< (왼쪽부터) 우리 대학 이상완 교수, 상명대 이지항 교수 >
최근 인공지능 기술이 인식, 생성, 제어, 대화와 같은 실제 문제를 빠르게 해결해 나감에 따라 인간의 역할과 일자리 생태계가 변화하고 있다. 인공지능의 발전 속도를 본다면 가까운 미래에는 인공지능이 인간보다 똑똑해질 수도 있다. 이와 반대로 인공지능을 이용해 인간의 사고력 자체를 향상시킬 순 없을까?
우리 대학 뇌인지과학과 이상완 교수(신경과학-인공지능 융합연구센터장) 연구팀이 인간의 빠른 추론 능력을 유도해 인과관계의 학습 효율을 향상할 수 있는 뇌 기반 인공지능 기술 개발에 성공했다고 31일 밝혔다.
우리는 일상생활에서 다양한 사건을 경험하며 세상의 다양한 요소에 대한 인과관계를 학습해 나가고, 공부할 때는 지식 조각들을 조합하며 통합적인 지식을 습득한다. 이러한 과정은 점진적으로 추론하는 베이시안 모델 또는 특정한 상황에서 한 번의 경험으로부터 빠르게 결론을 도출하는 고속추론 또는 원샷 추론이 있다.
연구팀은 이전 연구에서 인간의 원샷 추론 과정을 모델링하고 전두엽과 해마가 이러한 과정에 관여하고 있음을 규명한 바 있다. 이번 연구에서 이 모델에 인간의 원샷 추론 과정을 특정한 상태로 유도하기 위해 알파고에 사용된 바 있는 심층 강화학습 기술을 접목했다. 이는 강화학습 알고리즘이 인간의 원샷 추론 과정을 수없이 시뮬레이션하면서 전두엽과 해마가 가장 효율적으로 학습할 수 있는 최적의 조건을 탐색하는 과정으로 볼 수 있다.
연구팀은 126명의 인간 피험자를 대상으로 한 인과관계 학습 및 추론 실험에서 제안 기술을 사용해 학습했을 때 단순 반복 학습 대비 최대 약 40%까지 학습 효율이 향상됨을 보였다. 더 나아가 오랜 시간에 걸쳐 신중하게 학습하거나 몇 가지 단서만을 조합해 빠르게 결론을 도출하는 것 같은 개인별 학습 성향을 고려한 맞춤형 설계가 가능함을 보였다.
인간의 사고체계에 대한 뇌과학적인 이해를 바탕으로 원샷 추론과 같은 인간의 잠재적 능력을 극대화하는 이 기술은 차세대 인공지능의 중요한 도전과제 중 하나이며, 뇌 기반 인공지능 기술은 인간과 유사한 사고체계를 바탕으로 가치판단을 할 수 있으므로 장기적으로 인간과 인공지능이 협업하는 분야에서 인공지능의 신뢰성 및 윤리성을 높이는 데도 기여할 수 있을 것으로 기대된다.
< 개발 기술 개념도 >
개발 기술은 스마트 교육, 게임 콘텐츠 개발, 추론 능력 측정, 인지훈련 등 인간의 추론 학습과 관련된 모든 분야에 적용될 수 있다. 기존 기술은 단편적인 기억회상, 특정 인지기능, 정답률 증가와 같은 행동적 측면에 집중해 왔다면, 이번 기술은 인공지능을 이용해 과거의 경험을 일반화시키는 인간의 사고체계 자체를 높이는 가능성을 확인한 최초의 사례로 평가된다.
KAIST에서 연구를 주도한 제1 저자 이지항 교수(현 상명대 서울캠퍼스 조교수)는 "이번 연구를 통해 인간의 인지기능을 인공지능에 이식하여 뇌 기반 인공지능을 실현하는 사례를 보였고, 이를 통해 인간의 고위 수준 인지를 적절한 방향으로 유도할 수 있는 새로운 인간-인공지능 상호작용 패러다임을 제시했다ˮ라고 강조하며, 추후 "인간중심 인공지능 연구 개발뿐만 아니라 바이오메디컬 분야, 특히 정신 건강과 관련된 디지털 치료 분야에 적용했을 때 큰 파급력을 보일 것ˮ이라고 말했다.
연구 책임자인 이상완 교수는 "이번 기술의 잠재력은 인공지능의 방대한 지식을 인간이 빠르게 흡수할 수 있는 형태로 변환할 수 있다는 데 있다ˮ며, "챗 GPT, GPT-4와 같은 언어 인공지능에서 추출되는 다양한 정보를 인간이 빠르게 추론 학습할 수 있게 변환하거나, 게임이나 가상현실의 콘텐츠를 인간의 추론 과정에 맞게 최적화해 몰입도를 높일 수 있고, 반대로 몰입도를 적절한 수준에서 제어할 경우 중독을 완화하는 효과를 기대할 수 있다ˮ라고 말했다.
관련 기술은 국내 및 해외에 특허 출원된 상태이며, KAIST 기술설명회(테크페어)에 소개된 바 있다. 이상완 교수 연구팀은 이러한 뇌 기반 인공지능 원천기술의 파급력을 높이기 위해 2019년 KAIST 신경과학-인공지능 융합연구센터를 설립하고, 구글 딥마인드, 마이크로소프트 연구소, IBM 연구소, 옥스퍼드 대학 등 다양한 해외 연구팀들과 함께 국제공동연구를 수행해 오고 있다.
이번 연구는 `시뮬레이션 기반 실험 디자인을 이용한 인간의 인과관계 추론과정 제어'라는 제목으로 국제 학술지 셀(Cell)의 오픈 액세스 저널인 `셀 리포트(Cell Reports)'에 1월 호 온라인판에 1월 30일 자 게재됐다. (논문명: Controlling human causal inference through in-silico task design)
한편 이번 연구는 삼성전자 미래기술육성센터, 과학기술정보통신부 정보통신기획평가원 SW스타랩 및 한국연구재단의 지원을 받아 수행됐다.
우리 대학 인공지능반도체대학원 주최로 20일(목) 오전 대전 오노마 호텔에서 ‘제2회 한국인공지능시스템포럼(KAISF) 조찬 강연회’가 성황리에 개최되었다. 본 행사는 인공지능(AI) 기술의 최신 동향과 혁신 및 응용, 특히 AI-X(AI-특정산업)에 대해 다양한 분야의 전문가들이 모여 심도 있는 논의를 진행하는 자리로 LG AI 연구원의 최정규 상무가 LLM(거대언어모델)에 대해 개발에 대해 발표한다. 조찬 회의에는 총 65명의 AI 전문가가 참석하였으며, LG AI 연구원에서 최근 개발하고 공개한 대규모 언어 모델인 ‘엑사원(EXAONE)에 대해 Driving the Future of AI Innovation’라는 주제로 발제 발표가 진행되었다. 최정규 LG AI 연구원 상무는 LG 엑사원의 현재 연구 현황과 향후 글로벌 AI 시장에서의 계획을 발표하였으며 특히 최근 AI 생태계를 뜨겁게 달구고 있는 ‘딥시크(Deep
2025-03-20최근 챗GPT, 딥시크(DeepSeek) 등 초거대 인공지능(AI) 모델이 다양한 분야에서 활용되며 주목받고 있다. 이러한 대형 언어 모델은 수만 개의 데이터센터용 GPU를 갖춘 대규모 분산 시스템에서 학습되는데, GPT-4의 경우 모델을 학습하는 데 소모되는 비용은 약 1,400억 원에 육박하는 것으로 추산된다. 한국 연구진이 GPU 사용률을 높이고 학습 비용을 절감할 수 있는 최적의 병렬화 구성을 도출하도록 돕는 기술을 개발했다. 우리 대학 전기및전자공학부 유민수 교수 연구팀은 삼성전자 삼성종합기술원과 공동연구를 통해, 대규모 분산 시스템에서 대형 언어 모델(LLM)의 학습 시간을 예측하고 최적화할 수 있는 시뮬레이션 프레임워크(이하 vTrain)를 개발했다고 13일 밝혔다. 대형 언어 모델 학습 효율을 높이려면 최적의 분산 학습 전략을 찾는 것이 필수적이다. 그러나 가능한 전략의 경우의 수가 방대할 뿐 아니라 실제 환경에서 각 전략의 성능을 테스트하는 데는 막대한 비용과
2025-03-13뇌의 맥락 추론 방식이 챗지피티 같은 대규모 인공지능 모델과 어떻게 다를까? 우리 연구진이 ‘뇌처럼 생각하는 인공지능’기술로서 과도한 자신감을 보이는 인공지능의 할루시네이션(Hallucination) 현상을 완화하거나 인간이나 동물과 유사하게 스스로 가설을 세워 검증하는 신개념 인공지능 모델을 개발하는데 성공했다. 우리 대학 뇌인지과학과 이상완 교수(신경과학-인공지능 융합연구센터장)와 생명과학과 정민환 교수(IBS 시냅스 뇌질환 연구단 부연구단장) 연구팀이 동물이 가설을 세워 일관된 행동 전략을 유지함과 동시에, 본인의 가설을 스스로 의심하고 검증하면서 상황에 빠르게 적응하는 새로운 강화학습 이론을 제시하고 뇌과학적 원리를 규명했다고 20일 밝혔다. 현재 상황에 맞게 행동의 일관성과 유동성 사이의 적절한 균형점을 찾아가는 문제를 ‘안정성-유동성의 딜레마(Stability-flexibility dilemma)’라 한다. 이를 위해서
2025-02-27최근 인공지능 기술의 발전으로 챗GPT와 같은 대형 언어 모델(이하 LLM)은 단순한 챗봇을 넘어 자율적인 에이전트로 발전하고 있다. 구글(Google)은 최근 인공지능 기술을 무기나 감시에 활용하지 않겠다는 기존의 약속을 철회해 인공지능 악용 가능성에 대한 논란이 불거진 점을 상기시키며, 연구진이 LLM 에이전트가 개인정보 수집 및 피싱 공격 등에 활용될 수 있음을 입증했다. 우리 대학 전기및전자공학부 신승원 교수, 김재철 AI 대학원 이기민 교수 공동연구팀이 실제 환경에서 LLM이 사이버 공격에 악용될 가능성을 실험적으로 규명했다고 25일 밝혔다. 현재 OpenAI, 구글 AI 등과 같은 상용 LLM 서비스는 LLM이 사이버 공격에 사용되는 것을 막기 위한 방어 기법을 자체적으로 탑재하고 있다. 그러나 연구팀의 실험 결과, 이러한 방어 기법이 존재함에도 불구하고 쉽게 우회해 악의적인 사이버 공격을 수행할 수 있음이 확인됐다. 기존의 공격자들이 시간과 노력이 많이
2025-02-24우리 대학 기계공학과 이승철 교수 연구팀이 POSTECH 신소재공학과 김형섭 교수 연구팀과 함께 인공지능 기술을 활용해 Ti-6Al-4V 합금의 강도-연성 딜레마를 극복하고 고강도·고연신 금속 제품을 생산해 내는 데 성공했다고 밝혔다. 연구팀이 개발한 인공지능은 3D프린팅 공정변수에 따른 기계적 물성을 정확히 예측하는 동시에 예측의 불확실성 정보를 제공하며 이 두 정보를 활용해 실제 3D프린팅을 진행할 가치가 높은 공정변수를 추천한다. 3D프린팅 기술 중에서도 레이저 분말 베드 융합은 뛰어난 강도 및 생체 적합성으로 유명한 Ti-6Al-4V 합금을 제조하기 위한 혁신적인 기술이다. 그러나 3D프린팅으로 제작된 이 합금은 강도와 연성을 동시에 높이기 어렵다는 문제점이 있다. 3D프린팅의 공정변수와 열처리 조건을 조절해 이를 해결하고자 하는 연구들이 있었지만, 방대한 공정변수 조합들을 실험 및 시뮬레이션으로 탐색하기에는 한계가 있었다. 연구팀이 개발한 능동 학습(Ac
2025-02-21