-
박태형 박사과정, 권태혁 교수, 해저 점토질에서 불타는 얼음 생성원리 규명
우리 대학 건설및환경공학과 권태혁 교수 연구팀이 일명 불타는 얼음으로 불리는 천연가스 하이드레이트가 바다 속 점토질 퇴적토에서 다량으로 생성되는 원리를 규명했다.
이번 연구는 점토 광물이 하이드레이트 생성을 촉진한다는 것을 실험적으로 규명하고 점토질 퇴적층에서 하이드레이트의 존재에 대한 새로운 원리를 제시했다는 의의를 갖는다.
박태형 박사과정이 1저자로 참여한 이번 연구는 환경 분야 국제 학술지 ‘인바이러멘탈 사이언스&테크놀로지(Environmental Science & Technology)’ 2월 3일자 온라인 판에 게재됐다.
해저의 퇴적토나 영구동토층(2년 이상의 기간 동안 토양이 얼어있는 지대)에서 주로 발견되는 천연가스 하이드레이트는 메탄 등의 천연가스가 물 분자로 이뤄진 얼음과 비슷한 결정구조에 갇혀있는 고체물질이다. 흔히 불타는 얼음으로 불리는 이 물질은 막대한 매장량으로 인해 차세대 대체 에너지로 주목받고 있다.
점토질 퇴적토에서는 가스 하이드레이트 생성이 어렵다는 것이 일반적인 이론이다. 그러나 최근에는 전 세계적으로 해저 점토질 퇴적층에서 다량의 가스 하이드레이트가 발견되고 있어 기존 이론과 상반된 현상에 대한 원인을 규명하는 것이 과제로 남아 있다.
특히 점토광물 표면은 음전하를 띄고 있는데 이 전하들이 점토표면에 흡착된 물 분자에 상당한 전기적 힘을 가해 분극화시킨다. 또한 점토 표면의 음전하를 상쇄하기 위해 주변에 많은 양이온들이 존재한다.
따라서 보통 조건의 물 분자와 분극화된 조건의 물 분자들의 하이드레이트 결정 생성 양상을 비교하는 것이 연구의 핵심이다. 그러나 점토 주변에 자연적으로 존재하는 양이온들로 인해 실험 연구를 수행할 수 없었다.
연구팀은 기존 연구의 한계 극복을 위해 물에 전기장을 가해 점토 표면과 같이 물 분자들의 분극화를 구현한 뒤 물 분자들의 가스 하이드레이트 결정 생성 속도를 측정했다.
그 결과 점토 표면과 비슷한 크기의 전기장(10kV/m)을 물에 적용했을 때 가스 하이드레이트 결정핵 생성 속도가 약 6배 이상 빨라지는 것을 관찰했다. 이는 물 분자가 전기장에 의해 분극화되면 분자 간 수소 결합이 부분적으로 약해지고 내부에너지가 감소되기 때문인 것으로 밝혀졌다.
연구팀은 전기장이 하이드레이트 생성을 촉진함을 실험적으로 규명하는데 성공함으로써 점토광물의 존재가 하이드레이트 생성을 방해하는 것이 아니라 특정 조건에서는 오히려 하이드레이트 생성을 촉진함을 밝혔다.
권 교수는 “이번 연구를 통해 점토질 퇴적토에서 가스 하이드레이트가 많이 발견되는 이유에 대해 좀 더 이해할 수 있게 됐다”며 “멀지 않은 미래에 인류는 가스 하이드레이트를 에너지 자원으로 생산하고 소비할 수 있을 것으로 기대한다”고 말했다.
□ 그림 설명
그림1. 물 분자의 가스 하이드레이트 결정 생성 실험과 촉진 모식도
그림2. 가스 하이드레이트 생성 촉진(좌)과 억제(우) 반응
2018.03.05
조회수 9831
-
김필한 교수, 초고속 레이저 생체현미경 개발
〈 김 필 한 교수 〉
우리 대학 나노과학기술대학원 김필한 교수 연구팀이 개발한 초고속 생체현미경(IVM: IntraVital Microscopy)을 통해 미래 글로벌 바이오헬스 시장을 겨냥한 상용화에 나선다.
김 교수는 (재)의약바이오컨버젼스연구단, 서울대학교 김성훈 교수와의 공동 연구를 통해 개발한 최첨단 초고속 레이저스캐닝 3차원 생체현미경 기술을 토대로 아이빔테크놀로지(주)(IVIM Technology, Inc)를 창업했다.
이 생체현미경(IntraVital Microscopy : IVM)은 수많은 세포들 간 상호작용을 통해 나타나는 생명 현상을 탐구하고 여러 질환의 복잡한 발생 과정을 밝힘으로써 기초 의생명 연구의 차세대 첨단 영상장비가 될 것으로 기대된다.
연구팀의 기술은 살아있는 생체 내부조직을 구성하는 세포의 움직임을 직접 관찰할 수 있다. MRI나 CT 등 기존 생체영상 기술로는 불가능한 신체 다양한 장기 내부의 수많은 세포 하나하나를 구별하고 각 세포들의 움직임을 3차원으로 즉시 확인 가능하다.
이를 통해 다양한 질병이 몸속에서 발생하는 과정에 대해 자세한 세포단위 영상 정보를 제공할 수 있다.
특히 초고속 생체현미경 기술은 여러 색의 레이저 빔을 이용해 기존의 조직분석 기술로는 불가능했던 살아있는 생체 내부의 다양한 세포 및 주변 미세 환경과 단백질 등의 분자를 동시에 영상화할 수 있다.
이를 활용하면 생체 외부에서 수집한 데이터로 수립한 가정을 실제 살아있는 생체 내 환경에서 세포 단위로 검증하고 분석할 수 있다.
생체현미경은 바이오제약 분야에서도 주목받고 있다. 최근 바이오제약 산업은 단순 합성약물개발보다 생체의 미세 구성단위인 세포 수준에서 복합적으로 작용하는 면역치료제, 세포치료제, 유전자치료제, 항체치료제 등 새로운 개념의 바이오의약품 개발에 집중하고 있기 때문이다.
연구팀의 생체현미경은 동물실험에서 목표로 하는 세포, 단백질과 주입된 물질의 움직임을 동시에 3차원 동영상으로 관찰할 수 있다. 현재 (재)의약바이오컨버젼스연구단과 함께 차세대 신약개발을 위한 핵심기술로 발전시키기 위해 노력 중이다.
김 교수가 창업한 회사는 시장성과 성장가능성을 높게 평가받아 벤처기업으로서는 이례적으로 빠르게 창업 3개월 만에 LB인베스트먼트와 에이티넘인베스트먼트로부터 총 30억 원의 투자를 유치했다.
김 교수는 “이 기술은 다양한 생명 현상을 보다 정밀하게 종합 분석하기 위한 원천기술이다”며 “고령화 사회의 도래와 함께 급성장할 글로벌 바이오헬스 시장을 개척할 수 있는 차세대 의료, 의약 기술의 발전을 가속화할 핵심 기술이 될 것으로 확신한다”고 말했다.
김 교수 연구팀의 연구는 창업원의 엔드런(End-Run) 사업과 과학기술정보통신부가 추진하는 글로벌프론티어사업의 혁신형의약바이오컨버전스사업의 지원을 받아 수행됐다.
□ 사진 설명
사진1. 초고속 레이저 생체현미경 (IVM) 사진1
사진2. 초고속 레이저 생체현미경 (IVM) 사진2
사진3. 생체 내부 세포수준 변화의 IVM 영상 결과
사진4. 생체 내부 다양한 장기의 세포수준 IVM 영상 결과
2017.11.21
조회수 20129
-
공기를 이용한 가스하이드레이트 생산법 개발
그동안 전 세계적으로 석탄이나 석유를 능가하는 막대한 미래 에너지자원인 가스하이드레이트를 안정적으로 생산할 수 있는 방법을 찾으려고 심혈을 기울여 왔으나 뚜렷한 해답을 찾지 못하고 있다.
기존의 기술들이 지닌 한계성도 있지만, 해저 지층의 일부를 이루고 있는 가스하이드레이트 층의 붕괴로 인한 지반 침하 및 해저 생태계 파괴와 같은 엄청난 지구적 재앙과 피해를 극복할 획기적 기술이 아직 나오지 않고 있다.
우리 학교 생명화학공학과 이흔 교수팀은 해저에 묻혀 있는 가스하이드레이트 층을 거의 손상하지 않고 얼음 결정 형태로 이루어진 하이드레이트 구조에 갇혀있는 막대한 양의 천연가스를 회수하고, 대신 그 빈자리에 지상에서 주입된 공기나 공기와 혼합가스를 집어넣는 획기적인 개념을 수립했다.
연구팀은 다양한 조건의 가스하이드레이트 층에 해리와 맞교환이 동시에 일어나는 새로운 개념의 회수원리를 직접 적용해 자발적 천연가스 생산을 완벽히 입증했다.
이러한 공기 주입법은 이산화탄소 격리 저장과 해저 에너지 자원을 개발 생산하는 문제를 동시에 해결할 수 있는 새로운 개념의 원천기술이다.
자연현상 원리로 진행되는 천연가스 생산과정은 국내외에 특허 등록 및 출원됐으며 우리나라의 독보적인 기술로 KoFAST-2(Korea Field-Adapted Swapping Technology, 한국 필드 적응형 맞교환기술)라고 명명했다.
이에 앞서 이흔 교수팀이 개발해 국내외에 특허가 등록된 KoFAST-1은 이미 전 세계에 주목을 받고 있으며, 미국 메이저 석유가스회사인 코노코필립스(ConocoPhillips)가 2012년 4월 미국 알라스카 노스슬로프(North Slope)에 이산화탄소와 질소 혼합가스를 주입해 천연가스를 성공적으로 시험 생산함으로써 KoFAST 기술의 상업화 검증이 이루어졌다.
이번에 개발된 KoFAST-2에서는 대기 중의 공기를 직접 이용함으로써 생산 비용과 효율을 획기적으로 향상시켰다.
KoFAST-2는 KoFAST-1 보다 광범위한 천연 가스하이드레이트 필드에 적용 가능한 기술로, 기존 맞교환 기술의 잠재성을 최대한으로 끌어올린 신기술이다.
이흔 교수는 이번 연구에 대해 “셰일가스와 함께 차세대 에너지 양대 축인 가스하이드레이트 생산 원천기술을 국내에서 확보함으로써 전 세계 에너지자원 개발에 전환적 돌파구를 마련했다”며 “우리나라 동해에 부존된 막대한 양의 에너지자원 확보에도 절대적 기여가 가능할 것으로 기대된다”고 말했다.
이번 연구는 미래창조과학부와 한국연구재단이 추진하는 중견연구자지원사업과 산업통상자원부 가스하이드레이트사업으로 수행됐다.
<그림설명> 공기를 이용한 심해 가스하이드레이트 생산 모식도
2014.10.27
조회수 13238