< (왼쪽부터) 전기및전자공학부 윤준보 교수, 이용복 박사과정, 나노종합기술원 강민호 박사 >
지상에서 잘 동작하던 반도체 메모리가 우주나 비행기 안에서 갑자기 오동작을 일으키는 일이 있는데, 이는 고고도에 존재하는 방사선 때문이다. 이 뿐만 아니라, 최근 자율 주행 운송 수단과 같이 사람의 안전이 중요한 장치에 사용되는 반도체 메모리도 대기 방사선에 의해 오동작할 확률이 있다는 연구 결과들이 보고되면서 방사선에 대해 높은 안정성을 갖는 메모리 소자의 중요성이 점차 증가하고 있다.
우리 대학 전기및전자공학부 윤준보 교수 연구팀이 나노종합기술원(원장 이조원) 강민호 박사와의 협업을 통해 우주 부품 수준의 내방사선 특성을 가지면서도 일반적인 비휘발성 플래시 메모리보다 30,000배 이상 프로그래밍 에너지가 낮은 나노 전자 기계식 비휘발성 메모리 소자를 세계 최초로 개발했다고 28일 밝혔다.
전기및전자공학부 이용복 박사과정이 제1 저자로 수행한 이번 연구는 저명 국제 학술지 `네이처 커뮤니케이션즈 (Nature Communications)' 2023년 1월호에 출판됐다. (논문명: Sub-10 fJ/bit radiation-hard nanoelectromechanical non-volatile memory). (Impact Factor : 17.690). (https://www.nature.com/articles/s41467-023-36076-0)
반도체 메모리 소자들은 동작 원리상 근본적으로 방사선에 취약해, 이를 보완하기 위해서는 복잡한 회로나 추가적인 데이터 프로세싱을 수반하는데 그 과정에서 많은 에너지가 소모된다. 즉, 일반적인 반도체 메모리 소자들은 내방사선과 낮은 동작 에너지를 동시에 만족하는 것이 매우 어렵다는 것을 의미한다.
< 그림 1. 나노 전자 기계식 메모리 구조와 동작 메커니즘 >
윤준보 교수 연구팀은 방사선에 원천적으로 강인한 특성을 가진 나노 전자 기계 기술(Nano Electro Mechanical System, NEMS)을 활용해 고에너지 방사선에도 강인할 뿐만 아니라 매우 낮은 프로그래밍 에너지를 가지고, 전원이 공급되지 않아도 저장된 정보를 유지할 수 있는 비휘발성 메모리 소자를 세계 최초로 개발했다.
연구팀은 반도체 메모리를 사용하는 대신, 나노 크기의 매우 작은 기계 구조에 전기 신호를 가함으로써 나노 기계 구조체가 실제로 움직여서 하부 전극에 붙고 떨어지는 방식을 사용하였다. 또한, 매우 낮은 프로그래밍 에너지를 달성하기 위해 파이프-클립 스프링 구조와 구부러진 외팔보 구조로 구성된 상부 전극을 도입했으며, 특히 파이프-클립 모양의 나노 기계 구조에 전류를 가해 열을 내는 구동 방식을 통해 프로그램된 구조체가 초기 상태로 복구할 수 있도록 하여 반복적인 프로그램 동작에도 낮은 프로그래밍 에너지를 유지할 수 있도록 하였다.
연구진은 나노종합기술원의 반도체 장비·시설 인프라를 활용해 8인치 웨이퍼 수준의 대면적 기판에 신뢰적으로 소자를 제작했고, 제작한 나노 전자 기계식 비휘발성 메모리의 프로그래밍 에너지는 차세대 메모리들과 비교했을 때도 매우 낮은 수준이었다. 또한, 기계적인 움직임을 기반으로 하는 동작 방식 덕분에 고에너지 방사선 조사 후에도 누설 전류 증가, 동작 전압 변화, 비트 오작동 등의 성능 저하 없이 우수한 내방사선 특성을 보였다.
< 그림 2. 나노 전자 기계식 메모리 사진 >
연구개발에 주도적으로 참여한 이용복 박사과정은 “이번 연구 결과는 연구팀이 보유한 나노 전자 기계 설계 기술과 나노종합기술원의 첨단 공정 기술이 만나 내방사선 특성과 낮은 동작 에너지 소모를 동시에 만족하는 비휘발성 메모리를 세계 최초로 구현했다는 점에서 중요한 의미를 가지고, 해당 기술은 우주 환경에서의 인공지능, 초안정성 자율주행 시스템 등 내방사선과 높은 에너지 효율성이 필요한 다양한 미래 응용 분야에서 핵심 기술이 될 것” 이라고 말했다. 또한, “세계 차세대 반도체 시장에서 우리나라가 메모리 원천 기술을 선도할 수 있도록 기여하고 싶다”며 앞으로의 계획을 밝혔다.
해당 기술과 관련해 미국, 중국, 대만, 한국 등에 6건의 특허가 출원돼 있다.
한편, 이번 연구는 한국연구재단의 차세대지능형반도체기술개발사업과 삼성전자의 지원을 받아 수행됐다.
우리 대학 전기및전자공학부 정명수 교수 연구팀(컴퓨터 아키텍처 및 메모리 시스템 연구실)이 컴퓨터의 시간을 멈추는 하드웨어/소프트웨어 기술, `경량화된 비휘발성 컴퓨팅 시스템(Lightweight Persistence Centric System, 이하 라이트PC)'을 세계 최초로 개발했다고 25일 밝혔다. 연구진의 컴퓨터에서는 시간이 멈춰진 순간의 모든 정보(실행 상태 및 데이터)는 전원 공급 여부와 관계없이 유지되며, 유지되는 모든 정보는 언제든 사용자가 원할 때 바로 복원, 작동될 수 있다. 기존의 컴퓨터는 휘발성 메모리인 D램을 메인 메모리로 사용하기 때문에 전원이 사라지면 메모리가 저장하고 있는 데이터들을 잃어버린다. 이러한 D램보다 적은 전력 소모와 큰 용량을 제공하는 비휘발성 메모리(인텔의 옵테인 메모리)는 영구적으로 데이터를 기억할 수 있는 특징이 있다. 하지만, 복잡한 내부 구조 설계로 인한 느린 성능 때문에 온전히 메인 메모리로 사용되지 못하고, D램과 함께
2022-04-25우리 대학 신소재공학과 박병국 교수 연구팀이 차세대 비휘발성(Non-volatile) 메모리인 *스핀궤도토크 자성메모리(SOT-MRAM)의 스위칭 분극을 전기장 인가를 통해 임의로 제어하는 소재 기술을 개발했다고 21일 밝혔다. * 스핀궤도토크 자성메모리: 면방향 전류에서 발생하는 스핀전류를 이용해 자화 방향을 제어하는 동작 방식으로 기존의 스핀전달토크 자성메모리(STT-MRAM) 보다 동작 속도가 10배 이상 빠른 장점이 있다. 연구팀은 이 결과를 이용해 하나의 소자에서 다양한 논리연산이 가능함을 보임으로, 기억과 연산 기능을 동시에 수행하는 스마트 소자의 개발 가능성을 높였다. 특히 이 기술은 차세대 지능형 반도체로 개발되는 프로세싱-인-메모리 (PIM)에 적용할 수 있을 것으로 기대된다. PIM (processing-In-Memory) 기술은 메모리 공간에서 로직 기능을 수행해 프로세서에서 처리하는 데이터양을 획기적으로 줄임으로써, 기존 컴퓨팅 기술인 폰노이만 구조의
2021-12-21우리 대학 전산학부 김종율 박사과정(제1 저자), 장인수 석사 졸업생, 임재성 박사과정과 the University of Texas at Austin, KTH, KAUST 연구진으로 구성된 전산학부 CASYS 연구실 권영진 교수 연구팀이 올해 시스템 분야 최고학회인 SOSP(ACM Symposium on Operating Systems Principles)에 국내에서 최초로 논문을 게재했으며, 동시에 최우수논문상(Best Paper Award)을 수상했다. SOSP는 매 2년마다 열리는 운영체제 시스템 분야 최고의 학회 (채택율 15% 이하)로 우리 대학 권영진 교수 연구팀과 성균관대 엄영익 교수 연구팀이 2021년 각각 국내에서 최초로 논문을 게재하였다. 권영진 교수 연구팀은 “Smart 네트워크 장치를 이용하여 분산파일 시스템의 성능 및 가용성을 높이는 연구”를 통해 클라우드 환경에서 사용자 데이터를 빠르게 저장하고 시스템 장애 시에도 지속가능한 서비
2021-11-25*비휘발성 메모리(이하 NVDIMM)와 *초저지연 SSD(반도체 저장장치)가 하나의 메모리로 통합돼, 소수의 글로벌 기업만이 주도하고 있는 미래 *영구 메모리(Persistent Memory)보다 성능과 용량이 대폭 향상된 메모리 기술이 우리 연구진에 의해 개발됐다. ☞ 비휘발성 메모리(NVDIMM; Non-Volatile DIMM): 기존 D램(DRAM)에 플래시 메모리와 슈퍼 커패시터를 추가해 정전 때에도 데이터를 유지할 수 있는 메모리. ☞ 초저지연 SSD(Ultra Low Latency SSD): 기존 SSD를 개선해, 매우 낮은 지연시간을 갖는 SSD. ☞ 영구 메모리(Persistent Memory): 데이터의 보존성을 가지는 메모리. 우리 대학 전기및전자공학부 정명수 교수 연구팀(컴퓨터 아키텍처 및 운영체제 연구실)이 비휘발성 메모리와 초저지연 SSD를 하나의 메모리 공간으로 통합하는 메모리-오버-스토리지(Memory-over-Storage, 이하 MoS) 기
2021-03-16〈 정호진 박사과정, 이현주 교수 〉 우리 대학 생명화학공학과 이현주 교수가 포항공대 한정우 교수와의 공동 연구를 통해 자동차 배기가스 정화에 사용할 수 있는 분산도 100%의 로듐 앙상블 촉매를 개발했다. 연구팀의 촉매는 자동차 배기가스 정화 반응에서 시중의 디젤 산화 촉매에 비해 50도 낮은 온도에서 100%의 전환율을 달성하는 성능을 보였다. 연구팀의 앙상블 촉매는 기존의 단일원자 촉매, 나노입자 촉매와는 다른 개념으로 금속 앙상블 자리(ensemble site)가 필요한 다양한 분야에 적용 가능할 것으로 기대된다. 정호진 박사과정이 1저자로 참여한 이번 연구 결과는 화학 분야 국제 학술지 ‘미국 화학회지(JACS, Journal of the American Chemical Society)’ 7월 5일자 온라인 판에 게재됐다. (논문명 : Fully Dispersed Rh Ensemble Catalyst to Enhance Low-Tem
2018-07-23