본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EA%B3%B5%EA%B3%BC%EB%8C%80%ED%95%99
최신순
조회순
반도체 웨이퍼 절단 없는 두께 분석장비 개발
우리 대학 기계공학과 이정철 교수 연구팀이 근적외선의 간섭 효과를 이용해 실리콘 박막-공동 구조를 검사할 수 있는 웨이퍼 비파괴 분석 장비를 개발했다고 19일 밝혔다. 1 마이크로미터(이하 μm) 급의 두께를 갖는 박막-공동 구조는 압력센서, 마이크로미러, 송수신기 등의 다양한 미세전자기계시스템(MEMS) 소자로 사용된다. 이러한 MEMS 소자에서 박막의 두께와 공동의 높이는 소자 성능의 주요 설계 인자이기 때문에 소자의 거동 분석을 위해서는 제작된 구조의 두께 측정이 필수적이다. 하지만 최근까지 후속 공정에 사용할 수 없는 단점에도 불구하고 웨이퍼를 절단해 주사 전자 현미경과 같은 고해상도 현미경으로 두께를 측정하는 단면 촬영 기법이 사용됐다. 연구팀은 1μm 급의 두께를 갖는 실리콘 박막-공동 구조의 두께를 비파괴적으로 측정하기 위해 근적외선 간섭 현미경을 개발했다. 연구팀은 실리콘의 광특성과 빛의 간섭 길이를 고려해 근적외선 계측 장비를 설계 및 구축했으며 개발한 근적외선 간섭 현미경은 1μm 급과 서브 1μm 급의 단층 박막-공동 구조를 100 나노미터(nm) 미만의 편차로 측정했다. 이에 더불어 다중 반사로 인한 가상의 경계면을 특정하는 방법을 제안해 복층의 실리콘 박막-공동 구조에서 숨겨진 실리콘 박막의 두께 측정을 성공적으로 시연했다. 이번 연구는 국제학술지 `어드밴스드 엔지니어링 머터리얼즈(Advanced Engineering Materials)'에 지난 7월 14일 字에 온라인 게재됐으며 지난 10월 호의 후면 표지 논문(back cover)으로 선정됐다. 이번 연구는 실리콘 박막-공동 구조뿐만 아니라 기능성 웨이퍼인 실리콘 온 인슐레이터(Silicon-on-Insulator, SOI) 웨이퍼에서도 실리콘과 내부에 숨겨진 산화막의 두께를 성공적으로 측정함으로써 다양한 구조의 반도체 소자 비파괴 검사에 적용 가능함을 연구팀은 확인했다. 또한 연구팀은 적합한 파장 선택을 통해 실리콘뿐만 아니라 게르마늄 등 다른 반도체 물질의 비파괴 검사에도 적용할 수 있음을 밝혔다. 반도체 기판의 비파괴 검사 방법을 제안하는 이번 연구는 반도체 공정 중 소자 결함을 판별하기 위한 실시간 비파괴 검사에 적용될 수 있을 것으로 기대된다. 연구를 주도한 이정철 교수는 "개발된 기술은 널리 사용되는 적외선 광원을 사용해 비파괴 방식으로 반도체 물질 내부 구조를 측정한 점에서 기존 방법과 다르고, 안전하고 정밀한 장점 때문에 반도체 소재 및 소자 검사 속도를 향상하는 효과를 가져와 반도체 관련 산업과 우리 삶의 발전에 기여할 것이다ˮ라고 말했다. 한편 이번 연구는 한국연구재단의 중견연구자 지원사업과 기초연구실 지원사업의 지원을 받아 수행됐다.
2022.12.20
조회수 6211
차세대 반도체 핵심소재로 열적으로 안정된 강유전체 소재 최초 개발
우리 대학 전기및전자공학부 전상훈 교수 연구팀이 하프니아 강유전체 소재의 물성적 이해를 바탕으로 반도체 3D 집적 공정에서도 열적으로 안정한 *강유전체 소재를 세계 최초로 개발했다고 12일 밝혔다. 현재 반도체 제조 업계에서 고집적, 고효율의 3D 메모리 소자에 대한 필요성이 꾸준하게 대두되고 있다는 점을 고려할 때, 이번 연구는 강유전체 기반의 3D 메모리 집적 공정에서 핵심 기술로 평가받을 것이라 예상된다. *강유전체: 외부의 전기장 없이도 스스로 분극을 가지는 재료로서 외부 전기장에 의해 분극의 방향이 바뀔 수 있는 소재를 말한다. 비휘발성 특성이 있어, 기능성 소재로서 메모리 소자에 활용이 가능하지만, 고온에서 열적으로 안정성을 확보해야하는 도전 목표가 남아 있으며, 일반 유전체를 일컫는 상유전체는 외부의 전기장이 없으면 분극 특성을 유지하지 못한다는 점에서 다르다. 하프니아 강유전체 소재는 비휘발성 절연막으로, CMOS 공정 호환성, 동작 속도, 내구성 등의 우수한 물리적 특성을 바탕으로 차세대 반도체의 핵심 소재로써 활발하게 연구되고 있는 물질이다. 하지만 하프니아 소재는 필연적으로 고온에서 비휘발성 특성을 잃고 누설전류가 증가하는 한계를 가진다. 이를 억제하기 위해 세계 유수의 기관들에서 다양한 접근방법들이 보고됐지만, 3D 집적 공정 시에 발생하는 고온의 열처리 조건 (750℃ 이상, 30분)에서 강유전체 박막 내의 일반 유전체 (상유전체) 형성을 억제할 수 없었다. 전상훈 교수 연구팀은 세계 최초로 3D 집적 공정에서 요구되는 고온의 열처리 조건에서도 강유전체 박막 내의 상유전체의 형성을 완벽하게 억제하고 비휘발성 기능을 유지하며 우수한 내구성을 가지는 하프니아 강유전체 소재 및 공정 기술을 개발하는 데에 성공했다. 연구팀은 강유전체 박막 내에 이온 반지름이 작은 원소를 고용하는 도핑 기술을 활용해 강유전체 박막의 결정화 온도를 제어함과 동시에 도펀트의 농도에 따른 운동학적 에너지를 고려해 강유전체 소재의 비휘발성 및 기능성과 열적 안정성을 획기적으로 개선했다. 전상훈 교수 연구팀은 CMOS 공정을 이용해 강유전체 기반의 메모리 소자를 집적했고 고온의 열적 에너지(750℃ 이상, 30분)를 가한 후에도 우수한 강유전성이 발현되는 것을 확인했다. 또한 열적 에너지에 따른 강유전체 소재의 도메인 스위칭 동작을 전기적 측정을 통해 직관적으로 분석할 수 있는 시스템을 개발해 추후, 강유전체 소재의 열적 안정성 연구의 프레임 워크를 구축 및 제시했다. 해당 연구는 학계에서 활발하게 연구되고 있는 강유전체 소재의 기능성과 반도체 제조 업계에서 필요로 했던 강유전체 소재 기반의 3D 메모리 소자 집적 공정 사이의 간극을 줄였다는 점에서 큰 의미를 가진다. 전상훈 교수는 “이번 연구 결과는 답보상태에 있던 강유전체 소재 기반의 3D 메모리 및 회로 집적 기술 개발에 대한 돌파구가 되는 기술이 될 것으로 판단되며, 향후 고집적/고효율의 시스템 개발에 있어 핵심 역할을 할 것”이라고 설명했다. 전기및전자공학부 김기욱 박사 과정이 제1 저자로 수행한 이번 연구는 반도체 소자 및 회로 분야의 최고 권위 학회인‘IEEE 국제전자소자학회(International Electron Devices Meeting) 2022 (IEDM 2022)’에 12월 5일 발표를 마쳤다. 한편 이번 연구는 삼성전자(Samsung Electronics)와 차세대 지능형 반도체 사업단의 지능형 반도체 선도기술개발의 지원을 받아 진행됐다.
2022.12.12
조회수 6917
돼지표피에서 추출한 젤라틴 활용해 고성능 고체산화물 연료전지 개발
우리 대학 기계공학과 이강택 교수 연구팀이 돼지 표피에서 추출한 젤라틴을 활용해 수백 나노 수준의 매우 얇은 고 치밀성 다중도핑 세라믹 박막 제조 기술을 적용한 고성능의 양방향 고체산화물 연료전지 개발에 성공했다고 8일 밝혔다. 양방향 고체산화물 연료전지(R-SOFC)는 하나의 연료전지 소자에서 수소 생산과 전력생산이 모두 가능한 시스템으로서 탄소중립 사회 실현을 위해 필수적인 에너지 변환장치다. 이러한 에너지 소자의 성능을 높이기 위해서는 700oC 이하의 중저온에서 고활성을 갖는 전극의 개발이 필수적이며, 이를 위해 코발트 기반 페로브스카이트 전극이 집중적으로 연구돼왔다. 하지만 이러한 코발트 기반 전극 소재는 범용으로 사용되는 지르코니아(ZrO2) 전해질과 고온에서 화학반응을 일으켜 성능을 저하하는 문제가 있다. 이를 해결하기 위해 전극과 전해질 사이에 세리아(CeO2) 기능층을 도입하는 연구가 진행돼왔지만, 세리아와 지르코니아 사이의 반응을 억제하기 위해서 공정온도가 제한되며 이로 인해 두꺼운 다공성 구조를 갖게 되어 연료전지의 성능 및 안정성이 저하된다는 문제가 있었다. 이 교수 연구팀은 이 연구에서 젤라틴을 활용해 매우 얇으면서도 치밀한 다중도핑의 세리아 나노박막 제조 공정기술을 개발해 양방향 고체산화물연료전지에 기능층으로 적용하는 데 성공했다. 전기화학 및 구조 분석을 통해 치밀한 기능층의 도입으로 산소이온의 이동경로가 크게 감소하며 전기화학적 활성영역이 크게 증가함을 확인했다. 또한 개발된 양방향 연료전지는 기존 공정을 적용한 연료전지 대비 2배 이상 높은 성능을 보였으며 동일소재를 사용한 연료전지 중 가장 높은 성능(3.5 W/cm2, 750oC) 을 나타냈으며, 수소 생산도 세계 최고성능을 발휘했다. 또한, 개발된 연료전지 소자는 1,500시간 동안 열화 없이 구동돼 매우 높은 안정성을 갖고 있음을 실증했다. 이강택 교수는 "이번 연구에서 사용된 공정들은 대면적 양산시스템에도 쉽게 적용할 수 있는 기술들이기 때문에, 탄소중립 실현을 위한 고성능 양방향 연료전지 상용화에 본 기술을 적용할 수 있을 것ˮ이라며 연구의 의미를 강조했다. 기계공학과 유형민 석사과정, 임하니 박사후연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지인 `어드벤스드 펑셔널 머티리얼스, Advanced Functional Materials' (IF : 19.924) 지난 9월 8일 字 온라인판에 게재됐다. (논문명 : Exceptionally High-performance Reversible Solid Oxide Electrochemical Cells with Ultra-thin and Defect-free Sm0.075Nd0.075Ce0.85O2-���� Interlayers). 또한 해당 논문은 연구의 파급력을 인정받아 표지논문 (Front cover)으로 선정됐다. 한편 이번 연구는 과학기술정보통신부 수소에너지혁신기술개발사업, 중견연구자지원사업, 나노 및 소재 기술개발사업, 그리고 기후변화대응기술개발사업의 지원으로 수행됐다.
2022.12.08
조회수 6859
낸드플래시 방식의 고신뢰성 인공 시냅스 소자 개발
우리 대학 신소재공학과 김경민 교수 연구팀이 낸드플래시(NAND Flash)의 전하 저장 방식을 활용하여 양산성이 높으며 높은 균일도를 갖는 고신뢰성 인공 시냅스 소자 개발에 성공했다고 6일 밝혔다. 최근 고성능의 인공지능 기술(Artificial Intelligence; AI) 구현을 위하여 인공 시냅스 소자를 통해 크로스바 어레이 구조에서 고밀도의 메모리 집적과 행렬 연산 가속을 동시에 구현하는 맞춤형 하드웨어를 개발하기 위한 노력이 계속되고 있다. 시냅스 소자의 후보 물질로 다양한 물질이 제시되었으나, 인공지능 가속기가 요구하는 다비트성 (Multi-bit), 보존성 (retention), 균일성 (uniformity), 내구성(Endurance) 등을 모두 만족하는 소자는 매우 드물었으며, 또한 제시되는 후보 물질들의 동작 방식도 기존 반도체 소자들과 매우 달라 반도체 소자로 활용함에 있어 양산성 및 수율 등에도 추가적인 검증이 필요하다는 한계가 있었다. 김경민 교수 연구팀은 낸드플래시의 전하 저장하는 방식을 차용한 2단자 구조의 인공 시냅스 소자를 개발했다. 기존에는 2단자 시냅스 구조가 안정적으로 동작하기 위해서는 전하의 저장 상태를 읽기 위해 산화막을 얇게 하여 저장된 전하의 보존성을 희생해야하는 한계가 있었다. 연구팀은 이번 연구에서 알루미늄 산화막, 나이오븀 산화막, 탄탈룸 산화막 등이 순차적으로 적층된 최적의 시냅스 소자 구조를 제안하였으며, 이를 통해 안정적인 다비트성과 보존성을 모두 확보하였다. 또한, 제안한 시냅스 소자가 갖는 자가정류(self-rectifying) 특성을 활용하는 병렬 컴퓨팅 방법을 제시하여 기존의 순차적 컴퓨팅 대비 필요한 에너지를 약 71% 절약할 수 있었다. 공동 제1 저자인 신소재공학과 김근영 석박통합과정은 “이번 연구는 이미 검증된 낸드플래시 메모리 구조를 인공 시냅스 소자에 적용하여 시냅스 소자의 양산성에 대한 우려를 불식한데 의미가 있다”며 “이처럼 향후 개발되는 인공지능 반도체에도 기존 반도체 소자의 고성능 특성과 물질의 새로운 특성을 접목하는 연구가 활발히 이뤄질 것으로 예상된다”고 밝혔다. 이러한 인공 시냅스 소자 기술은 인공지능 컴퓨팅을 저전력으로 구현하는 지능형 반도체 소자에 적용되어 에지 컴퓨팅 (Edge computing)과 같이 적은 에너지 소모가 필수적인 인공지능 기술에 다양하게 적용될 수 있을 것으로 기대된다. 이번 연구는 국제 학술지 ‘어드밴스드 사이언스(Advanced Science)’에 11월 28일 字 온라인 게재됐으며 한국연구재단, KAIST, SK Hynix의 지원을 받아 수행됐다. (논문명: Retention secured nonlinear and self-rectifying analog charge trap memristor for energy-efficient neuromorphic hardware)
2022.12.06
조회수 5209
인간 근육보다 17배 강한 헤라클래스 인공 근육 개발
우리 대학 신소재공학과 김상욱 교수 연구팀이 부산대 안석균 교수 연구팀과 공동 연구를 통해 그래핀-액정 복합섬유를 이용한 새로운 인공 근육을 개발하는 데 성공했다고 5일 밝혔다. 이 인공 근육은 현재까지 과학계에 보고된 것 중에서 인간 근육과 가장 유사하면서도 최대 17배 강한 힘을 보이는 것으로 밝혀졌다. 동물의 근육은 신경 자극에 의해 그 형태가 변하면서 기계적인 운동을 일으키는 것으로 알려져 있다. 로봇이나 인공장기 등 다양한 분야에서 동물근육과 유사한 운동을 일으키기 위한 기술들이 개발돼왔으나, 지금까지는 주로 기계장치에 의존한 것들이 대부분이다. 최근에는 유연성을 가지는 신소재를 이용해 생명체의 근육같이 유연하면서도 기계적 운동을 일으킬 수 있는 인공 근육들이 연구되고 있다. 그러나 이들 대부분이 일으키는 운동의 범위가 동물 근육보다 제한되고 강한 운동을 일으키기 위해서는 마치 시계태엽을 감듯이 부가적인 에너지 저장과정을 거쳐야만 하는 문제점이 있다. 김교수 연구팀이 개발한 신소재는 온도변화에 따라 동물 근육과 같이 크게 수축을 일으키는 액정물질에 고품질의 그래핀을 적용함으로써 레이저를 이용한 원격제어가 가능하며 인간 근육의 작업 수행능력(17배)과 출력밀도(6배)를 크게 능가하는 운동능력을 구현했다. 연구팀은 실제로 인공 근육을 이용해 1 킬로그램(kg) 짜리 아령을 들어올리는 데 성공하기도 했으며, 이를 이용한 인공 자벌레는 살아있는 자벌레보다 3배나 빠른 속도로 움직이는 기록을 달성하기도 했다. 연구를 주도한 신소재 분야 석학인 KAIST 김상욱 교수는 "최근 세계적으로 활발히 개발되고 있는 인공 근육들은 비록 한두 가지 물성이 매우 뛰어난 경우는 있으나 실용적인 인공 근육으로 작동하는 데 필요한 다양한 물성들을 골고루 갖춘 경우는 없었다ˮ며 "이번 연구를 시발점으로 실용성 있는 인공 근육 소재가 로봇 산업 및 다양한 웨어러블 장치에 활용할 수 있으며 4차 산업 혁명에 따른 비대면 과학기술에서도 크게 이바지할 수 있을 것이다ˮ라고 말했다. 신소재공학과 김인호 박사가 제1 저자로 참여한 이번 연구는 이러한 성과를 인정받아 저명한 영국의 과학 학술지 네이처 나노테크놀로지(Nature Nanotechnology)에 지난 10월 27일자로 출간됐었으며, 해당 학술지의 표지 논문으로 선정됐다. 또한 관련 기술에 대한 특허를 국내외에 출원하여 KAIST 교원창업 기업인 ㈜소재창조를 통해 상용화를 진행할 계획이다. 신소재공학과 강지형 교수, 기계공학과 유승화 교수, 부산대학교 고분자공학과 안석균 교수가 공동 연구로 참여한 이번 연구는 한국연구재단의 리더연구자지원사업인 다차원 나노조립제어 창의연구단과 기초연구 사업의 지원을 받아 수행됐다.
2022.12.05
조회수 9468
빛을 완전히 조절할 수 있는 메타렌즈 개발
우리 대학 신소재공학과 신종화 교수 연구팀이 빛의 세 가지 주요 특성인 세기, 위상, 편광을 동시에 모두 조절할 수 있는 유니버설 메타표면(universal metasurface)을 개발했다고 2일 밝혔다. 단일 소자로 빛의 세기, 위상, 편광을 모두 자유로이 조절할 수 있는 기술은 갈릴레이가 망원경으로 목성의 위성을 관측했던 광학 분야의 시초부터 제임스웹 망원경으로 130억 년 전 우주를 볼 수 있게 된 현재까지 풀리지 않는 난제로 남아있었다. 최근, 마이크로미터 이하 크기의 인공적인 구조체들을 유리 등 기존 소재 표면을 따라 배열해 빛의 특성을 높은 자유도로 조절할 수 있는 메타표면이 이러한 난제를 해결할 수 있는 기술이 될 수 있다는 기대감으로 관련 연구가 세계 여러 대학과 연구소, 기업에서 경쟁적으로 이뤄지고 있다. 이러한 메타표면은 현재 안경 두께의 천 분의 일인 수 마이크로미터 수준의 얇은 두께만으로도 렌즈의 역할을 할 수 있을 뿐만 아니라, 편광판, 컬러필터 등 기존 다른 광학 부품들의 기능도 동시에 수행할 가능성을 갖고 있어서 여러 종류의 광학필름이 필수적으로 들어가는 OLED 등 현재 상용 디스플레이의 두께를 현저히 줄이고 공정을 단순화시키거나 동영상 홀로그램, 증강현실(AR) 글래스, 라이다(LiDAR) 등의 새로운 응용의 광학 부품들에도 널리 적용될 수 있는 다재다능한 기술로 관심을 받고 있다. 하지만, 현재까지 보고된 메타표면들은 여전히 특정 색의 빛이 가지는 세 가지 특성 중 일부분만을 동시에 조절(예: 위상과 편광 또는 위상과 세기 등)할 수 있어, 하나의 소자로 세 특성을 완전히 조절하는 문제는 해결되지 못한 숙제로 남아있었다. 연구팀은 행렬과 관련된 수학적 원리에 착안해, 밀접한 두 층으로 이뤄진 유전체 메타표면이 빛의 세 가지 주요한 특성을 완벽히 조절할 수 있음을 이론적으로 밝히고, 이를 실험적으로 규명했다. 특히, 기존에 단일 소자로 불가능했던 벡터 홀로그램들을 제안하고 최초로 구현하는 데 성공했다. 학문적으로는 메타표면의 편광 선택적인 특성을 통해 맥스웰 방정식을 만족하는 두 가지 독립적인 임의의 3차원 전자기장 분포를 구현하는 방법을 최초로 보였다는 점에서 이번 연구는 큰 의의를 갖는다. 또한, 연구진은 유니버설 메타표면과 일반 렌즈의 조합만으로 임의의 편광 선택적인 선형 광학계의 구현이 가능함을 이론적으로 입증했는데, 이는 푸리에 변환 등을 포함한 복잡한 수학적 연산이나 데이터 처리를 광학적으로 간단하게 구현할 수 있음을 의미한다. 한 가지 예시로 연구팀은 확률론적 양자 CNOT 게이트 배열을 유니버설 메타표면과 렌즈만을 사용해 만들 수 있음을 보였으며, 이러한 원리는 양자 광학 뿐만 아니라, 광 통신, 광 신경망을 이용한 기계학습 기반 안면인식 등 여러 분야에서 활용될 수 있을 것으로 기대된다. 연구진은 "이번 연구를 통해 광학 분야의 오랜 난제였던 빛의 세기, 위상, 편광의 완전한 조절을 해결했을 뿐만 아니라, 이를 바탕으로 모든 편광 선택적인 선형 광학계 구현이 이론적으로 가능함을 밝혔다ˮ며, 이어 "이번 연구에서 제안한 메타표면의 가능성을 활용하여 기존 한계를 극복한 응용 광소자를 적극적으로 개발할 계획ˮ이라고 언급했다. 신소재공학과 장태용 박사와 정준교 박사과정생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 머티리얼스(Advanced Materials)' 지난 11월 3일 字 출판됐다. (논문명 : Universal Metasurfaces for Complete Linear Control of Coherent Light Transmission). 한편 이번 연구는 한국연구재단 과학기술분야 기초연구사업 및 원천기술개발사업의 지원을 받아 수행됐다.
2022.12.02
조회수 7003
세계 최초로 사람처럼 사물의 개념을 스스로 학습하는 장면 인식 기술 개발
우리 대학 전산학부 안성진 교수 연구팀이 미국 럿거스(Rutgers) 대학교와 공동연구를 통해 사람의 라벨링 없이 스스로 영상 속 객체를 식별할 수 있는 인공지능 기술을 개발했다고 1일 밝혔다. 이 모델은 복잡한 영상에서 각 장면의 객체들에 대한 명시적인 라벨링 없이도 객체를 식별하는 최초의 인공지능 모델이다. 기계가 주변 환경을 지능적으로 인지하고 추론하기 위해서는 시각적 장면을 구성하는 객체들과 그들의 관계를 파악하는 능력이 필수적이다. 하지만 이 분야의 연구는 대부분 영상의 각 픽셀에 대응하는 객체의 라벨을 사람이 일일이 표시해야 하는 지도적 학습 방식을 사용했다. 이 같은 수작업은 오류가 발생하기 쉽고 많은 시간과 비용을 요구한다는 단점이 있다. 이에 반해 이번에 연구팀이 개발한 기술은 인간과 유사하게 환경에 대한 관측만으로 객체의 개념을 스스로 자가 학습하는 방식을 취한다. 이렇게 인간의 지도 없이 스스로 객체의 개념을 학습할 수 있는 인공지능은 차세대 인지 기술의 핵심으로 기대돼왔다. 비지도 학습을 이용한 이전 연구들은 단순한 객체 형태와 배경이 명확히 구분될 수 있는 단순한 장면에서만 객체를 식별하는 단점이 있었다. 이와 달리 이번에 안성진 교수 연구팀이 개발한 기술은 복잡한 형태의 많은 객체가 존재하는 사실적인 장면에도 적용될 수 있는 최초의 모델이다. 이 연구는 그림 인공지능 소프트웨어인 DALL-E와 같이 텍스트 입력을 통해 사실적인 이미지를 생성할 수 있는 이미지 생성 연구에서 영감을 얻었다. 연구팀은 텍스트를 입력하는 대신, 모델이 장면에서 객체를 감지하고 그 객체의 표상(representation)으로부터 이미지를 생성하는 방식으로 모델을 학습시켰다. 또한, 모델에 DALL-E와 유사한 트랜스포머 디코더를 사용하는 것이 사실적이고 복잡한 영상을 처리할 수 있게 한 주요 요인이라고 밝혔다. 연구팀은 복잡하고 정제되지 않은 영상뿐만 아니라, 많은 물고기가 있는 수족관과 교통이 혼잡한 도로의 상황을 담은 유튜브 영상과 같이 복잡한 실제 영상에서도 모델의 성능을 측정했다. 그 결과, 제시된 모델이 기존 모델보다 객체를 훨씬 더 정확하게 분할하고 일반화하는 것을 확인할 수 있었다. 연구팀을 이끈 안성진 교수는 "인간과 유사한 자가 학습 방식으로 상황을 인지하고 해석하는 혁신적인 기술ˮ이라며 "시각적 상황인지 능력을 획기적으로 개선해 지능형 로봇 분야, 자율 주행 분야뿐만 아니라 시각적 인공지능 기술 전반에 비용 절감과 성능향상을 가져올 수 있다ˮ고 말했다. 이번 연구는 미국 뉴올리언스에서 지난 11월 28일부터 개최되어 12월 9일까지 진행 예정인 세계 최고 수준의 기계학습(머신러닝) 학회인 제36회 신경정보처리학회(NeurIPS)에서 발표됐다.
2022.12.02
조회수 5942
스핀 소자 기반 물리적 복제방지 보안기술 개발
우리 대학 신소재공학과 박병국 교수팀이 물리학과 김갑진 교수 연구팀 및 현대자동차와 공동연구를 통해 자성메모리(Magnetic random-access memory, MRAM)를 기반으로 사람의 지문과 같이 매번 다른 패턴을 갖는 하드웨어 보안인증 원천 기술을 개발하는 데 성공했다고 30일 밝혔다. 박병국 교수 연구팀은 반강자성체-하부강자성체-비자성체-상부강자성체 다층박막 구조에서 무자기장(field-free) 스핀-궤도 토크(spin-orbit torque, SOT)로 동작하는 MRAM 소자의 스위칭 극성을 무작위적으로 분포시켜 물리적 복제 불가능성(physical unclonable function, 이하 PUF)을 지닌 보안소자를 개발하는 것이 가능함을 입증했다. 이 기술은 고온 및 고자기장 등의 환경에서도 높은 동작 신뢰도 및 무작위성을 유지하면서 작동 가능해 사물인터넷(IoT)을 비롯한 다양한 보안시스템에 응용될 수 있을 것으로 기대된다. PUF를 이용한 하드웨어 기반 보안 소자는 동일한 공정 과정을 통해 제작해도 공정 편차에서 발생하는 제어되거나 예측할 수 없는 반도체소재/소자 간의 차이를 이용해 보안용 인증키를 형성하는 기술이다. 이는 기존 소프트웨어 기반 보안시스템과 다르게 외부 공격에 대해 높은 저항성을 지니는 장점이 있기에 최근 증가하고 있는 사물인터넷 기기 해킹 등의 보안 위협을 해결할 기술로 주목받고 있다. 하지만 기존에 주로 연구됐던 상보적 금속 산화물 반도체(complementary metal oxide semiconductor, CMOS) 소자 기반 물리적 복제방지기술은 외부 환경 변화에 민감하며 반복 동작 시 신뢰도가 낮아지는 문제점이 있다. 이에 반해 자성메모리(magnetic random-access memory, MRAM)를 포함한 자화를 이용해 정보를 저장하는 스핀트로닉스 기반 소자는 높은 내구성 및 안정성을 지니고 있고 환경 변화에 비교적 민감하지 않다. 따라서 이러한 특성을 이용해 물리적 복제방지기술을 개발한다면 현행 반도체 공정 기술과 호환이 가능하며 보안인증 등 다양한 활용 범위를 가지는 비휘발성 메모리 기반 보안 기술 개발을 기대할 수 있다. 신소재공학과 이수길 박사와 강재민 박사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드벤스드 머티리얼스(Advanced Materials)'에 11월 10일 字 온라인 게재됐다. (논문명 : Spintronic physical unclonable functions based on field-free spin-orbit torque switching) 연구팀은 교환결합이 형성된 다층박막을 제작해 고온에서 교류 자기장 인가를 통해 교환결합의 방향의 좌우로 50:50의 비율을 갖는 무작위한 분포 생성했다. [그림1(a)] 이때 생성된 교환결합의 방향이 상부 강자성체의 무자기장 스위칭 부호를 결정하는 성질을 이용해 무작위한 분포 방향을 전기적으로 0과1의 이진법분포로 바꿔 출력했으며 이를 보안키로 활용하는 물리적 복제 방지 기술을 개발했다. [그림1(b) 및 1(c)] 연구팀이 개발한 스핀 기반 물리적 복제방지 기술은 50,000번 이상의 반복 동작 시에도 에러가 발생하지 않는 높은 내구성을 보이며 반도체소자가 기본적으로 요구하는 -100℃부터 125℃까지 넓은 온도 범위에서도 안정적으로 작동한다. 또한 무작위성의 원천으로 교환결합의 방향을 이용했기 때문에 자성체 기반 소자임에도 불구하고 외부 자기장을 이용해 저장된 무작위분포를 바꾸지 못하는 것을 확인했다. 공동 제1 저자인 이수길 박사와 강재민 연구원은 "이번 연구는 차세대 MRAM의 주요 기술인 스핀-궤도 토크 기반으로 보안소자 기술을 개발할 수 있다는 것을 제시한 것에 의미가 있으며 향후 유력한 차세대 메모리인 MRAM에 보안 소자 기술을 접목하는 연구가 활발히 이뤄질 것으로 예상 된다ˮ고 밝혔다. 한편 이번 연구는 현대자동차 및 과학기술정보통신부 PIM인공지능반도체핵심기술개발 사업과 중견연구자지원 사업 연구과제의 지원을 받아 수행됐다.
2022.12.02
조회수 5772
고성능 스트레처블 고분자 반도체를 위한 신개념 계면공학법 개발
우리 대학 신소재공학과 강지형 교수, 미국 버클리 대학교 문재완 박사와 미국 스탠퍼드 대학교 제난 바오(Zhenan Bao) 교수 공동연구팀이 고분자 반도체와 회로기판의 경계면을 개선하는 새로운 계면 개질법을 개발하고, 이를 이용해 고성능 스트레처블(늘어나고 유연한) 고분자 반도체를 구현했다고 24일 밝혔다. 고분자 반도체는 기존의 실리콘 기반의 반도체와는 다르게 탄소를 기반으로 구성돼 있으며, 상대적으로 낮은 가격과 대면적 공정이 가능하다는 장점으로 인해 추후 유연 소자, 태양전지, OLED 등의 산업에 응용될 수 있는 차세대 반도체 재료다. 하지만 전기적 성능이 좋은 고분자 반도체는 작은 응력에도 쉽게 깨지는 문제점이 있었다. 일반적으로 고분자 반도체는 결정구조를 많이 가질수록 전기적 성능이 좋아지지만, 이러한 결정구조는 고분자 반도체가 응력에 취약해지게 만들기 때문이다. 이러한 문제점을 해결하기 위해, 기존에는 분자구조의 변화, 첨가제 등을 이용해 고분자 반도체 자체의 기계적 물성을 변화시키는 데 주로 초점을 맞춰왔다. 그러나 기존의 방법들은 기계적 물성이 향상되는 대신 전기적 성질이 악화되고, 각각의 고분자 반도체에 맞는 분자구조를 찾는데 많은 시간이 소요돼 고성능 스트레처블 고분자 반도체 구현에 적합하지 않았다. 우리 대학 강지형 교수와 스탠퍼드 대학교 제난 바오 교수 공동연구팀은 이번 연구에서 고분자 자체의 성질을 변화시키는 것이 아닌 기판과 고분자 반도체 사이의 계면을 개질하는 새로운 방법을 제시했다. 이러한 계면 공학법을 통해 고분자 반도체는 전기적 성질을 잃지 않으면서 기계적 물성이 크게 개선됐다. 공동연구팀은 이번 연구에서 응력에 의해 고분자 반도체가 손상을 받는 것은 고분자 박막과 기판 사이 계면에서의 박리 현상과 그로 인한 응력의 편재화(localization)에 의해 상당 부분 기인함을 발견했다. 공동연구팀은 이러한 문제점을 극복하기 위해 고분자 반도체 박막과 기판 사이의 계면에 새로운 고분자 층을 도입했다. 이 고분자 층은 반도체 박막과 기판 모두와 강하게 결합해 두 층의 박리현상과 응력의 편재화를 효과적으로 막아줬으며, 동역학적 결합(dynamic bond)을 할 수 있는 구조를 가져 추가적인 응력 분산 효과를 보였다. 이러한 계면 개질이 이뤄진 고성능 고분자 반도체는 최대 110%의 변형률까지 눈에 띄는 균열이 발견되지 않았으며, 이는 기존의 같은 반도체가 30% 변형률에서 상당한 균열을 보인 것에 비하면 획기적인 발전이다. 또한 이러한 접근법은 특정 고분자 반도체에 국한되지 않고, 다양한 고분자 반도체, 고분자 전도체, 금속 전도체에 모두 적용 가능하다는 장점이 있다. 신소재공학과 강지형 교수와 스탠퍼드 대학교 문재완 박사가 공동 제1 저자로 참여한 이번 연구 결과는 나노 재료 분야 저명 국제 학술지 `네이처 나노테크놀로지 (Nature Nanotechnology)' 11월 10일 字 온라인판에 게재됐다. (논문명 : Tough interface-enabled stretchable electronics using non-stretchable polymer semiconductors and conductors). 강지형 교수는 "이번 연구는 스트레처블 고분자 반도체 구현을 위한 설계 방향을 새롭게 제시했다는 점에서 의미가 있다ˮ고 하면서, "이번에 개발된 계면 공학법은 급속도로 성장하고 있는 유연소자 시장에 게임 체인저가 될 것으로 기대된다ˮ고 말했다. 한편 이번 연구는 한국연구재단의 우수신진연구사업, 나노소재기술개발사업 미래기술연구실, 삼성종기원 과제의 지원을 받아 수행됐다.
2022.11.25
조회수 6233
세계 최고 수준의 딥러닝 의사결정 설명기술 개발
우리 대학 김재철AI대학원 최재식 교수(㈜인이지 대표이사) 연구팀이 인공지능 딥러닝의 의사결정에 큰 영향을 미치는 입력 변수의 기여도를 계산하는 세계 최고 수준의 기술을 개발했다고 23일 밝혔다. 최근 딥러닝 모델은 문서 자동 번역이나 자율 주행 등 실생활에 널리 보급되고 활용되는 추세 및 발전에도 불구하고 비선형적이고 복잡한 모델의 구조와 고차원의 입력 데이터로 인해 정확한 모델 예측의 근거를 제시하기 어렵다. 이처럼 부족한 설명성은 딥러닝이 국방, 의료, 금융과 같이 의사결정에 대한 근거가 필요한 중요한 작업에 대한 적용을 어렵게 한다. 따라서 적용 분야의 확장을 위해 딥러닝의 부족한 설명성은 반드시 해결해야 할 문제다. 최교수 연구팀은 딥러닝 모델이 국소적인 입력 공간에서 보이는 입력 데이터와 예측 사이의 관계를 기반으로, 입력 데이터의 특징 중 모델 예측의 기여도가 높은 특징만을 점진적으로 추출해나가는 알고리즘과 그 과정에서의 입력과 예측 사이의 관계를 종합하는 방법을 고안해 모델의 예측 과정에 기여하는 입력 특징의 정확한 기여도를 계산했다. 해당 기술은 모델 구조에 대한 의존성이 없어 다양한 기존 학습 모델에서도 적용이 가능하며, 딥러닝 예측 모델의 판단 근거를 제공함으로써 신뢰도를 높여 딥러닝 모델의 활용성에도 크게 기여할 것으로 기대된다. ㈜인이지의 전기영 연구원, 우리 대학 김재철AI대학원의 정해동 연구원이 공동 제1 저자로 참여한 이번 연구는 오는 12월 1일, 국제 학술대회 `신경정보처리학회(Neural Information Processing Systems, NeurIPS) 2022'에서 발표될 예정이다. 모델의 예측에 대한 입력 특징의 기여도를 계산하는 문제는 해석이 불가능한 딥러닝 모델의 작동 방식을 설명하는 직관적인 방법 중 하나다. 특히, 이미지 데이터를 다루는 문제에서는 모델의 예측 과정에 많이 기여한 부분을 강조하는 방식으로 시각화해 설명을 제공한다. 딥러닝 예측 모델의 입력 기여도를 정확하게 계산하기 위해서 모델의 경사도를 이용하거나, 입력 섭동(행동을 다스림)을 이용하는 등의 연구가 활발히 진행되고 있다. 그러나 경사도를 이용한 방식의 경우 결과물에 잡음이 많아 신뢰성을 확보하기 어렵고, 입력 섭동을 이용하는 경우 모든 경우의 섭동을 시도해야 하지만 너무 많은 연산을 요구하기 때문에, 근사치를 추정한 결과만을 얻을 수 있다. 연구팀은 이러한 문제 해결을 위해 입력 데이터의 특징 중에서 모델의 예측과 연관성이 적은 특징을 점진적으로 제거해나가는 증류 알고리즘을 개발했다. 증류 알고리즘은 딥러닝 모델이 국소적으로 보이는 입력 데이터와 예측 사이의 관계에 기반해 상대적으로 예측에 기여도가 적은 특징을 선별 및 제거하며, 이러한 과정의 반복을 통해 증류된 입력 데이터에는 기여도가 높은 특징만 남게 된다. 또한, 해당 과정을 통해 얻게 되는 변형된 데이터에 대한 국소적 입력 기여도를 종합해 신뢰도 높은 최종 입력 기여도를 산출한다. 연구팀의 이러한 입력 기여도 측정 기술은 산업공정 최적화 프로젝트에 적용해 딥러닝 모델이 예측 결과를 도출하기 위해서 어떤 입력 특징에 주목하는지 찾을 수 있었다. 또한 딥러닝 모델의 구조에 상관없이 적용할 수 있는 이 기술을 바탕으로 복잡한 공정 내부의 다양한 예측변수 간 상관관계를 정확하게 분석하고 예측함으로써 공정 최적화(에너지 절감, 품질향상, 생산량 증가)의 효과를 도출할 수 있었다. 연구팀은 잘 알려진 이미지 분류 모델인 VGG-16, ResNet-18, Inception-v3 모델에서 개발 기술이 입력 기여도를 계산하는 데에 효과가 있음을 확인했다. 해당 기술은 구글(Google)이 보유하고 텐서플로우 설명가능 인공지능(TensorFlow Explainable AI) 툴 키트에 적용된 것으로 알려진 입력 기여도 측정 기술(Guided Integrated Gradient) 대비 LeRF/MoRF 점수가 각각 최대 0.436/0.020 개선됨을 보였다. 특히, 입력 기여도의 시각화를 비교했을 때, 기존 방식 대비 잡음이 적고, 주요 객체와 잘 정렬됐으며, 선명한 결과를 보였다. 연구팀은 여러 가지 모델 구조에 대해 신뢰도 높은 입력 기여도 계산 성능을 보임으로써, 개발 기술의 유효성과 확장성을 보였다. 연구팀이 개발한 딥러닝 모델의 입력 기여도 측정 기술은 이미지 외에도 다양한 예측 모델에 적용돼 모델의 예측에 대한 신뢰성을 높일 것으로 기대된다. 전기영 연구원은 "딥러닝 모델의 국소 지역에서 계산된 입력 기여도를 기반으로 상대적인 중요도가 낮은 입력을 점진적으로 제거하며, 이러한 과정에서 축적된 입력 기여도를 종합해 더욱 정확한 설명을 제공할 수 있음을 보였다ˮ라며 "딥러닝 모델에 대해 신뢰도 높은 설명을 제공하기 위해서는 입력 데이터를 적절히 변형한 상황에서도 모델 예측과 관련도가 높은 입력 특성에 주목해야 한다ˮ라고 말했다. 이번 연구는 2022년도 과학기술정보통신부의 재원으로 정보통신기획평가원의 지원을 받은 사람 중심 AI강국 실현을 위한 차세대 인공지능 핵심원천기술개발 사용자 맞춤형 플로그앤플레이 방식의 설명가능성 제공, 한국과학기술원 인공지능 대학원 프로그램, 인공지능 공정성 AIDEP 및 국방과학연구소의 지원을 받은 설명 가능 인공지능 프로젝트 및 인이지의 지원으로 수행됐다.
2022.11.23
조회수 7940
입을 수 있는 OLED로 소아 황달 치료기술 개발
우리 대학 전기및전자공학부 최경철 교수 연구팀이 을지대학교 병원(김승연 교수, 임춘화 교수), 가천대학교(전용민 교수), 선문대학교(권정현 교수)와의 공동 연구를 통해 실제 직물 기반의 웨어러블 청색 OLED를 개발하고, 황달 질환을 앓는 신생아의 혈청에서 청색 OLED 광원에 의한 *빌리루빈 감소로 인한 황달 치료 효과를 확인했다고 22일 밝혔다. ☞ 빌리루빈: 혈액에서 산소를 공급해주는 적혈구가 수명을 다해 분해된 결과물로, 보통 간에 의해 해독되고 담즙으로 배설된다. 혈장 내 빌리루빈의 농도가 올라가면 피부와 눈의 흰자위가 누런색을 띠는 황달 증상이 나타난다. 신생아는 수명이 짧은 적혈구를 갖고 있으나 간 대사가 미숙해 빌리루빈을 많이 생산한다. 최경철 교수 연구실의 최승엽 박사, 가천대학교 의공학과 전용민 교수, 선문대학교 권정현 교수가 공동 제1 저자로 참여한 이번 연구는 첨단 과학기술 분야의 국제 저명 학술지인 `어드밴스드 사이언스(Advanced Science)'에 지난 10월 30일 게재되었고, 속 표지 논문으로 선정됐다. 신생아의 황달 치료는 광선 요법, 약물 투여, 교환 수혈 등 다양한 방법으로 시행된다. 이 중 광선 요법은 체내에 축적된 빌리루빈을 빛에 노출해 변형시켜 체외로 방출하는 안전하고 효과적인 치료 방법이다. 대부분의 신생아 황달은 광선 요법으로 치료할 수 있어 가장 널리 활용되고 있다. 병원에서는 신생아의 혈액 내 빌리루빈 농도가 치료 범위를 초과하면 신생아를 신생아 집중치료실(NICU)에 입원시켜 인큐베이터의 스탠드에 장착된 청색 LED의 빛으로 치료한다. 이 방법은 신생아 황달 증상을 완화하는 데 매우 효과적이지만 신생아를 부모로부터 격리하고 치료하는 동안 모유 수유 중단, 청색광에 의한 망막 손상 방지를 위해 신생아의 눈은 반드시 눈가리개로 완전히 가려야 하는 등의 문제와 더불어 기존에는 LED 기반 설치형 플랫폼이 사용돼 웨어러블 치료 적용에 한계가 있었다. 최경철 교수 연구팀은 황달 치료에 효과적인 470nm(나노미터) 파장의 고출력 고신뢰성의 청색 OLED를 사람이 착용 가능한 직물 위에 구현했으며, 직물과 같은 높은 유연성을 유지하는 옷 OLED 소아 황달 치료 플랫폼을 개발했다. 직물 기반의 청색 OLED는 4V 미만의 저전압에서도 황달치료에 충분한 출력(> 20 μW/cm2/nm)을 확보했을 뿐만 아니라 100시간 이상의 구동 수명, 35℃ 미만의 낮은 구동 온도, 물세탁 신뢰성, 2mm(밀리미터) 수준의 낮은 곡률 반경에서 1,000회 이상을 견디는 유연성 등의 신뢰성을 확보할 수 있었다. 이번 연구에서 470nm 파장을 갖는 청색 OLED를 신생아의 혈청에 조사했을 시, 3시간 이내에 황달 치료가 완료됐다고 판단되는 빌리루빈 수치(12 mg/dL)에 도달했으며, 기존 병원에서 활용되는 LED 황달 상용 치료기기 대비 균일하면서도 효과적인 황달 치료 성능을 연구팀은 확인했다. 공동 제1 저자인 최승엽 박사, 전용민 교수(가천대), 권정현 교수(선문대)는 "이번 연구를 통해 실제 신생아가 착용해 황달 치료가 가능한 성능 및 신뢰성을 갖는 섬유 기반의 청색 OLED 개발에 성공했다ˮ며 "설치형 LED 치료기기의 단점을 보완하며 더욱 균일한 효과를 기대할 수 있는 웨어러블 황달 치료 기술이 상용화될 수 있는 기반을 마련했다ˮ고 말했다. 최경철 교수는 "OLED 분야는 우리나라가 최고 기술을 보유하고 있지만, 중국의 기술 추격이 예사롭지 않은 이 시점에, OLED의 다양한 응용 기술을 개발하는 것이 중국과의 OLED 기술격차를 더 벌릴 수 있고, OLED 응용 중, 직물 위 OLED 기반 웨어러블 의료 기술개발로 바이오 헬스케어 시대에 맞는 OLED 응용의 새로운 시장을 개척해, 우리나라의 OLED 기술이 계속 선두를 유지하기를 바란다ˮ라고 말했다. 이번 연구는 과학기술정보통신부 한국연구재단의 선도연구센터 사업의 지원으로 수행됐다.
2022.11.22
조회수 6550
극미량의 액체를 정밀하게 측정하고 분석할 수 있는 새로운 플랫폼 개발
우리 대학 기계공학과 이정철 교수 연구팀이 마이크로히터와 유동 채널이 내장된 미세전자기계시스템(MEMS) 소자를 이용해 극미량의 유체에 대한 열전달 관련 측정과 공정을 개발할 수 있는 새로운 실험 플랫폼인 열원-미소채널 통합 공진 센서 (heater-integrated fluidic resonator, 이하 HFR)를 개발했다고 21일 밝혔다. 2015년, 벤처 기업 `테라노스'의 피 한 방울로 질병을 진단할 수 있다는 주장은 정밀 분석을 위해 많은 혈액이 필요하던 미국 전역에 큰 충격으로 다가왔다. 결국 허구로 밝혀진 이 사건은 아주 적은 양의 샘플을 이용해 정밀한 측정을 수행하고자 하는 현대 사회의 요구 사항을 단적으로 보여주는 예시다. 마이크로 유체 채널이 통합된 센서는 많은 연구자에 의해 꾸준히 개발되고 있다. 하지만 아직 큰 크기를 갖는 상용화된 센서들(마이크로/나노 공정의 적용이 필요 없는)에 비해 적은 정확도를 갖는다는 한계가 있었다. 이에 연구팀은 밀도/질량 측정에만 주로 사용되지만 오히려 소형화될수록 높은 정확도를 갖는 장점이 있는 기계 공진 센서에 주목했다. 지금까지의 유체 채널 통합 공진 센서는 신뢰할 만한 결과의 확보를 위해 동일한 온도에서의 측정이 필요했다. 반면 이정철 교수팀은 이번 연구에서 온도를 자유자재로 제어하며 고정확도의 공진 측정을 병행함으로써 밀도/질량 측정 이상으로 다양한 현상과 물리량을 분석하는 아이디어를 제시했다. 연구팀은 개발한 플랫폼을 이용해 20pL(피코 리터) 이하 액체의 열전도도, 밀도, 비열을 동시에 측정할 수 있는 방법을 제시하고 1,000개 데이터를 1분 이내에 수집함으로써 고정확도의 계측을 구현했으며, 마이크로채널 내부의 비등 상변화 현상을 다중 공진 주파수로 측정해 기존의 상변화 현상 분석 기법에 비해 이력(hysteresis)과 기포의 초기 발생 시점을 더 명확하게 관측했다. 또한 연구팀은 마이크로채널 자유단에 노즐이 있는 열원-미소채널 통합 공진 센서를 사용해 전열 분무 현상을 유도하고 토출 공정을 공진 주파수로 실시간 관측할 수 있는 방법을 제시함으로써, 이전까지는 불가능했던 고속 카메라와 같은 장비 없이 노즐 자체의 측정만을 이용한 미립화 액적 토출 공정 모니터링을 구현했다. 이는 나노/마이크로 입자 및 세포 측정 분야에만 국한되어 사용되었던 극미량의 질량 측정 기술을 물리 화학적 측정 센서, 나노 패터닝 공정 제어, 상변화/열전달 제어 등 다양한 분야의 연구자들이 응용할 수 있도록 아이디어를 제시하고 그 활용 가능성을 검증한 데에 의의가 있다. 이번 연구는 국제학술지 `나노 레터스(Nano Letters)'에 지난 8월 18일 자에 온라인 게재됐으며 10월 호의 표지 논문(front cover)로 선정됐다. 이번 연구는 유체 채널 내에 가열 및 온도 측정의 기능성을 통합한 이번 연구와 비슷한 접근법으로 자성(magnetic) 혹은 압전(piezoelectric) 기술을 채널 공진 센서 기술과 융합해 자기장(magnetic field) 혹은 음향장(acoustic field)을 정밀하게 분석할 수 있는 플랫폼 등으로의 아이디어 확장이 가능하다. 측정 기법의 새로운 패러다임을 제시하는 이번 연구는 기존의 상용화된 장비들을 대체할 수 있는 고성능 측정 장비의 개발 등을 촉진할 것으로 기대된다. 한편 이번 연구는 한국연구재단의 중견연구자 지원사업과 기초연구실 지원사업, 그리고 산업기술평가관리원의 시장선도를 위한 한국 주도형 K-센서(K-Sensor) 기술개발 사업의 지원을 받아 수행됐다.
2022.11.21
조회수 7156
<<
첫번째페이지
<
이전 페이지
21
22
23
24
25
26
27
28
29
30
>
다음 페이지
>>
마지막 페이지 83