-
김은성 교수팀, 초고체 헬륨에서 숨겨진 상(Hidden Phase) 존재 규명
- 초고체 헬륨에서 나타나는 이력현상과 동적 분산현상의 설명이 가능해져
- 세계적 권위지인‘Nature Physics’4월 5일자 온라인 게재
우리는 평소에 고체, 액체, 기체라는 세가지 대표적인 물질상태에 대해 배운다. 하지만 지난 100년간 물리학자들은 수많은 노력으로 그 외에서 초전도체, 초유체 등 많은 새로운 상태가 있다는 것을 밝혀냈고 이런 발견들은 종종 노벨상으로 이어지기도 했다.
2004년에는 -273℃(200 mK)의 극저온으로 가면 일부 고체 헬륨의 점성이 완전히 사라진다는 놀라운 사실이 발견되었고 이 새로운 상태는 초고체라 불린다. KAIST 물리학과 김은성 교수(39)는 이 초고체 상태를 세계 최초로 보고한 장본인이다. 하지만 왜 초고체가 생기는지 그 근본원인은 아직 베일에 싸여있었다.
최근 김은성 교수와 최형순 박사(30)팀은 교육과학기술부 창의적 연구진흥사업의 지원을 받아 비틀림진동자라는 초정밀 분석장치를 이용해 초고체 상태에 숨겨진 상(像)의 발견에 성공했다.
초고체가 진동의존성과 온도의존성을 보인다는 사실은 김 교수 자신에 의해 이미 밝혀져 있었다. 이번 연구에서는 초고체를 특정 온도에서 약하게 진동시키다가 갑자기 강하게 진동시킬 때 나오는 반응으로 초고체의 동역학을 실시간으로 분석했다. 이 때 김교수팀은 시간에 따른 초고체의 반응이 온도에 따라 크게 달라진다는 사실을 알아냈다. 더불어 연구팀은 진동 세기를 변화시켰을 때 바뀌기 이전 상태의 특성이 어느 정도 지속되는 이력 현상을 발견했다. 이는 초고체 상태에도 여러 단계의 서로 다른 안정한 상태가 존재한다는 것을 뜻한다. 이번 연구결과는 4월 5일 세계적 학술지인 ‘네이처 피직스(Nature Physics)’ 온라인판에 게재됐다.
김 교수는 “이번 연구결과로 21세기 순수물리의 최대 발견 중 하나로 꼽히는 초고체 상태에 대한 이해를 넓혀 초고체 연구분야에서 세계를 주도하는 위치에 서게 됐다”고 의미를 부여했다.
○ 용어해설 : 초유체는 2.17 K에서 액체 헬륨의 점성이 완전히 사라지는 상태를 말함. 초전도체는 저항 없이 전기가 흐를 수 있는 물질임.
<김은성 교수>
KAIST 물리학과 김은성 교수는 ‘초고체’ 현상 이라는 새로운 물질상태를 세계최초로 발견해 이 연구 분야를 개척하였고 이 결과를 인정받아 2008년에는 Lee Osheroff Richardson상을 수상하였다. 현재 교육과학기술부 창의적 연구진흥 사업의 지원을 받아 초고체 현상 규명에 대한 연구에 매진하고 있다. (042-350-2547,eunseong@kaist.edu)
2010.04.05
조회수 16283
-
우성일교수 연구팀, 친환경 고체산화물 연료전지 시스템 개발
-바이오디젤 생산과정의 부산물인 글리세롤을 이용한 고체산화물 연료전지 시스템
-10월 14일 앙게반테 케미 자매지, "켐서스켐(ChemSusChem)" 온라인판에 게재
생명화학공학과 우성일(58)교수 연구팀은 바이오디젤(bio-diesel) 생산과정의 부산물인 글리세롤을 연료로 이용한 고체산화물연료전지 구동기술을 개발하는데 최근 성공했다.
우교수팀은 이번 연구를 통해 글리세롤을 연료로 고체산화물연료전지를 조업하여 발전시 생성되는 이산화탄소의 발생량을 석탄 및 석유에 비해 각각 40%, 26% 가까이 줄이는 결과를 얻었다. 석탄 및 석유를 이용하는 화력발전을 통한 전기 1kWh 생산시 발생하는 이산화탄소는 각각 991g, 782g이다. 반면 글리세롤은 585g이다. 또한 기존 수소를 연료로 이용했을 때의 80%에 달하는 효율을 얻을 수 있었다.
이번연구에 사용한 바이오매스로부터 얻은 글리세롤 개질과정의 이산화탄소는 바이오매스를 생산하는데 재사용함으로써 저탄소, 녹색성장에 획기적으로 기여할 수 있을 것으로 예상된다.
이 연구결과는 지난 14일 앙게반테 케미(Angewandte Chemie)의 자매지인 "켐서스켐(ChemSusChem)" 온라인판에 게재됐으며 관련기술은 국내특허 출원중이다.
연구팀 관계자는 “이번 연구결과는 고체산화물 연료전지에 바이오매스로부터 바이오디젤을 생산할 때 얻어진 글리세롤 연료를 사용함으로써 기존 화석연료보다 이산화탄소의 배출량을 줄이고 배출된 이산화탄소는 바이오매스 생산에 재사용할 수 있어 지구 온난화 방지에 기여할 수 있다”고 말했다.
고체산화물연료전지는 고체산화물을 전해질로 사용하는 연료전지로서 에너지 효율이 ~50%에 달하는 가장 발전된 형태의 연료전지이다. 연료로 쓰이는 수소를 생산하기 위해 탄화수소를 개질하게 되는데 이 과정에서 이산화탄소가 발생하게 된다.
바이오디젤은 브라질, 미국, EU등을 중심으로 고유가에 대응하기 위하여 생산을 확대해오고 있으며, 최근에는 일본, 중국, 인도 등이 후발국으로 참여하여 그 규모가 점차 커지고 있다. 2009년 바이오디젤의 생산량은 78억톤에 달할 것으로 예상되고 있으며 2010년에는 104억톤으로 증가할 것으로 예상된다.
글리세롤은 바이오디젤 1 톤을 생산할 때 0.1 톤 정도 부산물로 생산되는 물질로서 바이오디젤의 공급증가에 따른 잉여의 글리세롤이 생성된다. 고체산화물 연료전지에 잉여의 글리세롤을 연료로 사용하였을 경우 저탄소 녹색 성장에 크게 이바지 할 수 있을 것으로 기대된다.
또한 최근에는 지구온난화 주범인 이산화탄소의 양을 줄이기 위하여 국제적으로 탄소배출권 거래제도에 대한 관심이 집중되고 있는 실정이다.
탄소배출권 거래제도는 전 세계의 온실가스 배출총량을 정하고 이를 국가나 기업별로 할당하는 제도로서 할당량보다 많이 배출하려는 국가나 기업은 할당량보다 적게 온실가스를 배출한 곳으로부터 배출권을 사야한다.
바이오디젤의 경우 1톤을 생산할 때 이산화탄소 2.2 톤의 배출량을 감면받게 되므로 바이오디젤의 부산물인 글리세롤을 이용하여 고체산화물 연료전지를 조업할 경우 탄소배출권을 획득할 수 있어 부가가치를 창출할 수 있다.
이번 연구는 초미세화학공정연구센터(ERC), 에너지, 환경, 물, 자원의 지속 가능성(EEWS) 및 세계수준의 연구중심대학(WCU) 사업의 지원을 받아 생명화학공학과 박사과정 원정연(元正淵)연구원이 주도적으로 진행했다.
켐서스켐(ChemSusChem) Paper Link :
http://www3.interscience.wiley.com/journal/114278546/home
2009.10.27
조회수 21796
-
윤춘섭 교수, 世界 最高 출력 청색 고체레이저 개발
- 레이저 디스플레이 실용화 난제 해결, 가정용 TV에서 대형전광판까지 화질의 혁명 열날 머지않아
디스플레이 기술의 완결판으로 일컬어지는 차세대 레이저 디스플레이의 핵심광원인 청색 고체레이저가 世界 最高 출력으로 개발되었다.
KAIST(한국과학기술원) 물리학과 윤춘섭(尹椿燮, 54) 교수팀이 LG전자와 공동으로 개발한 청색 레이저는 청색의 색감도가 가장 높은 456nm(나노미터) 파장에서 cw(연속파) 1.7W(와트)의 세계 최고출력을 달성하였다. 지금까지 개발된 456nm 파장의 청색 레이저는 2002년 독일 함부르크(Hamburg)대학에서 달성한 0.84W가 최고 출력이었지만 레이저 디스플레이의 실용화에 필요한 2W 수준에는 미치지 못하였다. 이번에 개발된 청색 레이저는 TEMoo(횡모드oo, Transverse Electro Magnetic)의 단일 모드이고, 레이저 헤드의 크기가 4×4×10 cm3의 소형이며 출력 안정도가 ±1% 이내의 매우 우수한 특성을 보유하고 있다.
레이저 디스플레이는 빛의 삼원색인 청, 녹, 적색의 레이저를 광원으로 사용하여 이들 세 가지 색을 주사방식에 의해 적절한 비율로 혼합함으로써 모든 종류의 자연광을 낼 수 있는 장점을 가지고 있다. 따라서 레이저 디스플레이는 선명도, 색구현, 색대비, 휘도, 화면크기에서 픽셀(화소, Pixel) 방식을 사용하는 CRT, LCD, PDP 등 타 디스플레이 기술의 추종을 불허하는 차세대의 궁극적인 디스플레이 기술로 인식되고 있으며, 일본의 Sony, 미국의 Laser Power Corporation, 독일의 Laser Display Technologie 등 선진 디스플레이 강국이 수면 하에서 치열하게 기술 개발을 진행시키고 있다.
고휘도, 대화면 레이저 디스플레이의 실용화를 위해서는 레이저의 출력이 청색 2W, 녹색과 적색이 3W 이상 이고, 출력 안정도가 ±3% 이내 이어야 한다. 삼원색 광원 중 적색은 적색 고출력 레이저 다이오드를 사용하고, 녹색은 기존 네오디뮴 레이저의 1064 nm 파장을 2차 조화파인 532 nm 파장으로 변환시켜 고출력으로 얻는데 별 문제가 없다. 그러나 청색 파장의 기본파 레이저는 3준위(레벨) 레이저로서 4준위 녹색 레이저와는 달리 상온에서 첫 번째 들뜬 상태 에너지 준위에서의 밀도 분포와 재흡수로 인해 2W급의 고출력을 내는 것이 어려웠다. 이는 레이저 디스플레이의 실용화를 가로막는 가장 큰 장애 요인이 되어 왔는데, 尹교수팀의 2W급 고출력 청색 레이저 개발의 의미는 이러한 장애 요인을 제거하여 레이저 디스플레이의 실용화를 가능케 한다는데 있다. 금번 개발된 2W 급 고출력 청색 레이저 기술은 차세대, 고화질, 대화면 레이저 디스플레이에서 국제적으로 월등히 유리한 위치를 점할 것으로 예상 된다.
--------------------
* 고출력 청색 레이저 개발의 의미
디스플레이 기술의 완결판으로 일컬어지는 고선명도, 고색감도, 고휘도, 대화면 레이저 디스플레이는 빛의 삼원색인 청, 녹, 적색의 고출력 레이저 광원이 필수적인데, 이를 위한 cw(연속파) 고출력 녹색 및 적색 레이저는 이미 개발되었으나, 고출력 청색 레이저가 개발되지 못해 레이저 디스플레이 실용화에 가장 큰 장애 요인이 되어 왔다. 최근까지 청색의 색감도가 가장 높은 456 nm 파장의 청색 레이저는 0.84W가 세계 최고 출력이었고, 이는 레이저 디스플레이의 실용화에 요구되는 2W급에 훨씬 못 미치는 수준이다. 따라서 이번 KAIST 물리학과 윤춘섭 교수팀의 2W급 고출력 청색 레이저 개발의 의미는 이러한 장애 요인을 제거하고 레이저 디스플레이의 실용화를 가능케 한다는데 있다.
2004.03.04
조회수 21823