-
암과 치매 등 맞춤형 신약 발굴 플랫폼 개발
우리 대학 화학과 박희성 교수 연구팀이 질병을 유발하는 다양한 바이오마커들에 맞추어 재단하듯이 디자인이 가능한 고리형 펩타이드*기반 신약 발굴 플랫폼 기술을 개발했다고 21일 밝혔다.
*고리형 펩타이드: 기본 선형으로 이루어진 펩타이드를 약리 효과를 높일수 있도록 고리형태의 구조로 만들어진 아미노산 중합체를 지칭함
고리형 펩타이드는 낮은 독성과 뛰어난 약리 활성으로 인해 많은 주목을 받아왔지만 자유롭게 디자인하고 제조하기가 어려워 실제 신약 개발에 활용되기 어려운 단점이 있었다. 박 교수팀은 암을 포함한 다양한 질병들에 대한 치료제 후보물질 발굴에 매우 유용하게 활용될 수 있도록 이러한 고리형 펩타이드의 맞춤형 디자인을 가능하게 하는 신약 발굴 플랫폼 기술을 개발하는데 성공하였다.
우리 몸의 세포에서 만들어지는 단백질들은 다양한 변형을 통해 기능과 활성이 조절되며 이러한 변형은 생체 내에서 세포 신호 전달 등 우리 몸의 정상적인 신진대사 활동을 조절하는 매우 중요한 역할을 한다.
하지만 유전적 또는 환경적 요인으로 인해 단백질 변형이 비정상적으로 일어나면 세포의 신호 전달, 대사 활동 등이 손상되어 암, 치매, 당뇨를 포함한 다양한 중증 질환을 유발한다.
기존에는 이러한 비정상적 단백질 변형을 제어할 수 있는 후보물질의 탐색이 용이하지 않아서 질병의 원인 규명 및 신약 개발 연구에 어려움이 있었다.
박 교수팀은 지난 2016년 다양한 비정상 변형 단백질을 합성할 수 있는 단백질 변형기술을 개발해 `사이언스(Science)' 지에 논문을 발표한 바 있다.
*논문명: A chemical biology route to site-specific authenic protein modifications
연구팀은 기존 연구를 더 발전시켜 질병의 원인이 되는 비정상적인 단백질 변형을 제어할 수 있는 고리형 펩타이드를 효과적으로 디자인하고 탐색하는 스크리닝 플랫폼 기술을 개발했다.
연구팀은 이 기술을 활용해 비정상적인 단백질에 결합하여 다양한 종류의 암을 유발하는 원인으로 알려진 종양 바이오마커인 HDAC8(histone deaceytylase 8)의 활성을 저해하는 고리형 펩타이드를 효과적으로 발굴할 수 있음을 증명했다.
박희성 교수는 "이 기술이 실용화될 경우 다양한 질병에 대한 혁신신약 후보물질 탐색이 실질적으로 가능해질 것으로 전망된다ˮ며 "향후 맞춤형 표적 항암제 및 뇌 신경 치료제 개발 등 글로벌 신약 연구에 새 패러다임을 열 것이다ˮ고 말했다.
이번 연구는 과학기술정보통신부(장관 이종호)가 창의성 기초연구를 촉진하는 개인연구사업 중견연구와 미래 과학기술을 선도하는 연구자를 발굴하는 삼성미래기술육성사업재단(이사장 김성근)의 지원을 받아 수행됐다.
화학과 강덕희 박사와 김도욱 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지인 `앙게반테 케미(Angewandte Chemie International Edition)' 2023년 1월 16일 자 온라인판으로 게재됐다.
*논문명: A Versatile Strategy for Screening Cutson-Designed Warhead-Armed Cyclic Peptide Inhibitors
2023.02.21
조회수 7268
-
약물 상호작용 예측하는 美 FDA 수식, 틀렸다
여러 약물을 동시에 복용하면, 약물간의 상호작용에 의해 약효가 달라질 수 있다. 우리 대학 수리과학과 김재경 교수 연구팀(기초과학연구원 수리 및 계산 과학 연구단 의생명 수학 그룹 CI)은 채정우‧김상겸 충남대약대 교수팀과 공동으로 미국 식품의약국(FDA)이 사용을 권장하는 약물 상호작용 예측 수식이 부정확했던 원인을 규명하고, 정확도를 2배 이상 높인 새로운 수식을 제시했다.
체내 흡수된 약물은 간을 비롯한 여러 장기의 효소에 의해 대사되어 체내에서 사라진다. 두 가지 이상의 약을 함께 복용할 경우, 하나의 약이 다른 약의 대사를 변화시켜 체외 배설을 촉진하거나 억제할 수 있다. 목표로 한 치료 효과를 내지 못하거나 부작용이 발생할 가능성이 있다. 이를 ‘약물 상호작용(DDI)’이라고 한다.
약물 상호작용에 따라 약물의 제거 속도를 정확하게 예측하는 것은 의약품 처방 및 신약 개발에 있어 매우 중요하다. 의료진은 약물을 복합처방할 때 의약품 사용설명서에 명시된 약물 상호작용 정보를 토대로 처방을 내린다. 신약 개발 과정에서도 약물 상호작용을 필수로 연구하여 표시하도록 되어 있다.
FDA는 약물 상호작용을 평가하고, 다약제 복용 과정의 부작용을 최소화하기 위한 가이던스(Guidance‧지침서)를 1997년 처음 발행했다(2020년 1월 개정). 신약 개발과정에서 신약 후보물질과 시판된 모든 약물의 상호작용을 모두 평가하는 것이 현실적으로 불가능하기 때문에 FDA는 가이던스에서 제시한 수식을 활용해 약물 상호작용을 간접적으로 평가하도록 권고하고 있다.
문제는 이 수식의 정확도가 떨어진다는 점이다. FDA가 제시하는 수식은 효소의 반응속도를 설명하는 ‘미카엘레스-멘텐 식’을 기반으로 한다. 이 수식은 약물 대사에 관여하는 체내 효소의 농도가 낮다는 것을 전재로 한다. 연구진은 실제 간에서 약물 대사에 관여하는 효소 농도는 예측에 사용돼온 값보다 1000배 이상 높은 것으로 확인함으로써 기존 FDA 수식이 부정확한 원인을 찾았다.
채정우 충남대약대 교수는 “연구자들은 과학적인 근거가 부족한 인위적인 수를 곱하는 식으로 FDA의 수식을 보정해서 사용해왔다”며 “과거의 과학자들이 당시의 정설이던 천동설을 기반으로 행성의 움직임을 설명하기 위해 복잡한 궤도를 도입했던 것과 유사한 상황”이라고 말했다.
연구진은 수학-약학 협력연구를 통해 약물 상호작용을 설명할 수 있는 새로운 수식을 개발했다. 의심 없이 사용돼 온 기존 식 대신 효소의 농도에 상관없이 정확하게 약물의 대사 속도를 예측할 수 있는 새로운 수식을 유도했다.
이후, 새로 쓰인 수식을 이용해 약물 상호작용을 예측하고, 실제 실험으로 측정된 값과 비교했다. 그 결과, 인위적인 보정 없이도 예측 정확도가 2배 이상 증가한 것으로 확인됐다. 기존 FDA 수식은 약물 상호작용을 2배의 오차범위 내에서 예측한 비율이 38%인데 반해, 수정된 식은 80%에 달했다.
생물학적 제제를 제외한 대부분의 의약품은 FDA 가이던스에 따라 약물의 상호작용을 평가한다. 이 결과는 약효와 부작용에 직결된다. 정확한 수식을 활용한 약물 상호작용 연구 및 약물 처방이 필요한 이유다.
김상겸 충남대약대 교수는 “약물 상호작용 예측 정확도의 개선은 신약개발의 성공률과 임상에서의 약물 효율을 높이는데 기여할 것”이라며 “임상약리학 분야 최고의 저널에 논문을 발표한 만큼, 이번 연구결과에 따라 FDA 가이던스가 수정될 것으로 기대한다”고 말했다.
김재경 교수는 “수학과 약학의 협력 연구 덕분에 당연히 정답이라고 생각했던 수식을 수정하고, 인류의 건강한 삶을 위한 단서를 찾을 수 있었다”며 “미국 FDA 가이던스에 ‘K-수식’이 들어가길 꿈꿔본다”고 말했다.
이번 연구결과는 2022년 12월 15일(한국시간) 임상약리학 분야 권위지인 ‘임상약리학 및 약물치료학(Clinical Pharmacology and Therapeutics, IF 7.051)’ 온라인 판에 실렸다.
※ 논문명: Beyond the Michaelis-Menten: Accurate Prediction of Drug Interactions through Cytochrome P450 3A4 Induction
2023.01.09
조회수 8116
-
낸드플래시 방식의 고신뢰성 인공 시냅스 소자 개발
우리 대학 신소재공학과 김경민 교수 연구팀이 낸드플래시(NAND Flash)의 전하 저장 방식을 활용하여 양산성이 높으며 높은 균일도를 갖는 고신뢰성 인공 시냅스 소자 개발에 성공했다고 6일 밝혔다.
최근 고성능의 인공지능 기술(Artificial Intelligence; AI) 구현을 위하여 인공 시냅스 소자를 통해 크로스바 어레이 구조에서 고밀도의 메모리 집적과 행렬 연산 가속을 동시에 구현하는 맞춤형 하드웨어를 개발하기 위한 노력이 계속되고 있다.
시냅스 소자의 후보 물질로 다양한 물질이 제시되었으나, 인공지능 가속기가 요구하는 다비트성 (Multi-bit), 보존성 (retention), 균일성 (uniformity), 내구성(Endurance) 등을 모두 만족하는 소자는 매우 드물었으며, 또한 제시되는 후보 물질들의 동작 방식도 기존 반도체 소자들과 매우 달라 반도체 소자로 활용함에 있어 양산성 및 수율 등에도 추가적인 검증이 필요하다는 한계가 있었다.
김경민 교수 연구팀은 낸드플래시의 전하 저장하는 방식을 차용한 2단자 구조의 인공 시냅스 소자를 개발했다. 기존에는 2단자 시냅스 구조가 안정적으로 동작하기 위해서는 전하의 저장 상태를 읽기 위해 산화막을 얇게 하여 저장된 전하의 보존성을 희생해야하는 한계가 있었다. 연구팀은 이번 연구에서 알루미늄 산화막, 나이오븀 산화막, 탄탈룸 산화막 등이 순차적으로 적층된 최적의 시냅스 소자 구조를 제안하였으며, 이를 통해 안정적인 다비트성과 보존성을 모두 확보하였다.
또한, 제안한 시냅스 소자가 갖는 자가정류(self-rectifying) 특성을 활용하는 병렬 컴퓨팅 방법을 제시하여 기존의 순차적 컴퓨팅 대비 필요한 에너지를 약 71% 절약할 수 있었다.
공동 제1 저자인 신소재공학과 김근영 석박통합과정은 “이번 연구는 이미 검증된 낸드플래시 메모리 구조를 인공 시냅스 소자에 적용하여 시냅스 소자의 양산성에 대한 우려를 불식한데 의미가 있다”며 “이처럼 향후 개발되는 인공지능 반도체에도 기존 반도체 소자의 고성능 특성과 물질의 새로운 특성을 접목하는 연구가 활발히 이뤄질 것으로 예상된다”고 밝혔다.
이러한 인공 시냅스 소자 기술은 인공지능 컴퓨팅을 저전력으로 구현하는 지능형 반도체 소자에 적용되어 에지 컴퓨팅 (Edge computing)과 같이 적은 에너지 소모가 필수적인 인공지능 기술에 다양하게 적용될 수 있을 것으로 기대된다.
이번 연구는 국제 학술지 ‘어드밴스드 사이언스(Advanced Science)’에 11월 28일 字 온라인 게재됐으며 한국연구재단, KAIST, SK Hynix의 지원을 받아 수행됐다. (논문명: Retention secured nonlinear and self-rectifying analog charge trap memristor for energy-efficient neuromorphic hardware)
2022.12.06
조회수 6751
-
전기차 노면 소음과 모터 소음을 동시에 차단하는 초경량 차음 메타패널 개발
우리 대학 기계공학과 전원주 교수 연구팀이 전기차의 저주파 대역 노면 소음과 고주파 대역 모터 소음을 동시에 차단할 수 있는 신개념 음향 메타물질 기반 초경량 차음 메타패널을 개발했다고 18일 밝혔다.
음향 메타물질은 자연계에 존재하지 않는 음향학적 유효 물성(음의 질량, 음의 강성 등)을 갖도록 인공적으로 설계된 구조물로, 음향 은폐, 고투과-고집속, 완벽 차음/흡음 등 기존 재료로는 구현이 어려운 성능을 달성할 수 있는 특징이 있다.
내연기관을 대신해 전기모터를 동력원으로 사용하는 전기차는 기존의 내연기관 자동차에서 시끄럽다고 느끼던 엔진 소음이 더는 발생하지 않는다. 하지만, 엔진 소음에 의한 마스킹 효과가 사라지면서 오히려 저주파 대역의 노면 소음이 상대적으로 더 크게 들리거나 엔진을 대신하는 전기모터의 고주파 소음이 또렷하고 거슬리게 들리기도 한다.
미래 모빌리티의 한 축을 담당하고 있는 전기차가 단순히 하나의 운송 수단을 넘어 이동 중 휴식이나 레저 및 업무 활동 등 탑승자에게 필요한 맞춤형 서비스를 제공하는 개념으로 나아가고 있다는 점에서 전기차의 실내 정숙성을 확보하는 것이 매우 중요하다. 특히, 전기차 노면 소음과 모터 소음은 각각 저주파와 고주파로 나뉜 서로 다른 주파수 대역에서 나타날 뿐만 아니라 각각의 대역도 광대역이기 때문에, 이와 같은 소음을 동시에 효과적으로 차단할 수 있는 기술의 개발과 적용이 필요한 시점이다.
현재 상용화된 전기차에서는 소음 차단을 위해 폴리에스터, 열가소성 고무, EVA(에틸렌초산비닐 공중합체) 시트, 금속판 등의 전통적인 흡·차음재가 사용되고 있다. 하지만, 전통적인 흡·차음재의 성능은 재료 자체의 열/점성 소산 특성이나 질량 법칙(투과 손실 6dB(데시벨) 증가를 위해 질량 밀도가 2배 높아져야 함)에 의존하기 때문에 높은 차음 성능을 위해서는 재료의 무게 증가가 불가피하며, 이는 곧 전기차 배터리의 에너지 효율을 감소시키는 원인이 되고 있다.
따라서, 우수한 차음 성능을 발휘하면서도 경량화를 동시에 달성하는 것이 전기차 적용 측면에서 매우 중요한데, 기존의 음향학적 재료나 법칙의 한계를 넘어서야 한다는 점에서 학문적으로도 도전적인 문제였다.
전원주 교수 연구팀은 기존 기술의 한계를 극복함으로써 높은 차음 성능으로 전기차 노면 소음과 모터 소음을 동시에 차단할 수 있는 초경량 차음 메타패널을 개발했다.
연구팀이 개발한 메타패널은 저주파 대역(노면 소음)에서는 음의 유효 질량을 가지면서 고주파 대역(모터 소음)에서는 음의 유효 강성을 갖도록 설계됐으며, 면적밀도 1.51kg/m2의 매우 가벼운 무게로 100~1,750Hz의 넓은 주파수 대역에서 투과 손실 16.7dB(에너지 기준 98%) 이상 차단할 수 있음을 이론적으로 예측했고 제작과 실험을 통해 그 성능을 검증하는 데 성공했다. 이는 동일 차음 성능을 갖는 기존 기술과 비교해 20배 이상 가벼운 무게의 초경량화를 달성했다고 볼 수 있다. (그림 1 참고)
다중 스케일 격자 구조와 멤브레인(얇은 막)으로 구성된 차음 메타패널은 분리된 두 광대역에서 높은 투과 손실을 동시에 구현할 수 있다는 음향학적 특징이 있어, 전기차에 적용될 때 저주파 노면 소음과 고주파 모터 소음을 효과적으로 차단해낼 수 있을 것으로 기대된다. 특히, 메타패널의 기하학적 인자를 쉽게 조절함으로써 원하는 주파수 대역에서 높은 차음 성능을 달성할 수 있으므로, 전기차뿐 아니라 도심 항공 모빌리티(Urban Aerial Mobility, UAM) 등 다양한 미래 모빌리티에 적합하게 주파수 선택적 설계가 가능하다는 장점과 더불어 제작이 쉽다는 응용 측면의 장점도 갖고 있다.
우리 대학 기계공학과 김지완 박사과정(제1 저자), 최은지 박사과정(제2 저자)이 참여한 이번 연구 결과는 기계공학 분야 최상위권 국제 학술지인 `메카니컬 시스템 앤 시그널 프로세싱(Mechanical Systems and Signal Processing) (IF: 8.934, JCR 상위 4/137(2.55%)'에 지난 8월 30일 字 온라인 게재됐다. (논문명: Lightweight soundproofing meta-panel for separate wide frequency bands)
한편 이번 연구는 한국연구재단의 중견연구자지원사업과 글로벌프론티어사업-파동에너지극한제어연구단의 지원을 받아 수행됐다.
2022.10.18
조회수 9798
-
장 조직의 항상성과 염증성 장염 회복의 핵심 효소 발견
우리 대학 생명과학과 김세윤, 양한슬 교수 공동연구팀이 `장 상피조직의 발생과 염증성 장염 회복과정의 핵심 효소발굴'에 성공했다고 6일 밝혔다.
생명과학과 박승은 박사, 이동은 박사과정 학생이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지인 `세포 및 분자 소화기학 및 간장학 (Cellular and Molecular Gastroenterology & Hepatology)'에 지난 8월 19일 字 온라인 게재됐다.
※ 논문명 : Gut Epithelial Inositol Polyphosphate Multikinase Alleviates Experimental Colitis via Governing Tuft Cell Homeostasis
※ 저자 정보 : 박승은 (한국과학기술원, 공동 제1 저자), 이동은 (한국과학기술원, 공동 제1 저자), 정재웅 (연세대학교 의과대학, 제2 저자), 이수형 (반더빌트 의과대학, 공동 저자), 박승주 (한국과학기술원, 공동 저자), 류재승 (한국과학기술원, 공동 저자), 오세규 (카이노젠, 공동 저자), 양한슬 (한국과학기술원, 공동 교신저자), 황성순 (연세대학교 의과대학, 공동 교신저자), 김세윤 (한국과학기술원, 공동 교신저자), 포함 총 10명
염증성 장 질환은 1980년대 중반까지만 해도 국내 발병률은 매우 낮은 질환이었으나 건강보험심사평가원 자료에 따르면 2011년 말 만성 염증성 장 질환인 크론병 환자가 1만3천여 명, 궤양성 대장염 환자가 2만9천여 명으로 집계됐으며 이후로도 환자 수가 빠르게 증가하고 있다.
궤양성 대장염과 크론병과 같은 염증성 장 질환(Inflammatory bowel disease)은 복통, 설사뿐 아니라 전신 무력감, 체중 감소, 장 천공 등의 합병증을 유발해 환자의 삶의 질을 크게 낮추는 심각한 질환이다.
이러한 염증성 장 질환은 아직 발병 메커니즘이 명확하게 규명되지 않았으며 서구화된 식습관과 함께 유전적 이상이나 면역학적 장애 또는 스트레스와 같은 환경적인 요인이 복합적으로 관여하는 것으로 여겨진다.
최근 염증성 장 질환의 환자군 일부에서 이노시톨 대사(체내 합성 또는 음식을 통하여 공급되는 이노시톨 영양소를 이노시톨 인산 물질들로 전환하는 세포 내 생화학적 반응)의 핵심 효소인 이노시톨 폴리인산 카이네이즈(Inositol polyphosphate multikinase, 이하 IPMK) 유전자에서 단일염기변이(single nucleotide polymorphism, SNP) 등이 보고됐다. IPMK 효소는 포유류의 이노시톨 대사에서 매우 중추적인 역할을 하는 단백질로서 세포의 성장과 대사뿐 아니라 면역 반응 및 중추 신경계 기억 조절 등의 다각적인 생물학적 기능을 수행하는 것으로 알려졌으나 소화기계에서의 생물학적 기능은 밝혀진 바가 전혀 없다.
이에 우리 대학 생명과학과 및 줄기세포 연구센터 김세윤 교수, 양한슬 교수 연구팀은 연세대학교 의과대학 황성순 교수 연구팀과의 공동연구를 통해 장 상피세포에서의 IPMK 효소의 역할규명연구를 다각적으로 수행했다.
연구팀은 먼저 장 상피세포에서 IPMK 유전자가 결손된 생쥐 연구모델을 제작했고 이를 분석한 결과에 따르면 정상적인 환경에서는 뚜렷한 장 조직의 구조와 기능에 있어 문제가 발생하지 않았다. 그러나 덱스트란 황산나트륨(DSS)을 투여해 대장염을 유발할 경우, IPMK 유전자가 결손된 생쥐로부터 대장염 회복반응이 현저하게 둔화됨을 관찰했고 이로부터 IPMK 효소가 손상된 대장 조직이 회복되는데 필수적인 인자임을 규명했다.
특히 연구팀은 IPMK 효소가 제거된 장 조직에서는 솔세포(tuft cell)의 발생과 기능에 심각한 장애가 발생함을 관찰했다. 솔세포란 소장과 대장뿐 아니라 흉선, 췌장 등에 존재하는 세포로서 표면에 미세 융모구조를 보이는 독특한 세포다. 장 조직의 전체 세포 중 불과 2~3% 이하로 존재하는 솔세포는 외부로부터의 기생충 감염에 대응하는 면역기능을 수행한다. 또한 솔세포로부터 합성돼 분비되는 아세틸콜린 신경전달물질은 장내 줄기세포 및 신경세포를 자극해 장 조직의 항상성 유지와 손상 복구에 중요한 기능을 담당하는 것으로 알려져 있다. 이러한 중요성에도 불구하고 솔세포의 발생과 기능을 조절하는 분자 타깃에 대한 이해는 극히 부족한 것으로 알려져 있다.
공동연구팀은 첨단 단일세포 RNA 유전자 배열 순서 분석기술(single cell RNA sequencing)을 통해 IPMK 효소가 제거된 장 상피조직에서 아세틸콜린 분비를 담당하는 솔세포군의 발생이 특이적으로 감소함을 규명했다. 또한 이러한 분석과정에서 생쥐의 대장에 존재하는 솔세포는 크게 면역기능을 담당하는 세포군, 아세틸콜린 분비 솔세포군 외에 유전자 발현 능력이 감소한 새로운 솔세포군이 있다는 사실을 발견해 학계에 최초 보고했다.
연구팀 관계자는 "발굴한 IPMK 효소에 기반한 아세틸콜린 분비성 솔세포의 발생 및 기능조절은 향후 장 상피조직의 항상성 유지의 학문적 이해와 더불어 염증성 장 질환의 진단 및 치료기술 개발 등에 적극적으로 활용될 것ˮ이라며 연구의 의의를 설명했다.
한편 이번 연구는 한국연구재단 중견연구자지원사업, 선도연구센터, 서경배과학재단, KAIST 줄기세포 연구센터 지원사업, KAIST 그랜드챌린지 30 (KC30) 사업 및 포스코청암펠로십의 지원을 받아 수행됐다.
2022.10.06
조회수 8988
-
누리호 발사 큐브위성 랑데브(RANDEV) 지상국 교신 성공
우리 대학 항공우주공학과 항공우주시스템 및 제어연구실(방효충 지도교수) 팀에서 개발한 큐브위성이 지난 6월 21일 누리호에서 발사한 성능 검증위성에서 7월 1일 오후 4시 38분에 우주로 성공적으로 전개되어 7월 2일 새벽 3시 42분에 KAIST 지상국과 첫 교신에 성공했다고 밝혔다.
랑데브(RANDEV)로 명명된 큐브위성은 가로 10cm, 세로 10cm, 높이 30cm 크기의 직육면체 형상으로 무게는 3.2kg인 초소형 인공위성으로 연구실의 대학원생들이 주도해 개발했다.
이번 큐브위성의 주요 임무는 소형 지구관측 카메라를 활용해 지상 촬영을 수행하고 촬영된 영상을 지상국으로 전송하는 것이다. 또한 인공위성의 3축 자세제어 기능을 검증하고 지상국과 UHF/VHF(극초단파/초단파) 주파수를 활용한 통신 및 S 밴드의 고속 영상 전송을 포함한 큐브위성 시스템의 임무와 본체의 정상적인 운용을 검증하기 위한 목적이다.
이번 성과는 큐브위성의 임무 설계, 탑재 S/W, 지상국등 주요 임무를 학생 연구진들이 직접 참여함으로써 우주기술 역량을 확보하고 향후 큐브위성을 실용적인 임무 목적으로 활용할 수 있는 계기를 마련할 수 있을 것으로 기대된다.
본 연구팀은 2017년과 2019년 각각 2차례에 걸쳐 큐브위성을 발사하였고 특히 2017년 발사한 LINK 큐브위성은 지상국과의 성공적인 교신과 운용 성과를 통해 큐브위성 경연대회 대상을 수상한 경험이 있다.
KAIST는 대한민국 인공위성 개발 역사의 시작이다. KAIST 인공위성연구소가 대한민국 첫 번째 국적 위성인 우리별 1호를 개발했기 때문이다. 국내 우주 연구를 주도하고 있는 KAIST는 올해 8월 우리별 1호 발사 30주년을 앞두고 있으며 이번 누리호 발사체를 이용한 큐브위성의 성공적인 전개와 교신을 통해 KAIST가 국내 우주 연구와 교육을 선도하고 나아가 글로벌 우주 교육 기관으로서 위상을 확립할 것으로 예상된다.
연구팀은 당분간 큐브위성 시스템의 안정적인 운용을 위성 본체 데이터를 통해 확인하는 절차를 밟을 예정이며 위성체가 안정화된 이후 탑재 카메라를 이용한 영상 촬영 및 지상국 전송 임무를 수행할 예정이다.
이번 누리호를 통해 발사된 성능 검증위성을 통해 4기 큐브위성이 우주로 전개되는데 다수의 큐브위성을 동시에 궤도에 투입하는 기술을 확보하는 새로운 시도로서 국내 우주개발의 중요 성과로 여겨질 수 있다.
2022.07.02
조회수 8635
-
위치 영상화가 가능한 약물 전달체 기술 개발
우리 대학 생명화학공학과 박현규 교수 연구팀이 중앙대 화학과 박태정 교수, 가천대 바이오나노학과 김문일 교수와의 공동 연구를 통해 중금속 흡착 단백질을 이용한 금속 나노입자 고효율 생합성 기술을 개발하고, 이를 이용해 위치 영상화가 가능한 약물 전달체를 개발했다고 7일 밝혔다.
우리 대학 생명화학공학과 졸업생 김문일 박사(現 가천대 교수), 중앙대 박찬영 박사가 공동 제1 저자로 참여한 이번 연구는 미국화학회가 발행하는 국제 학술지 ‘ACS 어플라이드 머터리얼즈 앤 인터페이시스(Applied Materials and Interfaces)’ 2021년도 13호 표지 논문으로 선정됐다. (논문명: In situ biosynthesis of a metal nanoparticle encapsulated in alginate gel for imageable drug-delivery system)
현재 금속 나노입자의 합성에 주로 사용되고 있는 물리화학적 방법은 독성이 있는 환원제, 계면활성제 및 유기 용매의 이용이 필요해 약물전달체 등 생체 내에 사용하기 어려운 단점을 가지고 있다. 이를 극복하기 위해 환원력이 우수한 단백질을 미생물 내에 과발현해 금속 나노입자를 생합성하는 기술이 개발됐으나, 이 방법은 미생물이 받아들일 수 있는 금속 전구체의 종류 및 농도가 제한된다는 단점이 있다.
연구팀은 이러한 현행 기술의 한계를 극복하기 위해, 대장균에 중금속 흡착 단백질을 발현하는 플라스미드를 형질 전환해 단백질을 과발현한 후 이를 알지네이트 젤에 포집해 그 활성을 안정화하는 기술을 개발했다. 중금속 흡착 단백질을 포집한 알지네이트 젤은 다양한 종류의 금속 이온을 30분 이내로 빠르게 고농도로 흡착 및 환원시켜 금, 은, 자성 및 양자점 나노입자 등 다양한 종류의 금속 나노입자를 알지네이트 젤 내부에 고농도로 생합성하는 데 효과적으로 활용됐다.
특히, 연구팀은 항암제 등 약물과 중금속 흡착 단백질을 알지네이트 젤에 동시에 포집한 후 높은 형광을 나타내는 양자점 나노입자를 젤 내부에 합성함으로써 형광을 통해 위치의 추적 및 영상화가 가능하고 약물의 서방형 방출이 가능한 다기능 약물 전달체를 개발하는 데 성공했다.
☞ 서방형(sustained release): 약물 등이 장시간에 걸쳐 서서히 방출되는 형태
연구팀은 항암제와 녹색 형광을 보이는 카드뮴 셀레나이드 (CdSe) 및 파란색 형광을 보이는 유로피움 셀레나이드 (EuSe)로 이루어진 양자점을 동시에 포집한 약물 전달체를 마우스에 경구로 주입한 후, 이 약물 전달체의 위치를 생체 내에서 추적 및 영상화할 수 있음을 확인했다.
박현규 교수는 “이번 연구에서 개발된 중금속 흡착 단백질을 포집한 알지네이트 젤은 독성 물질 없이, 고속·고농도로 다양한 금속 나노입자를 생합성할 수 있고 동시에 약물의 서방형 방출이 가능하기 때문에, 향후 위치 추적이 가능한 약물 전달체 등에 응용될 수 있다”고 이번 연구의 의의를 설명했다.
한편 이번 연구는 한국연구재단의 지원을 받아 중견연구자지원사업의 일환으로 수행됐다.
2021.09.07
조회수 14925
-
모트 전이 반도체로 진성 난수 생성기 개발
우리 대학 신소재공학과 김경민 교수 연구팀이 모트 전이 반도체의 확률적 거동을 이용한 진성 난수(True Random Number) 생성기 개발에 성공했다고 18일 밝혔다.
전자기기들이 초연결되는 메타버스 시대에는 전자기기 간에 대량의 데이터가 실시간으로 오가게 되는데, 이때 더욱 고도화된 데이터의 보안과 암호화 기술이 뒷받침돼야 한다. 현재 대부분의 난수는 소프트웨어로 생성되고 있는데, 이렇게 생성된 일반적인 난수는 소프트웨어의 해독을 통해 쉽게 예측할 수 있고 이는 데이터 보안 및 개인 정보 침해에 매우 큰 위협이 될 수 있다.
이에 반해 진성 난수는 자연의 무작위적인 물리적 현상으로부터 얻어지는 인간이 예측할 수 없는 난수로 이를 얻는 것은 궁극의 보안 기술을 구현하기 위해 필수적이다.
김경민 교수 연구팀은 진성 난수를 추출하기 위해 모트 전이 소재에 주목했다. 모트 전이 소재는 특정 온도에서 전기전도도가 부도체에서 도체로 전이하는 소재로, 이 소재에 전류를 흘려주어 가열하면 부도체 상태와 도체 상태가 주기적으로 변하는 상태의 진동 현상을 관찰할 수 있음이 잘 알려져 있었다. 연구팀은 이 과정에서 주기적으로 소재의 가열과 냉각이 반복될 때 열의 생성과 발산이 예측 불가능함을 이론적으로 입증했다.
연구팀은 이와 같은 모트 전이 소재에서의 예측 불가능한 특성을 진성 난수로 변환해주는 프로토타입의 진성 난수 생성기를 설계 및 제작하여 진성 난수를 성공적으로 수집했다.
공동 제1 저자인 신소재공학과 김광민 석사과정과 인재현 박사과정은 "모트 전이 반도체를 기반으로 하는 진성 난수 생성기는 25 마이크로초(μs) 마다 5.22 나노줄(nJ)의 에너지로 1개의 난수를 생성할 수 있는데 이는 기존 기술에 대비 최소 2.5배 이상 빠르고, 1,800분의 1 수준의 에너지로 저전력 동작이 가능하다ˮ며 "이는 저항 변화 메모리의 셀렉터 등 제한된 분야에서만 사용되던 모트 전이 소재를 진성 난수 생성기에 적합하다는 것을 입증한 결과로 새로운 하드웨어 보안용 소재 개발 분야를 개척한 의의가 있다ˮ 라고 말했다.
이러한 진성 난수 생성기는 반도체 칩의 형태로 제작해 기존 전자기기와 호환할 수 있으며 휴대전화 등 전자기기의 보안을 위한 암호화 하드웨어로 사용할 수 있을 것으로 기대된다.
이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 지난 5월 18일 字에 게재됐으며 산업통상자원부, 한국반도체연구조합, KAIST의 지원을 받아 수행됐다. (논문명 : Self-clocking fast and variation tolerant true random number generator based on a stochastic mott memristor)
2021.08.18
조회수 12970
-
자연계 효소 원리를 이용한 신개념 산업용 촉매 개발
우리 대학 생명화학공학과 최민기 교수 연구팀이 자연계 효소와 같이 원하는 반응물만 선택적으로 전환할 수 있는 신개념의 고성능 산업 촉매를 개발했다고 9일 밝혔다.
촉매는 기초 유분 생산에서부터 다양한 화학 제품 제조까지 대부분의 석유화학 공정에서 사용되는 물질로 공정의 경제성과 친환경성을 높이기 위해서 원하는 생성물만 만들어지는 높은 선택성을 갖는 촉매 개발이 필수적이다.
지구상에 존재하는 촉매 중 가장 높은 선택성을 보이는 촉매는 효소다. 효소는 천연 고분자인 단백질이 반응이 일어나는 활성점을 3차원적으로 둘러싸고 있는 구조를 갖는데, 단백질의 구조 및 활성점과의 상호작용에 따라 특정 반응물만 선택적으로 접근할 수 있도록 조절해 높은 선택성을 갖는다. 연구팀은 이번 연구에서 효소의 단백질과 유사한 고분자를 이용해 금속 활성점과의 상호작용을 조절한 새로운 개념의 촉매 설계 방법을 제시했다.
고분자는 일정 단위체의 반복적인 화학 결합을 통해 만들어지는 높은 분자량의 거대분자이며 합성에 사용한 단위체에 따라 고분자의 작용기를 쉽게 조절할 수 있다. 연구팀은 금속과 상호작용을 할 수 있는 작용기를 포함한 고분자를 합성하고 팔라듐 금속 입자를 포함한 촉매를 만들었다. 금속과 강하게 상호작용을 하는 고분자는 효소와 같이 금속 주위를 고분자가 3차원적으로 둘러싸는 형태를 보이는 한편 약하게 상호작용하는 고분자는 금속을 둘러싸지 못하고 금속 표면이 노출된 형태가 됐다.
연구팀은 이렇게 합성된 촉매를 이용해 석유화학의 에틸렌 생산 공정에서 매우 중요한 아세틸렌 부분 수소화 반응에 적용했다. 에틸렌은 플라스틱, 비닐, 접착제 등 다양한 제품을 만드는 데 이용하는 기본 핵심 원료이며 현재 우리나라에서는 주로 나프타를 분해하여 생산한다.
나프타분해시설에서 생산되는 에틸렌에는 불순물인 미량의 아세틸렌이 함께 포함돼 있는데, 이 아세틸렌이 화학 제품을 만드는 데 사용되는 촉매에 치명적으로 작용하기 때문에 수소화 반응을 통해 제거해 주는 공정이 필수적이다. 이 공정에서 핵심은 99% 이상의 에틸렌은 소모하지 않으면서 1% 미만의 아세틸렌만 선택적으로 제거하는 것이다.
연구진이 개발한 신규 촉매를 이 공정에 적용한 결과, 강하게 상호작용해 3차원 구조를 형성한 촉매는 고분자가 아세틸렌에만 접근해 높은 선택도를 보였다. 하지만 약한 상호작용으로 인해 고분자가 금속 표면을 덮지 못한 촉매에서는 아세틸렌과 에틸렌에 모두 접근해 낮은 선택도를 보였다.
또한 강하게 상호작용을 하는 고분자일수록 비활성화를 일으키는 탄소 침적물인 코크의 생성을 차단하고 금속 입자의 뭉침 현상을 억제해 장기간 반응에서도 높은 활성과 선택도를 유지했다.
연구를 주도한 최민기 교수는 "자연계 효소의 원리를 모방해 고분자와 금속 사이의 상호작용을 조절하고 원하는 반응물만 선택적으로 전환할 수 있으면서도 매우 우수한 안정성을 가지는 촉매 설계 방법은 세계적으로 보고된 바가 없던 새로운 개념이다ˮ라며, "향후 높은 선택도가 필요한 다양한 화학반응에 폭넓게 응용 및 적용될 수 있을 것이다ˮ라고 말했다.
우리 대학 생명화학공학과 현경림 박사과정 학생이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `앙게반테 케미(Angewandte chemi)'에 지난 5월 17일 字 온라인판에 게재됐다. (논문명: Tailoring a Dynamic Metal-Polymer Interaction to Improve Catalyst Selectivity and Longevity in Hydrogenation),
한편 이번 연구는 한국연구재단 중견연구자 지원사업과 LG화학의 지원을 받아 수행됐다.
2021.06.09
조회수 73202
-
반도체 다층 소자의 개별 층 두께를 옹스트롬 정확도로 비파괴 검사하는 기술 개발
우리 대학 기계공학과 김정원 교수 연구팀이 삼차원 낸드플래시 메모리(이하 3D-NAND)의 비파괴적인 검사를 위해 광학 측정법과 머신러닝을 사용한 다층 두께 측정기술을 개발했다. 이 기술은 200층 이상의 초고밀도 3D-NAND 소자 공정 과정에서 전수검사 방법으로 사용돼 공정의 효율을 극대화할 수 있을 것으로 기대된다.
3D-NAND 메모리는 수백층의 메모리 셀이 적층되어 있는 메모리 반도체로, 기존의 평면형 플래시 메모리와 비교하여 저장용량과 에너지 효율이 매우 우수하여 개인용 USB부터 서버 시스템까지 다양하게 사용되고 있다.
기존에는 수직으로 적층된 반도체 셀들의 두께를 측정하기 위하여 전자현미경을 사용하였다. 하지만 전자현미경을 사용한 방법은 샘플의 단면을 이미징하기 위하여 샘플을 절단해야 하고 비용도 많이 들기 때문에, 전수검사로서는 적합하지 않은 문제가 있었다.
연구팀은 반도체 다층 구조가 초고속 광학 시스템에 자주 사용되는 유전체 거울의 구조와 유사하다는 점에 착안하여, 유전체 거울의 분석에 활용되는 광학 스펙트럼 측정법을 반도체 다층 구조에도 적용했다.
연구팀은 엘립소미터(ellipsometer)와 스펙트로포토미터(spectrophotometer)를 이용한 반도체 다층 샘플의 스펙트럼 측정과 머신러닝 알고리즘을 활용하여 200층이 넘는 반도체 물질의 각 층 두께를 1.6 옹스트롬 (1Å = 1미터의 100억 분의 1)의 평균제곱근오차로 예측할 수 있는 방법을 개발했다. 이 기술은 삼차원 반도체 소자의 검수 공정, 적층 공정, 그리고 식각 공정의 정확도를 크게 향상시킬 수 있을 것으로 기대된다.
연구팀은 또한 시뮬레이션 스펙트럼 데이터를 생성해 개별 층의 두께 불량을 검출할 수 있는 머신러닝 학습법도 개발했다. 그 결과 반도체 물질 적층 시 목표로 설정한 두께보다 약 50Å만큼 얇게 제작된 샘플들을 정상 범주의 샘플들로부터 성공적으로 분리할 수 있었다. 연구팀이 개발한 불량샘플 검출법은 시뮬레이션 데이터를 활용하기 때문에 큰 비용이 들지 않으며, 공정의 초기에 발견될 수 있는 불량 샘플들을 효과적으로 검출할 수 있을 것으로 기대된다.
최근 글로벌 IT 기업들의 서버 시스템에 대한 수요가 늘어나고 높은 저장용량을 가진 스마트 기기들이 개발됨에 따라, 초고밀도, 초고효율을 갖는 3D-NAND 메모리가 반도체 시장에서 각광받고 있다. 이번 연구 결과는 다양한 삼차원 반도체 소자들의 비파괴적인 검수를 위해 활용될 수 있다.
김 교수는 “비파괴적인 광학 측정법과 머신러닝을 결합한 방법은 다양한 반도체 검수 공정에도 적용할 수 있다”고 밝히며, “다양한 반도체 소자들의 형상이나 공정 조건 모니터링에도 광학측정법과 머신러닝을 결합한 접근방식을 활용할 것”이라고 말했다.
기계공학과 곽현수 박사과정 학생이 제1저자로 참여하고 삼성전자 메모리 계측기술팀과의 산학협력연구로 수행된 이번 연구는 국제학술지 ‘라이트: 어드밴스드 매뉴팩처링(Light: Advanced Manufacturing)’ 창간호에 1월 12일 게재됐다. (논문명: Non-destructive thickness characterisation of 3D multilayer semiconductor devices using optical spectral measurements and machine learning)
이번 연구는 삼성전자 산학연구과제의 지원을 받아 수행됐다.
2021.01.13
조회수 65954
-
이상엽 특훈교수, 김현욱 교수, 인공지능 이용한 효소기능 예측 기술 개발
우리 대학 생명화학공학과 이상엽 특훈교수와 김현욱 교수의 초세대 협업연구실 공동연구팀이 딥러닝(deep learning) 기술을 이용해 효소의 기능을 신속하고 정확하게 예측할 수 있는 컴퓨터 방법론 DeepEC를 개발했다.
공동연구팀의 류재용 박사가 1 저자로 참여한 이번 연구결과는 국제학술지 ‘미국 국립과학원 회보(PNAS)’ 6월 20일 자 온라인판에 게재됐다. (논문명 : Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers)
효소는 세포 내의 생화학반응들을 촉진하는 단백질 촉매로 이들의 기능을 정확히 이해하는 것은 세포의 대사(metabolism) 과정을 이해하는 데에 매우 중요하다.
특히 효소들은 다양한 질병 발생 원리 및 산업 생명공학과 밀접한 연관이 있어 방대한 게놈 정보에서 효소들의 기능을 빠르고 정확하게 예측하는 기술은 응용기술 측면에서도 중요하다.
효소의 기능을 표기하는 시스템 중 대표적인 것이 EC 번호(enzyme commission number)이다. EC 번호는 ‘EC 3.4.11.4’처럼 효소가 매개하는 생화학반응들의 종류에 따라 총 4개의 숫자로 구성돼 있다.
중요한 것은 특정 효소에 주어진 EC 번호를 통해서 해당 효소가 어떠한 종류의 생화학반응을 매개하는지 알 수 있다는 것이다. 따라서 게놈으로부터 얻을 수 있는 효소 단백질 서열의 EC 번호를 빠르고 정확하게 예측할 수 있는 기술은 효소 및 대사 관련 문제를 해결하는 데 중요한 역할을 한다.
작년까지 여러 해에 걸쳐 EC 번호를 예측해주는 컴퓨터 방법론들이 최소 10개 이상 개발됐다. 그러나 이들 모두 예측 속도, 예측 정확성 및 예측 가능 범위 측면에서 발전 필요성이 있었다. 특히 현대 생명과학 및 생명공학에서 이뤄지는 연구의 속도와 규모를 고려했을 때 이러한 방법론의 성능은 충분하지 않았다.
공동연구팀은 1,388,606개의 단백질 서열과 이들에게 신뢰성 있게 부여된 EC 번호를 담고 있는 바이오 빅데이터에 딥러닝 기술을 적용해 EC 번호를 빠르고 정확하게 예측할 수 있는 DeepEC를 개발했다.
DeepEC는 주어진 단백질 서열의 EC 번호를 예측하기 위해서 3개의 합성곱 신경망(Convolutional neural network)을 주요 예측기술로 사용하며, 합성곱 신경망으로 EC 번호를 예측하지 못했을 경우 서열정렬(sequence alignment)을 통해서 EC 번호를 예측한다.
연구팀은 더 나아가 단백질 서열의 도메인(domain)과 기질 결합 부위 잔기(binding site residue)에 변이를 인위적으로 주었을 때, DeepEC가 가장 민감하게 해당 변이의 영향을 감지하는 것을 확인했다.
김현욱 교수는 “DeepEC의 성능을 평가하기 위해서 이전에 발표된 5개의 대표적인 EC 번호 예측 방법론과 비교해보니 DeepEC가 가장 빠르고 정확하게 주어진 단백질의 EC 번호를 예측하는 것으로 나타났다”라며 “효소 기능 연구에 크게 이바지할 것으로 기대한다”라고 말했다.
이상엽 특훈교수는 “이번에 개발한 DeepEC를 통해서 지속해서 재생되는 게놈 및 메타 게놈에 존재하는 방대한 효소 단백질 서열의 기능을 보다 효율적이고 정확하게 알아내는 것이 가능해졌다”라고 말했다.
이번 연구는 과학기술정보통신부가 지원하는 기후변화대응기술개발사업의 바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제 및 바이오·의료기술 개발 Korea Bio Grand Challenge 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 인공지능 기반의 DeepEC를 이용한 효소 기능 EC 번호 예측
2019.07.03
조회수 22045
-
김용대 교수, 대테러 방지용 안티 드론 기술 개발
〈 (오른쪽 위부터 시계방향으로) 김용대 교수, 권유진, 노주환, 신호철, 김도현 박사과정 〉
우리 대학 전기및전자공학부 김용대 교수 연구팀이 위조 GPS 신호를 이용해 드론의 위치를 속이는 방식으로 드론을 납치할 수 있는 안티 드론 기술을 개발했다.
이 기술은 긴급 상황에서 급격한 방향 변화 없이도 드론이 원하는 방향으로 안전하게 움직이도록 유도할 수 있어 테러 등의 목적을 가진 위험한 드론에 효과적으로 대응할 수 있다.
이번 연구성과는 ‘ACM 트랜잭션 온 프라이버시 & 시큐리티(ACM Transactions on Privacy and Security, TOPS)’ 저널 4월 9일 자에 게재됐다. (논문명 : Tractor Beam: Safe-hijacking of Consumer Drones with Adaptive GPS Spoofing)
드론 산업이 발전하며 수색, 구조, 방재 및 재해 대응, 택배와 정찰 등 다양한 영역에서 드론이 활용되면서 한편으로는 사유지와 주요시설 무단 침입, 안전과 보안 위협, 사생활 침해 등의 우려 또한 커지고 있다.
이에 따라 드론 침투를 탐지하고 대응하는 안티 드론 산업 급성장하고 있다. 현재 공항 등 주요시설에 구축되고 있는 안티 드론 시스템들은 방해 전파나 고출력 레이저를 쏘거나 그물로 포획해 드론을 무력화시키는 방식이다.
그러나 테러를 목적으로 폭발물이나 무기를 장착한 드론은 사람들과 주요시설로부터 즉시 안전거리를 확보한 뒤 무력화해야 피해가 최소화될 수 있다. 예를 들어 공항에서 무단 침입한 드론을 단순 방해 전파로 대응하면 드론을 못 움직이게 할 수는 있지만 한 자리에 계속 떠 있게 돼 비행기의 이착륙이 긴 시간 중단될 수 있다.
이렇듯 위험한 드론을 발견하는 즉시 안전하게 원하는 방향으로 격리할 수 있는 새로운 안티 드론 기술의 필요성이 커지고 있다.
김 교수 연구팀은 위조 GPS 신호를 이용해 드론의 위치를 속이는 방식으로 드론을 납치할 수 있는 안티 드론 기술을 개발했다.
위조 GPS 신호를 통해 드론이 자신의 위치를 착각하게 만들어서 정해진 위치나 경로로부터 드론을 이탈시키는 공격 기법은 기존 연구를 통해 알려진 바 있다. 그러나 이러한 공격 기법은 GPS 안전모드가 활성화되면 적용할 수 없다는 문제가 있다.
GPS 안전모드는 드론이 위조 GPS 신호로 인해 신호가 끊기거나 위치 정확도가 낮아지면 드론의 안전을 보장하기 위해 발동되는 일종의 비상 모드로 모델이나 제조사에 따라 제각각이기 때문이다.
연구팀은 디제이아이(DJI), 패롯(Parrot) 등 주요 드론 제조업체의 드론 GPS 안전모드를 분석하고 이를 기준으로 드론의 분류 체계를 만들어 각 드론 유형에 따른 드론 납치 기법을 설계했다.
이 분류 체계는 거의 모든 형태의 드론 GPS 안전모드를 다루고 있어 모델, 제조사와 관계없이 GPS를 사용하고 있는 드론이라면 보편적으로 적용할 수 있다. 연구팀은 실제 총 4종의 드론에 개발한 기법을 적용했고, 그 결과 작은 오차범위 안에서 의도한 납치 방향으로 드론을 안전하게 유도할 수 있음을 입증했다.
김 교수는 “기존 컨슈머 드론들은 GPS 안전모드를 갖추고 있어 위조 GPS 공격으로부터 안전한 것처럼 보이나 초보적인 방법으로 GPS 오류를 감지하고 있어 대부분 우회가 가능하다”라며 “특히 드론 불법 비행으로 발생하는 항공업계와 공항의 피해를 줄이는데 기여할 수 있을 것이다”라고 말했다.
연구팀은 기술이전을 통해 기존 안티 드론 솔루션에 연구팀이 개발한 기술을 적용하는 방식으로 상용화에 나설 계획이다.
이번 연구는 방위사업청의 광운대학교 초소형무인기 전술신호처리 특화연구실과 국방과학연구소의 지원을 통해 수행됐다.
□ 그림 설명
그림1. PC로 부터 위조 GPS 전파를 생성하여 지향성 안테나를 이용해 드론에 신호를 주입하는 실험환경
2019.06.05
조회수 17126