-
조광현 교수, 생명과학의 오랜 수수께끼에 대한 새로운 해답 제시
- 시스템 생물학 연구를 통한 생명과학의 한계 극복, 중요한 BIT연구사례
바이오및뇌공학과 조광현 교수 연구팀(제1저자 김동산, 참여연구원 월터콜치)은 컴퓨터시뮬레이션을 통해 세포내 하나의 신호전달경로가 어떻게 다양한 세포반응을 유발하는지에 대한 새로운 해답을 제시했다.
이번 연구는 특히 BT에 IT를 접목시킨 시스템생물학(Systems Biology) 연구를 통해 기존 생명과학의 한계를 극복한 중요한 BIT 융합연구사례로 평가된다. 우선 기존의 다양한 실험조건 하에서 산발적으로 축적된 데이터를 IT를 이용해 효율적으로 집대성하였다. 그리고 이를 기반으로 대규모 컴퓨터시뮬레이션을 수행하고 시스템생물학 관점의 통합분석 작업을 시도함으로써 복잡한 생명현상 이면의 숨겨진 설계원리를 밝혀냈다.
NF-kB 신호전달경로는 세포의 성장, 분열, 사멸을 조절하고, 면역과 염증반응 등 매우 다양한 세포반응에 관여하는 것으로 알려져 있다. 그러나 하나의 NF-kB 신호전달경로를 통해 어떻게 다양한 세포반응이 유도되는지에 대한 핵심 메커니즘은 오랫동안 수수께끼로 남아있었다.그 원인은 NF-kB 신호전달경로가 매우 복잡한 조절관계에 얽혀 있어서 동역학적 특성을 직관적으로 이해하기 어려웠기 때문이다. 또한 많은 실험들이 특정 조건에서 관측된 단면만을 보여주기 때문이었다.
조광현교수 연구팀은 산발적 실험데이터를 집대성하여 확률모델을 개발했고, 대규모 컴퓨터시뮬레이션 작업을 반복 수행했다. 그 결과 NF-kB 신호전달네트워크의 IkB알파와 IkB엡실론이 기하학적으로 동일한 형태의 음성피드백회로를 형성하고 있음에도, IkB알파는 핵내 NF-kB 신호패턴의 주파수와 진폭을 조절하는 역할을 수행하는 반면, IkB엡실론은 이러한 NF-kB 신호의 무작위적 변화를 유발하는 특성이 있음을 알아냈다. 그리고 이러한 상동체(paralog)가 형성하는 중첩된 음성피드백회로의 복합적 작용이 결국 세포반응의 다양성을 유도하는 핵심 메커니즘이라는 것을 밝혀냈다.
이 연구는 교육과학기술부 지원 연구사업의 일환으로 수행됐고, 연구결과는 지난 7일, 실험생물학계 권위지 ‘파셉저널 (The FASEB Journal)’ 온라인판에 게재됐다. 전통적 실험생물학 저널에 컴퓨터시뮬레이션만으로 수행된 연구결과가 게재된 것은 매우 이례적인 일이다. 생명과학연구의 전통적인 방식을 벗어나 IT와의 융합연구를 통해 기존의 난제에 대한 새로운 해답을 찾을 수 있음을 보여주는 사례로 평가되고 있다.
조광현 교수는 전기전자공학을 전공하고 국내 최초로 IT의 BT응용으로서 시스템생물학 분야를 개척해오며 지금까지 95편의 국제저널논문을 발표했다.
2009.05.14
조회수 18459
-
조광현 교수, 컴퓨터시뮬레이션 통해 세포 조절회로의 숨겨진 메커니즘 규명
바이오및뇌공학과 조광현(曺光鉉, 38) 교수 연구팀이 컴퓨터시뮬레이션을 통해 세포의 증식과 분화 조절회로에 숨겨진 동역학 메커니즘을 규명하였다. 연구결과는 세포생물학계의 권위지인 저널오브셀사이언스(Journal of Cell Science)지 21일자 온라인판에 표지논문(Cover Paper)으로 선정, 출판되었다.
이번 연구는 특히 수학 모델과 컴퓨터 시뮬레이션을 이용해 세포내 복잡한 메커니즘을 해석해 내고 이를 생화학실험을 통해 재차 검증함으로서 완성되었다. 이는 IT를 BT에 접목시킨 시스템생물학(Systems Biology) 연구를 통해 기존 생명과학의 한계를 극복한 중요한 BIT 융합 연구사례로 평가된다.
세포내 어크(ERK) 신호전달경로는 세포의 증식과 분화를 조절하는 주요 회로로 알려져 왔으며, 최종단의 인산화된 어크 단백질의 시간에 따른 농도변화 프로화일은 세포의 운명을 결정하는 핵심인자로 여겨져 왔다. 그러나 이 회로의 복잡한 동역학적 특성으로 인해 조절메커니즘은 아직껏 잘 밝혀지지 않았다. 曺 교수 연구팀은 어크 신호전달경로 가운데 라프(Raf) 단백질의 신호를 선택적으로 차단하는 알킵(RKIP) 단백질이 매개하여 형성하는 양성피드백과 어크에서 에스오에스(SOS)로 이어지는 신호에 의해 형성되는 음성피드백이 최종 어크 단백질의 동역학 패턴을 결정짓는 주요 조절회로임을 규명해 냈다. 특히 양성피드백은 이 신호전달과정이 외부노이즈에 둔감하도록 스위칭동작을 유발하고 음성피드백은 어크 프로파일의 진동현상을 유발함으로써 다이나믹한 동역학 특성이 결정됨을 밝혀냈다. 이러한 컴퓨터 시뮬레이션 분석결과는 공동연구팀인 영국 글라스고우 암연구소에서 생화학실험을 통해 증명되었다.
이번 연구는 인간의 주요 질환과 관련된 세포내의 근원적인 조절메커니즘을 규명함으로써 차후 생명과학 응용연구의 중요한 발판을 마련하였으며, 또한 BIT 융합연구로서 시스템생물학의 새로운 가능성을 제시하게 됐다. 이번 연구는 교육과학기술부지원 연구사업의 일환으로 수행되었다.
<2009년 1월 21일자 온라인판, 인터넷주소>
http://jcs.biologists.org/content/vol122/issue3/cover.shtml
2009.01.29
조회수 22703
-
차세대 투명 저항 변화 메모리(TRRAM) 세계 최초 개발
- KAIST 전자전산학부 임굉수, 박재우 교수 연구팀
- 美 물리학회지, 응용물리학회지, 외국 인터넷 매체에 소개
미래 다가올 투명전자 기술의 밑거름이 되는 투명 메모리 소자가 국내 연구진에 의해 세계최초로 개발됐다.
KAIST 전자전산학부 임굉수(林宏樹, 62), 박재우(朴在佑, 44) 교수팀은 금속 산화물의 저항 변화를 이용한 차세대 투명 저항 변화 메모리(Transparent Resistive Random Access Memory: TRRAM) 소자 개발에 성공하여 미국 응용물리학회지(Applied Physics Letters) 12월호에 발표하였으며, 미국 물리학회(American Institute of Physics, 12월 9일자)로부터 주목 받는 기술로 선정되어 보도자료(Press Release: The Clear Future of Electronics)로 소개 되었다.
특히, 각종 외국 인터넷 뉴스매체에서도 이번에 개발된 투명 메모리 소자가 세계 1위 휴대폰 제조업체인 노키아에서 제안한 차세대 투명 휴대폰(일명: Morphy)에도 적용이 가능하다는 기사들을 게재했다.
이번에 개발된 투명 메모리 소자는 현재 일반인들이 주머니 속에 하나씩 가지고 다니는 USB형태의 플래시 메모리와 같이 전원이 제거되어도 저장된 데이터가 지워지지 않는 비휘발성 메모리 소자와 같은 종류이지만 투명 유리 또는 투명 플라스틱 기판 위에 투명 전극과 투명 산화물 박막 등으로만 구성되어 있어 전체적으로 투명하게 보이며, 기존 실리콘 기반 CMOS(상보적 금속/산화물/반도체) 플래시 메모리 소자보다 제조 공정이 훨씬 간단하고 사용 수명도 10년 이상으로 예상된다. 이 투명 메모리 소자는 기술적으로는 이미 상업개발이 진행되고 있는 저항 변화 메모리(RRAM)를 응용한 것이며, 향후 투명디스플레이등과 같은 투명전자기기와 집적화하여 통합형 투명 전자시스템 구현도 가능하게 되었다.
이번 연구는 KAIST 전자전산학부 박사과정 서중원 학생, 지도교수 임굉수 교수, 그리고 박재우 교수가 공동으로 수행하였으며, 미래 투명전자 기술에서 저장 매체로서 핵심적일 것으로 예상되지만 아직 연구 개발이 진행되지 않은 “완전히 투명한 메모리 소자”에 착안하여 연구 개발을 시작하게 되었다.
연구팀 관계자는 “이번 투명 메모리 소자 개발은 기존 실리콘 기반 CMOS 플래시 메모리 시장을 완전히 대체 하는 기술은 아니다” 며, “앞으로 다가올 투명 디스플레이 등과 같은 투명전자 시대에 맞춰 가장 기본적인 저장 매체인 메모리 소자 또한 투명하게 만들고자 하는 취지에서 개발되었고, 이와 더불어 앞으로도 IT 일등 강국으로서의 위상을 이어 나갈 수 있는 발판을 마련한 것에 의미가 있다고”고 밝혔다.
이번 연구는 KAIST BK21 사업 지원으로 수행되었다.
2008.12.16
조회수 19388
-
이상엽교수팀, 시스템생물학 기반 산업용 미생물 개발 전략 제시
-생명공학분야 권위 리뷰지 “생명공학의 동향 (Trends in Biotechnology, Cell Press)” 표지 논문 게재
우리학교 생명화학공학과 및 바이오융합연구소 이상엽(李相燁, 44세, LG화학 석좌교수) 특훈교수와 바이오융합연구소 박진환(朴軫煥, 38세) 박사 연구팀이 다가오는 산업바이오텍 시대에 경쟁력을 갖추기 위한 시스템 생물학 기반의 미생물 대사공학 전략을 개발했다. 이 연구 결과는 셀(Cell)誌가 발행하는 생명공학 분야 최고 권위 리뷰지인 생명공학의 동향(Trends in Biotechnology) 8월호 표지 논문에 게재됐다. 교육과학기술부 게놈 정보 활용 통합 생물공정 개발 사업의 일환으로 수행한 이번 연구는 산업용 미생물을 개발함에 있어 유전체 및 기능 유전체 정보와 가상세포 시뮬레이션을 통합 적용하고, 발효 및 분리정제 공정까지 고려한 대사공학 방법을 제시함으로서 다가오는 바이오 기반 산업 시대에 경쟁력을 갖는 균주 개발 전략을 체계적으로 제시한 것으로 평가됐다.
유가가 고공행진을 계속하고 지구온난화 등 환경문제가 심각하게 대두되는 지금 세계 각국은 바이오매스를 이용하여 화학, 물질, 에너지 등을 생산하는 바이오기반 산업 시스템 구축에 박차를 가하고 있다. 미생물을 이용한 산업바이오텍 공정이 경쟁력을 갖추기 위해서는 자연계에서 분리된 미생물의 낮은 성능을 대폭 향상시키기 위하여 대사공학으로 미생물을 개량하여야 한다. 기존의 산업바이오텍에 사용되는 미생물 균주 제조 방법과 공정개발은 무작위 돌연변이화 및 균주의 일부분만 직관적으로 조작하는 방법에 의해 수행되었다. 하지만 이들은 원하지 않은 부분에도 돌연변이를 일으켜, 균주 전체의 대사 상태를 한눈에 볼 수 없으며, 향후 환경이 바뀌었을 때 추가 개발이 용이하지 않다는 단점이 있었다. 李 교수 연구팀은 시스템 생물학의 원리에 입각하여 크게 3 단계로 나누어 체계적으로 미생물을 개발하는 새로운 전략을 제시하였다. 1단계에서는 미생물의 조절 기작 등 연구를 통해 알게 된 사실에 기반하여 게놈상의 필요한 부위만을 조작, 초기 생산균주를 제작한다. 2단계에서는 시스템 수준의 분석을 통하여 확보한 오믹스 데이터와 가상세포의 시뮬레이션 결과를 융합, 세포내의 대사흐름 최적화를 통해 목적 산물을 최고 수율로 생산할 수 있는 균주를 제작한다. 마지막 3단계에서는 실제 생산 공정 개발 단계에서 생길 수 있는 문제점들을 시스템 생물학 기법에 입각하여 해결함으로써 우수 산업용 균주의 제조를 완료한다. 이 전략은 시스템 생물학 원리를 이용하여 균주 전체의 생리 대사 현상을 한눈에 파악하면서 균주의 대사공학적 개량이 가능하다는 점에서 기존의 방법과는 차별된 한 차원 높은 수준의 균주개발 전략이라고 할 수 있다.
이번 논문의 첫 번째 저자인 朴 박사는 "최근 연구팀에서 수행 중인 시스템 생물학 기법을 이용한 실제 균주 제작 과정의 경험과 결과를 토대로 전략을 확립 제시하였기 때문에 실제 생명공학 산업계에 종사하는 연구자들에게 실질적인 도움이 될 것으로 생각한다“고 말했다. 李 교수팀은 실제로 이 전략을 이용하여 최근 용도가 다양한 숙신산을 고효율로 생산하는 미생물과 고수율의 아미노산 (발린, 쓰레오닌) 생산균주, 바이오부탄올 생산균주 등을 개발한 바 있다.
<용어설명>
1) 가상세포: 세포내에서 일어나는 모든 효소 반응을 컴퓨터에서 재구성하여 실제 세포처럼 반응 시켜 결과를 예측하는 시스템을 말한다.
2) 대사공학: 세포의 대사 및 조절 회로를 체계적으로 조작하여 원하는 생산물을 고효율로 생산할 수 있도록 만드는 기술을 말한다.
3) 오믹스 (omics): 세포 또는 개체 내에서 발현되는 단백체(proteome), 전사체(transcriptome), 대사체(metabolome), 흐름체(fluxome) 등 생명현상과 관련된 중요한 물질에 대한 대량의 정보를 획득하여 이를 생물정보학 기법으로 분석하여 전체적인 생명현상을 밝히려는 학문이다4) 시스템 생물학 (systems biology): 각종 오믹스(transcriptome, proteome, fluxome, metabolome) 데이터를 융합하고 전산 생물학 기법으로 해석하여 세포의 생리 상태를 다차원에서 규명함으로써 세포와 생명체 전체를 이해하고자 하는 학문이며, 이 플랫폼을 기반으로 유용한 미생물의 개발이 가능하다.
2008.07.24
조회수 23523
-
이도헌교수팀, 생물정보학적 연구를 통한 천식 발병 후보 유전자 발견
바이오및뇌공학과 이도헌 교수와 박사과정 황소현씨가 생물정보학 기법을 이용해 기존의 분자생물학적 연구 및 실험 결과에 나타난 천식 관련 단백질들의 상호작용을 분석, 천식 유발에 관여하는 후보 유전자군을 발굴했다.
이 연구결과는 국제학술지 "이론생물학저널(Journal of Theoretical Biology)"에 발표됐으며 기존 연구자료를 새로운 생물정보학 기법으로 분석해 신약 표적유전자를 발굴한 것이어서 신약연구 효율성 향상에 기여할 것으로 전망된다.
연구진은 세계 각국의 분자생물학적 연구자료가 담겨 있는 데이터베이스(OMIM, GEO)에서 천식과 관련 있는 단백질 606개를 찾아내고 이를 시스템 수준에서 연구하기 위해 생물정보학 기술을 이용해 단백질 상호작용 네트워크를 구성했다.
이는 단백질 사이의 상호작용을 연결선으로 표현한 것으로 여러 개의 단백질과 동시에 상호작용을 하는 단백질이 천식유발 단백질 네트워크에서 중요한 역할을 하는 "허브"로 간주된다.
질병과 관련된 질병유전자를 찾기 위해서 기존의 분자생물학적 연구를 통해 몇 가지 유전자들이 밝혀졌지만, 여러 가지 유전적인 요인과 환경적인 요인의 복합적인 작용으로 인해 나타나는 대부분의 복합 질병의 경우는 기존의 분자생물학적인 연구만으로 관련 유전자들을 찾아내기가 어렵다.
이도헌 교수는 "이런 복합적인 질병에서 중요한 역할을 하는 유전자를 찾아내려면 한 두 유전자와 질병의 관계를 조사하기 보다는 그 질병과 관련된 여러 유전자들의 연관성을 살펴보는 시스템 수준의 연구가 필요하다"고 말했다.
2008.07.01
조회수 21174
-
KAIST, POSTECH 공동연구팀 전자의 입자-파동 이중성에 대한 새로운 이론 발표
- 비평형 상태에서의 물질특성 규명에 도움 기대- 미국 물리학회 피지컬 리뷰 포커스 프로그램에 소개
반도체에 형성된 가는 선 모양 구조에서의 전자 움직임을 공동 연구한 KAIST(총장 서남표) 물리학과 심흥선(沈興善, 35) 교수와 대학원생 윤석찬(尹錫燦, 25)씨, 포스텍(총장 백성기) 물리학과 이현우(李鉉雨, 39) 교수팀은 최근 미국 물리학분야 학술지(Physical Review Letters)를 통하여 전자의 입자-파동 이중성에 대한 새로운 이론을 발표했다고 밝혔다.
이 논문의 결과는 전자의 입자-파동 이중성에 대한 많은 학자들의 예상을 벗어난 결과로 거의 동시에 비슷한 결과를 얻은 이스라엘 학자들의 논문과 같이 지난 22일자 미국 물리학회 피지컬 리뷰 포커스(Physical Review Focus)에 소개되었다. 이 프로그램은 미국물리학회에서 출간하는 여러 학술지에 매월 게재되는 천 편 이상의 논문들 중 과학계 전반에 특별 소개가 필요하다고 판단되는 논문을 한 달에 5편 내외를 골라 논문의 내용과 가치를 전문가의 평과 함께 소개하고 있다.
전자와 같은 입자들이 야구공과 같은 입자처럼 행동할 수도 있지만 어떤 경우에 음파나 빛과 같이 파동처럼 행동할 수도 있다는 양자물리학의 입자-파동 이중성 이론이 많은 학자들이 생각했던 것보다 복잡하다는 사실이 이번 공동연구를 통해 밝혀졌다. 입자-파동 이중성은 원자의 성질뿐 아니라 금속이나 반도체와 같은 여러 물질의 특성에 영향을 미치는 중요 요인으로 이 발견은 양자물리학의 효과가 강하게 나타나는 저온에서의 물질 특성들, 특히 비평형 상태에서의 물질 특성을 규명하는데 도움이 될 것으로 기대된다.
전자들 간에는 서로 밀어내는 강한 전기력이 작용하고 이 전기력을 통해서 각 전자들은 다른 전자들의 위치를 어느 정도 파악할 수 있다. 이제까지 많은 학자들은 전기력이 강해질수록(예를 들어 전자간의 거리가 작아져서) 전자 위치가 더 정확히 파악되고 이로 인해 파동성이 약해지고 입자성이 강해질 것으로 믿어왔다. 그런데 이번 공동논문에 의하면 전기력이 강해질 때 어느 한계까지는 파동성이 점점 약해지지만 전기력의 세기가 이 한계를 넘어서고 나면 파동성이 다시 강해지고, 전기력의 크기가 더 커져 두 번째 한계를 넘고 나면 파동성이 다시 약해지는 형태로, 파동성의 세기가 전기력의 세기에 따라 진동할 수 있다고 한다.
2008.05.29
조회수 18053
-
생명화공 정희태교수, 세계최초 액정 초미세 나노패턴소자 개발
- 15일자 네이처 머티리얼스誌 온라인판 게재- 나노-바이오 전자소자 산업분야에서 시장 선점 기대우리 학교 생명화학공학과 정희태(鄭喜台, 42) 교수 연구팀이 액정 디스플레이 (LCD)의 핵심소재로 잘 알려져 있는 액정물질을 이용, 나노기술의 핵심인 차세대 초미세 나노패턴소자를 세계최초로 개발했다. 관련 연구논문은 15일자 네이처 머티리얼스(Nature Materials)誌 온라인판에 게재된다. 나노패턴 제작은 차세대 초고밀도 반도체 메모리기술과 바이오칩 등 나노기술의 핵심분야다. 특히, 鄭 교수팀의 액정을 이용한 패턴구현은 기존의 패턴 방식에 비해 대면적을 구현할 수 있을 뿐만 아니라 바이오 특성을 가지는 나노물질도 액정 패턴 내에 배열할 수 있다는 것이 큰 장점이다.
LCD를 구동하는 물질인 네마틱 액정과 달리 鄭 교수가 사용한 스메틱 액정은 LCD 응답특성이 매우 우수함에도 불구하고 자연적으로 존재하는 결함구조 때문에 LCD 구동물질로 사용하지 못하고 있다. 이러한 스메틱 액정은 기판의 표면특성에 따라서 무질서한 형태의 회오리 형 결함구조를 가진다. 이번 연구에서는 마이크로미터 수준의 직선이 새겨진 표면 처리된 실리콘 기판을 사용함으로써 무질서한 회오리 형태의 액정 결함구조를 규칙적으로 제어하였다(첨부 자료그림 참조). 특히 이 공정은 기존의 나노패턴에 적용하는 방식과 비교하여 제작시간을 수십 배 이상 줄일 수 있으며, 결함구조 내에 다른 형태의 기능성 물질도 규칙적으로 배열 할 수 있음을 확인하였다. 이는 다양한 형태의 패턴이 필요한 실제 반도체와 단백질 칩 등의 바이오 소자에 적용할 수 있는 가능성을 제시하고 있다 (자료그림 중 삽입사진 참조).
이번 연구결과로 LCD의 세계적 강국인 우리나라가 액정을 이용한 나노분야에서도 세계 최고의 원천기술을 갖게 되었다. 향후 액정을 이용한 새로운 응용의 신기원을 열게 되었으며, 나노-바이오 전자소자 산업분야에서 시장 선점 및 막대한 부가가치 창출 등을 통해 국가경쟁력 강화에 크게 기여할 것으로 기대된다. 연성재료(Soft Materials)를 이용하여 나노패턴을 제조하는 기술은 전 세계적으로 나노-바이오 분야에서 큰 이슈가 되는 연구로써, 연구의 핵심은 바이오 및 광전자소자 응용을 위하여 대면적에서 결함이 없는 소재의 개발에 있다. 이번 鄭 교수팀이 적용한 액정은 결함구조를 가지는 대표적인 물질로서 지금까지 학계에서는 대면적 나노패턴이 불가능하다고 인식돼 왔다.
鄭 교수는 “이번 연구결과는 연성소재를 이용한 나노패턴소자 제작방식의 기존 개념을 완전히 뒤엎는 것이다. 결함을 없애야만 한다는 기존의 생각에서 탈피하여 결함을 규칙적으로 구현하면 패턴에 이용할 수 있다는 발상의 전환으로 대면적 나노패턴을 개발했다는데 의미가 있으며, 향후 나노분야 전반에 걸쳐 영향이 클 것” 이라고 밝혔다.
이번 연구결과는 鄭 교수(교신저자)의 주도 하에 KAIST 물리학과 김만원 교수팀과 미국 캔트 주립대학의 액정센터 올래그 라브랜토비치(Oleg Lavrentovich)교수가 함께 일궈낸 성과다. 鄭 교수는 나노물질분야에서 사이언스, PNAS, Advanced Materials에 최정상급 논문을 다수 발표하는 등 나노물질 분야에서 차세대 주자로서 두각을 나타내고 있는 젊은 과학자다.
<해설>
액정: 유동성이 있으면서 고체적인 특성을 나타낸다. 전기적 특성이 매우 뛰어나 LCD 구동을 위한 핵심 물질로 사용된다. 네마틱, 스메틱, 콜레스테릭 등 다양한 종류의 액정이 존재한다. 현재 LCD에 사용하는 액정은 네마틱 액정이며 콜레스테릭 액정은 반사거울과 초정밀 온도계에 사용된다. 鄭 교수팀이 사용한 액정은 스메틱 액정으로서 네마틱 액정보다 자연계와 합성물질에서 더욱 많이 존재하고, 산업체와 학계에서 오랜기간 동안 연구해 왔음에도 불구하고 결함구조 등의 문제점으로 인하여 산업에 적용하지 못하고 있는 물질이다.
<첨부. 수 밀리미터 크기의 대면적 액정물질 나노패턴 현미경 사진>우측상단 삽입사진은 액정나노패턴내에 형광나노입자를 규칙적으로 포집한 리소그라피 제작사진
2007.10.15
조회수 25460
-
항공우주공학과 권세진, 심현철교수, 연료전지 무인기개발
- 액상 수소화물에서 수소추출, 연료전지스택에 공급하는 시스템 개발- 액체연료로는 세계최초, 무인기의 임무한계 획기적 연장 가능성 열어
우리 학교 항공우주공학과 권세진(權世震, 48, 사진왼쪽) 교수, 심현철(沈鉉哲, 38, 사진오른쪽) 교수 연구팀이 연료전지로 구동하는 소형 무인기를 개발했으며, 장시간 시험비행에 성공했다.
이번 연구개발 결과는 기존의 소형 무인기 동력원으로 사용되던 2차 전지를 대체할 수 있는 새로운 동력장치인 연료전지를 이용, 무인기의 임무 한계를 획기적으로 확장할 수 있는 가능성을 열었다는 데 큰 의의가 있다. 감시정찰을 목적으로 하는 소형 무인기는 미국 등 기술 선진국에서 실용화 되었으나, 동력원인 배터리의 에너지 밀도가 낮아 제한적인 임무수행만이 가능했다. 權 교수 연구팀이 개발한 무인기의 연료전지 동력장치는 소음이 없고 효율이 높으며, 액상 수소화물로부터 수소를 추출하기 때문에 기존의 배터리에 비해 에너지 밀도를 10배 이상 향상시켰다. 이번에 개발된 연료전지는 무인기 뿐 아니라 로봇의 전원으로도 사용이 기대된다.
▣ 개발배경연료전지는 차세대 동력원으로 세계 각국에서 개발경쟁이 치열하다. 국내에서도 몇몇 전자 및 화학 업체에서 노트북 컴퓨터용 연료전지를 개발하여 시연한 바가 있고, 자동차 회사에서는 엔진을 대체하기 위한 연료전지를 연구 중에 있다. 그러나 연료전지의 우수성이 잘 나타날 수 있으며 연료전지가 아니면 구현 자체가 어려운 장치는 무인기나 로봇 등과 같은 소형 모바일 시스템이다. 미국의 해군연구소와 조지아공대(Georgia Tech)의 연구팀이 연료전지 무인기를 연구해 왔으나, 이들은 고압의 수소가스를 저장하여 사용하므로, 에너지 밀도를 높이는 데에는 실패했다. 또한 연료 재보급을 위한 시설 등 운용상의 문제점도 가지고 있다. KAIST의 權 교수 연구팀은 액상 수소화물에서 수소를 추출하여 연료전지 스택에 공급하는 시스템을 개발했으며, 이를 시험용 무인기에 탑재하여 장시간 안정적으로 시험비행 하는데 성공했다.
▣ 핵심기술의 내용權 교수팀에서 사용한 연료인 수소화붕소나트륨(NaBH4)은 불연성이고 안정한 친환경 물질로써, 취급이 용이하고 수소 함량이 높다. 이 물질로부터 추출된 수소는 순도가 높기 때문에 연료전지 시스템 적용이 수월하다. <그림 1>은 프로펠러를 포함하는 전체 시스템의 구성도이다. 수화물을 가수분해하는 촉매 반응기, 전기를 발생하는 연료전지 스택, 동력을 충전 및 공급하는 동력제어장치, 프로펠러를 구동하는 전기모터로 이루어져 있다. 촉매 반응기에서 가수분해 과정을 통해 발생한 수소는 연료전지 스택에서 전기를 발생한다. 전기에너지는 동력제어장치에 충전되었다가 출력 요구 시 전동모터를 구동한다. <그림 2>는 동력발생 장치를 무인기에 탑재한 모습이다. 이번에 개발된 연료전지 무인기는 무게 2kg(연료전지시스템 750g 포함)으로써 500g의 연료를 싣고 10시간 이상 비행할 수 있다. 이는 배터리 동력원을 갖는 기존 무인기 항속시간의 10배에 달한다.
<그림 1> 동력계통의 구성
<그림 2> 동력 장치가 탑재된 무인기
<그림3> 무인기가 비행하는 광경
2007.10.12
조회수 22331
-
우성일 교수, 새로운 고속 연구 기법 개발
박막 재료 분야의 연구 기간, 연구비 수십 배 절감
美 국립과학원회보 인터넷판에 지난 9일 게재
생명화학공학과 우성일(禹誠一, 55 / 초미세화학공정연구센터소장) 교수팀이 연구 성과를 극대화할 수 있는 고속 연구 기법을 개발, 지난 9일(화) 저명학술지인 美 국립과학원회보(PNAS) 인터넷 판에 게재됐다.
禹 교수팀은 박막 재료 분야 연구 공정을 단축하기 위해 서로 조성(혼합비율)이 다른 박막을 한번에 수십 내지 수천 개를 만들고, 구조 분석과 성능 평가를 10배 이상 빠르고 정확하게 할 수 있는 고속 연구 기법을 개발했다. 이 연구 기법은 연구 기간과 연구비를 종래보다 수십 배 이상 줄일 수 있는 획기적인 방법이다.
전자재료, 디스플레이, 반도체 관련 제품에서 박막 재료의 특성이 최종 제품 품질을 결정한다. 한 가지 기능성 박막을 제조, 분석, 성능 평가 하는데 평균 2주 이상 걸린다. 원하는 박막재료를 성공적으로 만들기 위해서는 수천 번 이상의 실험이 필요하다.
기존 박막 제조 장치는 기상화학증착법, 스퍼터링(SPUTTERING), 물리증착법, 레이저휘발법 등 고진공을 요구하는 고가 장비다. 이 장비로 다양한 조성의 박막을 제조하기 위해서는 한 개에 수백만원씩 하는 타겟(고체 원료물질)과 1g에 수십만원씩 하는 전구체(휘발성을 가지는 유기금속화합물)가 필요하다. 수만 개의 다양한 조성을 가지는 박막 제조에는 막대한 실험비가 들어간다.
禹 교수팀은 새로운 고속 연구 기법을 이용, 고진공이 필요 없고 컴퓨터와 로봇에 의해 자동화된 ‘조합 액적 화학 증착’ 장비를 개발했다. 이 장비는 기존 장비에 비해 가격이 1/5 정도 저렴하고 유지 보수도 간편하다.
이 장비는 고가의 원료 물질 대신 저렴한 시약을 사용한다. 원하는 조성을 만들 수 있는 시약을 물이나 적당한 용매에 녹인 후 고주파를 가하여 수 미크론 크기의 액적(미세한 액체방울)을 만든다. 이 액적들을 질소로 움직여서 박막을 만들고자 하는 기판 위에 떨어뜨린 후 후속 열처리를 통해 원하는 조성의 박막을 만든다. 이때 박막 시료의 크기를 그림자 마스크를 사용하여 밀리미터 크기로 만들며 이동속도가 조절되는 마스크로 증착 시간을 조절하면 다양한 조성의 박막을 한번에 수십 내지 수백 개를 만들 수 있다. 이 장비로 박막 제조에 필요한 재료비는 100g에 수만 원 정도로, 종래방법의 1/100 내지 1/10로 줄일 수 있으며, 연구기간은 수십 분의 일로 줄일 수 있게 된다.
禹 교수는 “이 새로운 연구 기법을 박막 재료 분야 연구뿐만 아니라 기존 연구 방법으로 발견하지 못한 핵심 에너지, 재료, 건강 분야 소재 개발에 광범위하게 활용하면 큰 효과를 가져올 것이다.”라고 말했다.
‘조합 액적 화학 증착’ 장비는 현재 국내 특허를 출원하고 일본과 독일에 국제 특허를 출원중이다. 이 장비는 주문 생산에 의해 일반 연구자들에게도 제공할 예정이다.
2007.01.31
조회수 20899
-
이상엽 교수팀, 美 미생물 분자생물학 리뷰지 논문 게재
대장균 단백체 연구, 국내 연구진이 총정리
과학기술부 시스템생물학 연구개발 사업 결실
생명화학공학과 이상엽 LG화학 석좌교수(李相燁, 42세)와 그의 제자인 한미정(韓美正, 31세)박사(현재 미국 위스타 연구소 및 펜실베니아대학 소속 연구원)의 대장균 단백체 논문이 『대장균 단백체 : 과거, 현재, 미래전망(The Escherichia coli Proteome: Past, Present, and Future Prospects)』이라는 제목으로 한국에서는 처음으로 미국 미생물 분자생물학리뷰(MMBR, Microbiology and Molecular Biology Reviews)誌 6월호에 게재됐다고 밝혔다.
MMBR은 미국미생물학회(American Society for Microbiology)에서 발행하는 70년 전통의 리뷰학술지로서 미생물학 및 미생물 유전학, 분자생물학 등에 관한 바이블과 같은 잡지다. 연간 4회 발행되며 한해 평균 30편 정도의 논문만이 게재된다. 미생물분야 학술지 중에서 영향지수(impact factor)가 17이상으로 가장 높다. 분야 최고의 전문가들의 리뷰논문들이 실리며, 게재되는 논문들의 영향력도 매우 큰 것으로 알려졌다.
이번 논문에서는 지난 1975년도부터 시작된 단백체 기술 발전사, 대장균 단백체에 이용되고 있는 방대한 기술, 현재 대장균 단백체의 연구현황 및 향후 연구방향 등을 총정리했다. 총 335개의 핵심 참고문헌 내용을 포함한 78페이지 분량의 논문으로서 앞으로 대장균 단백체연구의 핵심 참고자료로 활용될 것으로 기대되고 있다. 단백체 기술은 시대 순으로 세부분으로 나눠 자세히 언급했다: (1)이차원 전기영동 젤을 이용한 방법(gel based approaches), (2)비전기영동 젤을 이용한 방법(non-gel based approaches) 및 (3)컴퓨터를 이용한 방법(predictive proteomics). 이러한 방법들을 통해 현재까지 밝혀진 1,627 단백질(~38% of 대장균 게놈의 4,237 유전자)에 대한 단백질 정보가 제공되었으며, 대장균 단백체 실험을 위한 최적의 전략 및 방법을 아주 상세히 언급했다. 또한 대장균 단백체의 연구 현황에서는 학문적, 산업적 측면으로 나눠서 그 중요성을 부각시켰다. 학문적으로는 대장균 단백체의 외부 환경요소의 자극(온도, pH, 산소, 영양부족 등)에 따른 세포내의 반응 및 그 유전자의 조절 메카니즘에 대한 정보가 제공되었으며, 산업적으로는 대장균 단백체 정보를 바탕으로 하여 대사공학 및 맞춤형 유전자 조작을 통한 유용 단백질의 생산성 증대 및 개선에 응용한 성공사례를 자세히 언급했다. 마지막으로 단백체 기술의 한계점을 제시함과 동시에 향후 연구방향도 제시했다.
특히, 심사과정에서 이 논문을 접한 외국 전문가들은 이 논문을 표준(standard)으로 하여 인터넷상에서 대장균 단백체 정보를 총 정리한 웹사이트 운영을 요청해 왔으며, 현재 李 교수팀은 관련 웹사이트를 준비 중에 있다.
韓 박사는 “본 논문은 대장균 단백체의 바이블로서 방대한 자료를 체계적으로 깊이있게 잘 정리했기 때문에 단백체 연구를 처음 시작하는 분들께 많은 도움이 될 것으로 본다”며, “우리나라의 단백체 연구는 세계적 수준이라는 점을 강조하고 싶다.”고 밝혔다.
李 교수는 “우리나라는 미생물 단백체 분야에서 경쟁력이 있을 뿐 아니라, 동식물 대상 단백체 연구도 한국프로테옴기구 등의 왕성한 활동등에서 볼 수 있듯이 국제적으로도 아주 우수한 수준이다. 앞으로 단백체연구를 기반으로 우리나라 생명공학 분야의 학술적 산업적 성과들이 쏟아져 나올 것으로 믿는다.” 라고 말했다.
■ 용어 설명
1) 단백체(proteome): 생명체의 전체 유전자, 즉 유전체(genome)에 의해 발현되는 모든 단백질들의 총합을 말한다. 어떤 단백질이, 얼마의 양으로, 어떤 환경에서 발현되는 가를 파악하는 것을 목적으로 한다. 생명체의 genome이 모든 세포에서 동일한 형태로 존재하며, 생명체가 수행하는 기능의 이론적인 면만을 제시할 수 있음에 반해, 단백체는 세포가 처해 있는 환경에 따라, 그리고 고등 생명체의 경우에는 각 조직 별로 유동적으로 존재하며, 세포의 실제적인 기능을 표현해 준다. 이러한 이유로 급속도로 밝혀지고 있는 미지의 유전자들의 기능을 밝혀 내고자 하는 functional genomics의 한 부분으로 새롭게 부각되고 있고, 세포 내에서 일어나는 실제적인 현상들을 전체 단백질 단계에서 통합적으로 파악하는 수단을 제공한다.
2) 전기영동(electrophoresis): 전기장의 영향을 받아 하전된 물질이 유동성 매체내에서 이동하는 것을 말한다. 특히 단백질 분리용으로 사용되고 있는 이차원 전기영동법(two-dimensional gel electrophoresis)은 먼저 전하량에 따라 단백질을 분리한 후 아크릴 아마이드 젤상에서 단백질 크기에 따라 분리하는 법이다.
3) 게놈: 생물체를 구성하고 기능을 발휘하게 하는 모든 유전정보를 보유한 유전자의 집합체로서, 부모로부터 자손에 전해지는 유전물질의 단위체를 뜻하기도 한다. 이때 게놈에서 유전정보는 DNA라는 분자구조로 존재하며 4가지 화학적 암호인 A·G·T·C 등의 염기서열로 표기되어 있다.
4) 대사공학: 유전자 재조합 기술과 관련 분자생물학 및 화학공학적 기술을 이용하여 새로운 대사회로를 도입하거나 기존의 대사회로를 증폭/제거/변형시켜 세포나 균주의 대사특성을 우리가 원하는 방향으로 바꾸는(directed modification) 일련의 기술을 말한다.
■ 이상엽 교수 프로필
이상엽 교수는 1986년 서울대학교 화학공학과를 졸업하고, 1991년 미국 노스웨스턴대학교 화학공학과에서 석박사를 마쳤다. KAIST에서 약 12년 동안 대사공학에 관한 연구를 집중적으로 수행하여 그간 국내외 학술지논문 208편, proceedings논문 144편, 국내외 학술대회에서 748편의 논문을 발표하였고, 기조연설이나 초청 강연을 200여회 한 바 있으며, Metabolic Engineering(Marcel Dekker 사 발간) 등 다수의 저서가 있다. 그간 202건의 특허를 국내외에 등록 혹은 출원하였는데, 미국 엘머 게이든상과 특허청의 세종대왕상을 받는 등 기술의 우수성이 입증된 바 있다. 생분해성고분자, 광학적으로 순수한 정밀화학물질, DNA chip, Protein chip 등의 기술 개발에서 탁월한 연구 업적을 쌓았고, 최근에는 소위 omics와 정량적 시스템 분석기술을 통합하여 생명체 및 세포를 연구하는 시스템 생명공학분야 연구와 게놈정보 이용 생물공정기술 개발에 매진하고 있다. 李 교수는 그간 제 1회 젊은 과학자상(대통령, 1998), 미국화학회에서 엘머 게이든(Elmer Gaden)상(2000), 싸이테이션 클래식 어워드(미국 ISI, 2000), 대한민국 특허기술 대상(2001), 닮고 싶고 되고 싶은 과학기술인(2003), KAIST 연구대상(2004), 한국공학한림원 젊은 공학인상(2005) 등을 수상하였고, 2002년에는 세계경제포럼으로부터 아시아 차세대 리더로 선정되어 활동 중이다.
2006.06.12
조회수 24235
-
웹 기반 가상세포 분석시스템 WebCell 개발 공개
-생물정보학 관련 전문 학술지인 바이오인포메틱스지 5월호에 게재 -
과학기술부 특정연구개발사업『시스템생물학연구사업』에 참여하고 있는 KAIST 이상엽, 박선원 교수팀은 생명체의 대사 및 신호전달 기능과 특성의 동적 분석을 위한 웹 기반 소프트웨어 ‘WebCell 시스템’을 개발하여 공개했다.
이 시스템은 현재까지 전 세계적으로 개발된 생체 및 세포 동적 모사 시스템 중 가장 다양한 기능을 제공하는 것으로 시스템 생물학 연구의 국제 공동체인 SBML에 등록되어 공개되며, 연구결과는 영국 옥스퍼드대학 출판사 발간 생물정보학 관련 전문 학술지인 바이오인포메틱스 (Bioinformatics)지 5월호에 게재되었다.
KAIST(한국과학기술원) 생명화학공학과 이상엽(李相燁, 42, LG화학 석좌교수, 생물정보연구센터 소장), 박선원(朴善遠, 58)교수팀은 과학기술부 특정연구개발사업의『시스템생물학연구개발사업』지원을 받아 다양한 생명현상의 정성 정량적 동적모사가 가능한 웹기반 가상세포 “WebCell”을 개발하여 전 세계에 공개했다.
WebCell은 세포 내에서 일어나는 반응들에 대한 결과 예측 뿐 만아니라, 시간에 따른 변화들을 보여주는 동적 분석을 상세한 설명을 따라 인터넷 상에서 쉽게 수행할 수 있다. 또한, 기존 가상세포 소프트웨어의 프로그램마다 다른 형식으로 이루어져 사용에 어려움이 많던 파일들도 자유롭게 원하는 양식으로 변환이 가능하도록 하여, 연구 과정과 결과를 공유하여 더 빠르고 효율적인 연구가 가능해졌다.
또한, 인터넷 상에서 생물학적 네트워크를 모델링하고 만들어진 모델을 저장 및 교환할 수 있으며, 열역학 정보를 이용한 모델 검증, 변수 추정, 구조적 경로 분석 및 대사 조절 분석, 동적 시각화 등을 통한 네트워크의 체계적인 분석 기능을 통합적으로 제공한다.
그리고 기존에 발표된 모델들의 라이브러리도 제공하며 이용자가 자신의 ID로 접속할 수 있는 개인 라이브러리도 가질 수 있으므로, 가상세포 연구에 큰 역할을 할 것으로 기대된다.
WebCell이 발표되자마자 시스템 생물학 연구 국제공동체인 SBML(http://sbml.org)에 등록되어 공개되었으며, 연구결과는생물정보학 분야 전문 국제 학술지인 영국 옥스퍼드대학 출판사 발간 바이오인포메틱스(Bioinformatics)지 5월호에 게재되었다.
이상엽 교수는 “향후 대사 흐름 분석 프로그램인 MetaFluxNet, 대사흐름분석 언어인 MFAML, 대사네트워크 전문 데이터베이스인 BioSilico와 연동하여 업그레이드 된 버전의 WebCell을 개발할 예정이며, 궁극적으로 이 모두가 통합된 가상세포를 개발할 예정이다”라고 밝혔다.
WebCell 시스템은 웹브라우저를 통해 http://webcell.kaist.ac.kr 이나 http://www.webcell.org로 접속하여 사용자 계정을 획득한 뒤 이용할 수 있다.
<용어설명>
* SBML(Systems Biology Markup Language): XML을 기반으로 한 언어의 일종으로, 각기 다른 시스템 생물학 소프트웨어간의 가상 세포 모델의 교환을 용이하게 하기 위해 제안된 표준이다. 현재는 국제 공동 프로젝트로 발전하여, 전 세계 60여개 프로젝트가 이 사업에 공동으로 참여하고 있다.
<< WebCell 사용 샘플그림>>
2006.04.28
조회수 21465
-
생명화학공학과 이상엽교수팀, 게놈 정보 이용 숙신산 고효율 생산 균주 개발
과학기술부 게놈정보 활용 통합 생물공정 원천기술 개발 사업 결실
1. 연구 개발 과정 및 결과
전 세계적으로 최근까지 350여종 이상의 생물체에 대한 전체 게놈 서열이 발표되고 1900여종에 대한 게놈서열이 진행되고 있다. 따라서 이들 정보를 활용한 게놈 수준의 연구에 대한 관심이 집중되고 있는 시점에서, 국내에서 게놈에서 생물공정까지 이르는 체계적인 연구기법을 통해 유용한 화학물질을 효율적으로 생산하는 미생물을 개발하는 개가를 올렸다.
KAIST 생명화학공학과 이상엽 LG화학 석좌교수(李相燁, 42세)연구팀이, 자체적으로 완성한 맨하이미아 균주의 게놈 정보를 기반으로 대사공학 기법을 활용하여 숙신산 고효율 생산 균주를 개발하였다고 9일 밝혔다. 이번 연구에 사용된 균주는 이교수팀이 한우의 반추위에서 분리한 맨하이미아균으로서, 이 균주의 게놈 프로젝트 완성 결과는 우리나라 최초의 게놈 논문으로 2004년 10월 네이처 바이오테크놀로지 (Nature Biotechnology)에 게재한 바가 있다.
이 교수는 이상준 박사, 송효학 박사와 함께 과학기술부 게놈 정보 활용 통합생물공정 원천기술 개발사업의 지원으로, 게놈 수준에서의 대사공학 기법을 적용하여 고효율로 숙신산을 생산함과 동시에 문제가 되는 부산물의 생산을 최소화 할 수 있는 균주를 개발하는데 성공하였다. 즉, 이제까지의 균주개발 연구 방식을 뛰어 넘어 게놈에서 유용한 생명공학제품의 효율적인 생산을 가능하게 하는 새로운 연구 모델을 제시하고, 이를 검증받았다는 점에서 그 의미가 더욱 크다.
이 교수팀은 생물정보학 기법을 이용하여 맨하이미아 게놈 정보로부터 숙신산 생산에 직.간접적으로 관여하는 유전자들을 발굴하고, 이를 바탕으로 숙신산은 많이 만들면서 초산, 젖산, 개미산 등 부산물은 거의 만들지 않는 균주를 디자인 하였다. 이렇게 디자인된 균주를 실제 제작하기 위하여 신규 유전자 조작 시스템 개발을 시작으로, 균주 유전자 제거 기술, 형질전환 기술 등을 개발하였고, 회분식 유가식 배양기술을 개발 실제 발효 연구까지 수행함으로서 게놈에서 생물공정에 이르는 체계적인 시스템을 개발하게 되었다.
2. 연구 개발성과 및 향후계획
맨하이미아를 이용하여 생산하는 숙신산은 일명 호박산으로 화학 핵심 전구체로 사용되어지고 있으며, 생분해성 고분자, 청정용매 (green solvent) 등으로도 사용이 가능하여 향후 1조원 이상의 시장규모를 형성할 것으로 예상되고 있다. 이 교수팀이 개발한 숙신산 과생산 균주개발 기술은 향후 우리나라에서 바이오기반의 화학물질 생산기술 개발에 있어 우위를 점할 수 있는 상징적인 의미가 있으며, 실제 바이오 기반 숙신산 생산기술의 상용화 가능성을 높여주었다는 평가를 받고 있다.
선진국을 중심으로 지속가능한 산업개발의 핵심으로서 원유에 의존하지 않고 재생 가능한 원료로부터 화학물질을 생산하는 환경친화적인 기술개발에 집중적인 연구 개발이 이뤄지고 있다. 이러한 시점에서, 이번 이교수팀이 개발한 연구 결과는 국내 바이오산업이 미국, 유럽, 일본 및 다른 선진국보다 우위성을 가질 수 있는 핵심 기술이 될 수 있다는 가능성을 보였다는 점에서 큰 의미가 있다. 특히, 우리나라 생명공학자들이 다양한 산업생명공학 기술 개발에 박차를 가하고 있어 그 전망이 더욱 밝다고 하겠다.
특히, 맨하이미아 균은 숙신산을 생산하기 위하여 다량의 이산화탄소를 고정화함으로써 교토협약 및 UN 기후변화협약에의 대응에도 기여할 뿐 아니라, 배럴당 60불 이상의 고유가 시대에 원유에 의존하지 않고 재생가능한 원료로부터 숙신산 생산을 가능하게 함으로써 같은 기술을 다른 화학물질과 바이오에너지 생산에 적용함으로서 국내 원유 수입 의존도를 줄일 수 있다.
이번에 개발된 숙신산 고효율 균주와 관련하여 대사공학적으로 고효율 숙신산 생산 균주 특허 1건, 핵심 유전자 특허 3건, 배양 특허 1건이 출원되었으며, 미국 미생물학회에서 발간하는 응용미생물 관련 권위 학술지인 응용환경미생물학지(Applied and Environmental Microbiology) 3월호에 게재되었다.
이 교수는 “게놈 정보로부터 균을 체계적으로 엔지니어링하여 숙신산 고효율 균주를 탄생시킨 이상준 박사와 그에 따른 다양한 발효기술을 개발한 송효학 박사가 함께 만들어 낸 훌륭한 합작품이다”라고 평가하고, “향후 관련 기술을 지속적으로 발전시켜 게놈정보를 이용한 통합적인 생물공정 개발 원천기술을 확보하여 우리나라 생명공학 산업의 발전에 기여하고 싶다”고 말했다.
2006.03.14
조회수 20003