< (왼쪽부터) 신소재공학과 육종민 교수, 박정재 박사 >
퇴행성 질환을 유발하는 아밀로이드 섬유 단백질의 초기 불안정한 움직임과 같은 생명 현상을 분자 수준에서 실시간 관찰이 가능한 기술이 개발되었다. 이를 통해 알츠하이머나 파킨슨 병과 같은 퇴행성 질환의 발병 과정에 대한 실마리를 제공할 수 있을 것으로 기대된다.
우리 대학 신소재공학과 육종민 교수 연구팀이 한국기초과학지원연구원, 포항산업과학연구원, 성균관대학교 약학대학 연구팀과 함께 그래핀을 이용해 알츠하이머 질병을 유발한다고 알려진 아밀로이드 섬유 단백질의 실시간 거동을 관찰할 수 있는 새로운 단분자 관찰 기술(single-molecule technique)을 개발했다고 30일 밝혔다.
단분자 관찰 기술은 단일 분자 수준에서 발생하는 현상을 관찰할 수 있는 기법을 말한다. 생체 과정에서 수반되는 단백질 간의 상호작용, 접힘, 조립 과정 등을 이해하는 데 핵심적인 기술이다. 현재까지 단분자 관찰 기술로는 특정 분자를 식별하기 위한 형광 현미경을 이용해 관찰하거나, 단백질을 급속 냉동시켜 움직임을 고정해 분자 구조를 해석하는 초저온 전자현미경 기법이 활용 돼왔다.
하지만, 자연 그대로의 단백질을 특별한 전처리 없이 분자 단위에서 실시간으로 관찰할 수 있는 기술은 여전히 부재한 상황이었다.
최근 이에 대한 대안으로 물질을 얼리지 않고 상온 상태에서 관찰하는 액상 전자현미경 기술이 최근 주목을 받고 있다. 이 기술은 얇은 투과막을 이용해 액체를 감싸 전자현미경 내에서 물질의 변화를 관찰할 수 있는 기술이지만, 두꺼운 투과 막에 의한 분해능 저하와 전자빔에 의한 단백질 변성은 해결해야 하는 숙제였다.
육종민 교수 연구팀은 차세대 소재로 주목받고 있는 그래핀을 이용해 막에 의한 분해능 저하와 전자빔에 의한 단백질 변성 문제를 해결하며, 단백질의 거동을 실시간 관찰할 수 있는 단분자 그래핀 액상 셀 전자현미경 기술을 개발했다. [그림 1]
< 그림 1. 단분자 그래핀 액상 셀 전자현미경 모식도 및 성능: 그래핀으로 인한 전자빔에 의한 단백질 손상 억제 효과와 실제 액상 내 아밀로이드 베타 섬유 관찰 >
이번 연구에서 투과 막으로 이용한 그래핀은 원자 단위의 두께를 가지고 있어 분자 수준 관찰을 가능하게 할 뿐만 아니라, 전자빔에 의한 단백질의 산화를 방지하는 산화 방지 역할을 해 기존 대비 40배 가량 변성을 억제해 단백질의 거동을 실시간으로 관찰할 수 있게 했다.
연구팀은 개발한 전자현미경 기술을 활용해, 알츠하이머 질병을 유발한다고 알려진 아밀로이드 베타 섬유의 초기 성장 과정에서 발현되는 분자 불안정성을 세계 최초로 관찰했다. [그림 2]
< 그림 2. 아밀로이드 섬유의 불안정성을 보여주는 시간에 따른 변화: 아밀로이드 단백질은 지퍼와 같은 분자들의 맞물림 구조에 따라 다양한 형태가 나타나는 다형성을 가지고 있는데, 연구팀은 완전한 지퍼구조가 형성되지 않은 초기 상태에서는 불안정한 다형성 변화가 발생함을 증명하였음 >
이 전자현미경 기술은 온전한 단백질의 다양한 거동들을 분자 수준에서 관찰을 가능하게 하므로, 코로나19와 같은 바이러스성 단백질의 감염 과정, 퇴행성 질환을 일으키는 아밀로이드성 단백질의 섬유화/응집 거동 등과 같이 단백질의 상호작용에 의한 생명 현상을 이해하는 데 활용될 수 있을 것으로 기대된다.
육 교수는 "현미경 기술의 발전은 생명과학 및 공학 기술 발전의 토대가 되는 것으로, 분자 단위의 현상을 관찰할 수 있다면 단백질들의 상호작용을 이해하고 조절할 수 있는 실마리를 제공할 수 있으며, 이를 통해 알츠하이머와 같은 퇴행성 질환의 신약 개발에 도움을 줄 수 있을 것으로 기대한다ˮ 라고 말했다.
< 그림 3. 초기 아밀로이드 섬유 내에서 발생하는 불안정성의 분자 단위 실시간 이미지: 형태적인 불안정성을 일으키는 원인이 단백질 간 결합 사이의 물 분자로 인해 나타난다는 것을 확인하였음 >
우리 대학 신소재공학과 졸업생 박정재 박사가 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 머티리얼스(Advanced Materials)' 지난 11월 온라인으로 발표됐다. (논문명 : Single-Molecule Graphene Liquid Cell Electron Microscopy for Instability of Intermediate Amyloid Fibrils).
이번 연구는 한국연구재단의 중견연구자지원사업(MIST) (NRF-2022R1A2C2008929)과 나노 및 소재 기술개발사업(MIST)(NRF-2021M3H4A6A02050365)의 지원을 받아 수행됐다.
팬데믹 이후에도 다양한 신종 감염병이 출현하며 우리는 여전히 강력하고 지속적인 면역 방어를 요구하는 바이러스 위협에 직면해 있다. 동시에 과잉으로 면역 체계가 반응하면 오히려 몸의 조직을 해치는 부작용이 생기기도 한다. KAIST·국제 연구진이 이런 바이러스에 면역 반응을 조절하는 스위치 역할의 단백질을 찾아내는데 성공했다. 향후 감염병 대응과 자가면역질환 치료의 새로운 기반을 마련할 것으로 기대된다. 우리 대학 생명화학공학과 김유식 교수와 미국 플로리다주립대 차승희 교수 공동 연구팀이 세포 내 미토콘드리아에서 유래한 이중나선 RNA가 면역반응을 증폭시키는 메커니즘을 규명하고, 이를 조절하는 단백질 슬러프(SLIRP)가 바이러스 감염과 자가면역질환 양쪽에서 ‘면역 스위치’ 역할을 수행하는 것을 밝혀냈다. 자가면역질환은 면역 체계가 외부 침입자와 자기 조직을 구분하지 못하고 스스로를 공격하는 질환으로, 쉐그렌 증후군, 전신홍반루푸스 등으로 아
2025-05-14생명현상을 이해하고 나아가 신약 개발을 위해 단백질 상호 작용 및 효소-기질 반응 등 마이크로초(micro-second)~밀리초(milli-second) 수준의 짧은 시간 동안 일어난 현상을 이해하는 것이 핵심이다. KAIST 연구진이 생명 현상을 이해하는데 필수적인 생화학 반응의 변화를 수 밀리초 수준에서 정지시키고 분석하는 방법을 개발했다. 우리 대학 화학과 강진영 교수와 물리학과 이원희 교수의 공동 연구팀이 초고속 생화학 반응 연구를 위한 ‘패릴렌(parylene)’* 기반 박막 미세유체 혼합-분사 장치’를 개발했다고 24일 밝혔다. *패릴렌: 단백질 반응을 초고속으로 관찰하기 위한 미세유체(microfluidics) 장치를 만드는 핵심 재료로 수 마이크로미터의 얇은 박막형태로 스프레이 제작이 가능하게 만든 소재임 이번 연구는 기존에 제시됐던 시간 분해 초저온 전자현미경(이하 TRCEM, Time-resolved cryo-elect
2025-03-24중증급성호흡기증후군(이하 SARS) 코로나바이러스와 같은 코로나 19(COVID-19)는 전 세계적 팬데믹으로 짧은 시간 안에 확산되었지만 왜 급격히 복제돼 빠르게 전염되는지 기전이 아직까지 규명되지 않았다. 우리 연구진이 코로나바이러스 핵심 효소 단백질(헬리케이스)의 복제과정이 급격히 촉진되어 전염되는 메커니즘을 밝혀내며 바이러스 백신 및 치료제 개발에 새로운 가능성을 제시했다. 우리 대학 생명과학과 이광록 교수 연구팀이 nsp13 단백질*은 두 가지 활성을 가지고 있어 시너지 효과를 내며, 이를 통해 SARS 코로나바이러스의 유전물질인 RNA 복제를 촉진한다는 기전을 규명했다고 17일 밝혔다. *nsp13 단백질: SARS 코로나바이러스의 헬리케이스로, 바이러스가 증식하는 데 필수적인 유전자 복제와 전사 과정에 중요한 효소이다. 헬리케이스는 마치 지퍼를 열고 닫는 것처럼 DNA나 RNA의 꼬인 구조를 풀어주는데, 유전정보를 읽거나 복제할 때 유전물질을 먼저 풀려야 하므로
2025-02-17우리 대학 생명과학과 김호민 교수 연구팀과 국제 공동연구팀인 미국 워싱턴대학교 단백질디자인 연구소 (Institute for Protein Design, IPD) 닐 킹 교수 (Prof. Neil King) 연구팀은 컴퓨터기반 단백질디자인 기술을 활용하여 선천성면역을 활성화시키는 새로운 인공단백질을 디자인하고, 그들의 3차원 분자구조를 규명하는데 성공했다고 10일 밝혔다. 김호민 교수 연구팀과 Neil King 교수 연구팀은 컴퓨터 기반 단백질디자인 기술을 활용하여 선천성면역 수용체인 TLR3와 높은 친화도를 갖는 인공단백질을 개발했다. 또한, 초저온 투과전자현미경 (Cryo-EM) 분석을 통해 설계된 인공단백질이 TLR3와 결합하는 분자결합모드를 규명하였다. 특히, 자연계의 TLR3 작용제(dsRNA)와는 전혀 다른 구조를 가진 디자인된 인공단백질에 의해 선천성면역 수용체 TLR3을 효과적으로 활성화시킬 수 있음을 보인 첫 사례이다. 생명과학과 김호민 교수가 교신저자로 참
2025-02-10생물학적 구조는 인공적으로 복제하기 어려운 정도의 복잡한 특징을 가지고 있지만 이러한 생체 구조체를 직접적으로 활용여 제작하는 생체형틀법*은 다양한 분야의 응용으로 사용됐다. KAIST 연구진이 이전에 활용할 수 없었던 생체 구조체를 활용하고, 생체형틀법을 통해 적용될 수 있는 영역을 넓히는데 성공했다. *생체형틀법: 바이러스부터 우리의 몸을 구성하는 조직과 장기에 이르기까지 이러한 생체 구조의 기능을 활용하고자, 생체 구조를 형틀로 사용하여 기능성 구조재료를 만들어내는 방식 우리 대학 신소재공학과 장재범, 정연식 교수 공동연구팀이 생체 시료 안의 특정 내부 단백질을 활용하고 높은 조정성을 지닌 생체형틀법을 개발했다고 10일 밝혔다. 기존의 생체형틀법 방법은 주로 생체시료의 외부 표면만을 활용하거나, 한정된 치수와 샘플 크기로 인해 다양한 생체 구조체들의 구조-기능 상관성을 활용하여 기능성 나노구조체를 제작하기 어렵다는 한계를 가지고 있다. 이런 문제를 해결하고자 연
2025-01-10