 수 있다. 특히 블렌더(Blender) 등의 복잡한 소프트웨어를 사용하던 기존 3D 그래픽 편집과 디자인을 간단한 인공지능 학습만으로 대체하여, 일반인도 손쉽게 원하는 스타일을 입히고 편집할 수 있다는 장점이 있다.
*레이 트레이싱 (ray-tracing): 광원, 물체의 형태, 질감에 따라 바뀌는 모든 광선의 궤적을 추적함으로써 실사에 가까운 이미지를 얻도록 하는 기술
한동현 박사과정이 제1 저자로 참여한 이번 연구는 지난 2월 18일부터 22일까지 전 세계 반도체 연구자들이 미국 샌프란시스코에 모여 개최한 국제고체회로설계학회(ISSCC)에서 발표됐다. (논문번호 2.7, 논문명: 메타브레인: A 133mW Real-time Hyper-realistic 3D NeRF Processor with 1D-2D Hybrid Neural Engines for Metaverse on Mobile Devices (저자: 한동현, 류준하, 김상엽, 김상진, 유회준))
유 교수팀은 인공지능을 통해 3D 렌더링을 구현할 때 발생하는 비효율적인 연산들을 발견하고 이를 줄이기 위해 사람의 시각적 인식 방식을 결합한 새로운 컨셉의 반도체를 개발했다. 사람은 사물을 기억할 때, 대략적인 윤곽에서 시작하여, 점점 그 형태를 구체화하는 과정과 바로 직전에 보았던 물체라면 이를 토대로 현재의 물체가 어떻게 생겼는지 바로 추측하는 인지능을 가지고 있다. 이러한 사람의 인지 과정을 모방하여, 새롭게 개발한 반도체는 저해상도 복셀을 통해 미리 사물의 대략적인 형태를 파악하고, 과거 렌더링했던 결과를 토대로, 현재 렌더링할 때 필요한 연산량을 최소화하는 연산 방식을 채택하였다.
유 교수팀이 개발한 메타브레인은 사람의 시각적 인식 과정을 모방한 하드웨어 아키텍처뿐만 아니라 최첨단 CMOS 칩을 함께 개발하여, 세계 최고의 성능을 달성하였다. 메타브레인은 인공지능 기반 3D 렌더링 기술에 최적화되어, 최대 100 FPS 이상의 렌더링 속도를 달성하였으며, 이는 기존 GPU보다 911배 빠른 속도다. 뿐만아니라, 1개 영상화면 처리 당 소모에너지를 나타내는 에너지효율 역시 GPU 대비 26,400배 높인 연구 결과로 VR/AR 헤드셋, 모바일 기기에서도 인공지능 기반 실시간 렌더링의 가능성을 열었다.
연구팀은 메타브레인의 활용 예시를 보여주고자, 스마트 3D 렌더링 응용시스템을 함께 개발하였으며, 사용자가 선호하는 스타일에 맞춰, 3D 모델의 스타일을 바꾸는 예제를 보여주었다. 인공지능에게 원하는 스타일의 이미지를 주고 재학습만 수행하면 되기 때문에, 복잡한 소프트웨어의 도움 없이도 손쉽게 3D 모델의 스타일을 손쉽게 바꿀 수 있다. 유 교수팀이 구현한 응용시스템의 예시 이외에도, 사용자의 얼굴을 본떠 만든 실제에 가까운 3D 아바타를 만들거나, 각종 구조물들의 3D 모델을 만들고 영화 제작 환경에 맞춰 날씨를 바꾸는 등 다양한 응용 예시가 가능할 것으로 기대된다.
연구팀은 메타브레인을 시작으로, 앞으로의 3D 그래픽스 분야 역시 인공지능으로 대체되기 시작할 것으로 기대한다며, 인공지능과 3D 그래픽스의 결합은 메타버스 실현을 위한 큰 기술적 혁신이라는 점을 밝혔다.
연구를 주도한 KAIST 전기및전자공학부 유회준 교수는 “현재 3D 그래픽스는 사람이 사물을 어떻게 보고 있는지가 아니라, 사물이 어떻게 생겼는지를 묘사하는데 집중하고 있다”라며 “이번 연구는 인공지능이 사람의 공간 인지 능력을 모방하여 사람이 사물을 인식하고 표현하는 방법을 차용함으로써 효율적인 3D 그래픽스를 가능케 한 연구”라고 본 연구의 의의를 밝혔다. 또한 “메타버스의 실현은 본 연구에서 보인 것처럼 인공지능 기술의 혁신과 인공지능 반도체의 혁신이 함께 이루어질 것”이라 미래를 전망하였다.
데모 동영상 유튜브 주소: https://www.youtube.com/watch?v=m-aqnZhALv0
2023.03.07
조회수 7556