-
신의철, 박수형 교수, 방관자 면역세포의 인체 손상 원리 발견
우리 대학 의과학대학원 신의철, 박수형 교수, 중앙대학교병원 김형준, 이현웅 교수 공동 연구팀이 바이러스 질환에서 방관자 면역세포에 의해 인체 조직이 손상되는 과정을 발견했다.
이번 연구를 통해 바이러스 질환, 면역 질환이 인체를 손상시키는 원리를 이해하고 이를 신약 개발에 적용할 수 있을 것으로 기대된다.
이번 연구 결과는 면역학 분야 국제 학술지 ‘이뮤니티(Immunity)’ 1월자 최신호에 게재됐다.
바이러스에 감염되면 바이러스 증식 자체로 인해 인체 세포가 파괴되지만, 바이러스가 증식해도 직접적으로 인체 세포를 파괴하지 않기도 한다.
하지만 이러한 경우에도 인체 조직은 손상돼 질병을 일으키게 되는데 그 원인이나 과정은 상세히 밝혀지지 않았다. 다만 간염 바이러스에 감염됐을 때 이와 같은 현상이 잘 발생한다는 사실만 알려져 있었다.
면역계의 가장 중요한 특성은 특이성(specificity)으로 바이러스에 감염되면 해당 바이러스에 특이적인 면역세포만 활성화돼 작동을 하고 다른 바이러스들에 특이적인 면역세포들은 활성화되지 않는 것이 일반적이다.
감염된 바이러스가 아닌 다른 바이러스와 관련된 면역세포들이 활성화되는 경우도 있다. 이런 현상은 흔히 ‘방관자 면역세포의 활성화’라는 이름으로 오래 전부터 알려진 현상이다. 하지만 이 현상의 의학적 의미는 불투명했다.
공동 연구팀은 A형 간염 바이러스에 감염된 환자를 분석했다. 연구팀은 해당 바이러스에 특이적인 면역세포뿐 아니라 다른 바이러스에 특이적인 엉뚱한 면역세포들까지 활성화되는 것을 발견했고 이러한 엉뚱한 면역세포에 의해 간 조직이 손상되고 간염이 유발되는 것을 확인했다.
연구팀의 발견은 방관자 면역세포가 인체 손상을 일으키는 데 관여한다는 점을 규명했다는 의의를 갖는다.
이번 발견의 핵심은 바이러스에 감염되면 감염된 인체 조직에서 과다하게 생성되는 면역 사이토카인 물질인 IL-15가 방관자 면역세포들을 활성화시키고, 활성화된 면역세포들은 NKG2D 및 NKp30이라는 수용체를 통해 인체 세포들을 무작위로 파괴할 수 있다는 것이다.
이러한 결과는 IL-15 사이토카인, NKG2D, NKp30 수용체와 결합하는 항체 치료제를 신약 개발하면 바이러스 및 면역 질환에서 발생하는 인체 손상을 막을 수 있다는 중요한 의미를 갖는다.
이번 연구는 중앙대학교 병원 임상 연구팀과 KAIST 의과학대학원이 동물 모델이 아닌 인체에서 새로운 면역학적 원리를 직접 밝히기 위해 협동 연구를 한 것으로 중개 연구(translational research)의 주요 성과이다.
신 교수는 “면역학에서 불투명했던 방관자 면역세포 활성화의 의학적 의미를 새롭게 발견한 첫 연구사례이다”며 “향후 바이러스 질환 및 면역질환의 인체 손상을 막기 위한 치료제 연구를 계속하겠다”고 말했다.
이번 연구는 삼성미래기술육성재단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 방관자 면역세포에 의한 인체 손상 과정 개념도
2018.02.21
조회수 15020
-
강정구 교수, 수십 초 내 충전가능한 물 기반 저장소자 개발
우리 대학 EEWS대학원 강정구 교수 연구팀이 수십 초 내 급속충전이 가능한 물 기반의 융합에너지 저장소자를 개발했다.
이 기술은 그래핀 기반의 고분자 음극 및 나노 금속 산화물 양극 개발을 통한 높은 에너지 밀도를 가지며 급속 충전이 가능한 융합 에너지 저장소자로 향후 휴대용 전자기기에 적용 가능할 것으로 기대된다.
옥일우 박사과정이 1저자로 참여한 이번 연구 결과는 에너지재료분야 국제 학술지 ‘어드밴스드 에너지 머티리얼즈(Advanced Energy Materials)’ 1월 15일자에 게재됐다.
기존의 물 기반 에너지 저장장치는 낮은 구동전압과 음극재료의 부족으로 에너지 밀도가 낮고 급속 충전에 한계가 있었다.
에너지 저장장치는 두 전극에 의해 에너지 저장 용량이 정해지며 양극, 음극의 균형이 이뤄져야 고안정성을 갖는다. 일반적으로 두 전극은 전기적 특성에 차이를 보이고 이온 저장 과정이 다르기 때문에 불균형에 의한 낮은 용량 및 안정성을 보이곤 한다.
연구팀은 전극의 표면에서 빠른 속도로 에너지 교환을 이루게 하고 양극 사이의 에너지 손실을 최소화시킴으로써 고성능 에너지 저장장치를 구현하는 데 성공했다.
연구팀이 개발한 음극소재는 전도성 고분자 물질로 배터리, 슈퍼커패시터 전극 재료로 활용 가능하다. 그래핀 표면과 층 사이에서 그물 모양의 최적화된 외형으로 기존 음극소재에 비해 높은 에너지 저장용량을 갖는다.
양극소재는 나노크기 이하의 금속 산화물이 그래핀 표면에 분산된 외형을 이루고 원자와 이온이 일대일로 저장되는 형식이다.
두 전극을 기반으로 한 연구팀의 에너지 저장 소자는 고용량과 함께 높은 에너지 및 출력 밀도를 보이며 음극과 양극의 물리적 균형을 통해 매우 안정적인 충, 방전 결과를 보였다.
연구팀이 개발한 물 기반 융합에너지 저장소자는 기존의 물 기반 배터리에 비해 100배 이상으로 높은 최대 출력 밀도를 보이며 급속 충전이 가능하다. 또한 10만 번 이상의 높은 충, 방전 전류에서도 용량이 100퍼센트 유지되는 고 안정성을 보였다.
연구팀의 에너지 저장 소자는 USB 충전기나 소형태양전지 등의 저전력 충전 시스템을 통해서도 2~30초 내에 충전이 가능하다.
강 교수는 “친환경적인 이 기술은 제작이 쉽고 활용성이 뛰어나다. 특히 기존 기술 이상의 고용량, 고안정성은 물 기반 에너지 저장장치의 상용화에 기여할 것이다”며 “저전력 충전 시스템을 통해 급속 충전이 가능하기 때문에 휴대 가능한 전자 기기에 적용할 수 있을 것이다”고 말했다.
강원대학교 정형모 교수와 공동으로 진행한 이번 연구는 과학기술정보통신부 글로벌프론티어사업의 하이브리드인터페이스기반미래소재연구단(단장 김광호)의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 실험을 통해 구동된 저장소자 사진
그림2. 물 기반 융합 에너지 저장소자 모식도
그림3. 고분자 사슬 음극 및 금속 산화물 양극 표면 이미지
2018.02.20
조회수 16237
-
최원호 교수, 전기바람 발생 원리 규명
우리 대학 물리학과 최원호 교수가 전북대 문세연 교수와의 공동 연구를 통해 전기 바람(Electric wind)이라 불리는 플라즈마 내 중성기체 흐름의 주요 원리를 규명했다.
이는 플라즈마 내 존재하는 전자나 이온과 중성입자 사이의 상호작용에 대한 기초 연구로 플라즈마를 이용하는 유체 제어기술 등 플라즈마 응용 기술의 발전에 기여할 것으로 기대된다.
박상후 박사가 1저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 1월 25일자 온라인 판에 게재됐다.
두 개의 서로 다른 입자 무리로 구성된 유체역학 문제는 수세기 동안 뉴턴을 포함한 많은 과학자들의 관심을 지속적으로 받아 온 연구주제이다.
전자나 이온과 중성입자 간의 충돌로 인한 상호작용은 지구나 금성의 대기에서도 일어나는 여러 자연현상의 기초 작용으로 흔히 알려져 있다. 플라즈마에서의 전기바람은 이 상호작용을 통해 나온 결과의 대표적인 예다.
전기바람이란 전하를 띈 전자나 이온이 가속 후 중성기체 입자와 충돌해 발생하는 중성기체의 흐름을 말한다. 선풍기 날개와 같이 기계적인 움직임 없이 공기의 움직임을 일으킬 수 있는 방법으로 기존의 팬을 대체할 수 있는 차세대 기술로 주목받고 있다.
최근에는 이와 같은 플라즈마 기술을 적용해 트럭 및 선박에서 발생하는 공기저항을 감소시켜 연료효율의 증가와 미세먼지 발생 감소, 풍력발전기 날개 표면의 유체 분리(flow separation)의 완화, 도로 터널 내 공기저항 및 미세먼지 축적 감소, 초고층 건물의 풍진동 감소와 같은 응용기술 개발이 여러 나라에서 활발히 시도되고 있다.
대기압 플라즈마 내에 전기장이 강하게 존재하는 공간에서 전자나 이온이 불균일하게 분포되면 전기바람이 발생한다. 전기바람의 주요 발생 원인은 현재까지도 명확하게 밝혀지지 않아 유체 제어와 관련한 여러 응용분야에 적용하는데 어려움이 있었다.
연구팀은 대기압 플라즈마를 이용해 전기바람 발생의 전기 유체역학적 원리를 밝히는데 성공했다. 전기 유체역학적 힘에 의한 스트리머 전파와 공간전하 이동의 효과를 정성적으로 비교하는 데 성공했다.
연구팀은 스트리머 전파는 전기바람 발생에 큰 영향을 주지 못하고 오히려 스트리머 전파 이후 발생하는 공간전하의 이동이 주요 원인임을 밝혔다. 특정 플라즈마에서는 음이온이 아닌 전자가 전기바람 발생의 핵심 요소임을 확인했다.
또한 헬륨 플라즈마에서 최고 초속 4m 속력의 전기바람이 발생했는데 이는 일반적인 태풍 속력의 4분의 1 정도이다. 이러한 결과를 통해 전기바람의 속력을 효율적으로 제어할 수 있는 기초 원리를 제공할 수 있을 것으로 보인다.
이번 연구는 하전입자와의 상호작용으로 인해 중성기체 흐름이 발생하는 원리를 실험을 통해 설명했고 정확한 분석법과 설득력을 갖췄다는 평을 받는다.
최 교수는 “이번 결과는 대기압 플라즈마와 같이 약하게 이온화된 플라즈마에서 나타나는 전자나 이온과 중성입자 사이의 상호작용을 학문적으로 이해하는데 유용한 기반이 될 것이다”며 “ 이를 통해 경제적이고 산업적 활용이 가능한 플라즈마 유체제어 분야를 확대하고 다양한 활용을 가속화하는데 큰 역할을 할 것으로 기대된다”고 말했다.
이번 연구는 국가핵융합연구소의 미래선도플라즈마-농식품융합기술개발사업과 산업통상자원부의 사업화연계기술개발사업(R&BD)의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 약전리 대기압 제트 플라즈마 사진
그림2. 대기압 헬륨 제트 플라즈마의 고전압 펄스 폭 및 높이에 따른 전기바람 속력의 변화
2018.02.19
조회수 17292
-
양찬호 교수, 전기적 위상 결함 제어기술 개발
〈 양 찬 호 교수, 김 광 은 박사과정 〉
우리 대학 물리학과 양찬호 교수 연구팀이 강유전체 나노구조에서 전기적인 위상 결함을 만들고 지울 수 있는 기술을 개발했다.
이 기술을 통해 전기적 위상 결함 기반의 저장 매체를 개발한다면 대용량의 정보를 안정적으로 저장할 수 있을 것으로 기대된다.
이번 연구는 포스텍 최시영 교수, 포항 가속기연구소 구태영 박사, 펜실베니아 주립대학 첸(Long-Qing Chen) 교수, 캘리포니아 대학 라메쉬 교수 등과 공동으로 수행됐다. 김광은 박사과정이 1저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 1월 26일자에 게재됐다.
위상학은 물체를 변형시켰을 때 물체가 가지는 성질에 대한 연구를 하는 학문으로, 원과 삼각형은 위상학적으로 동일한 물질이라고 할 수 있다.
2016년도 노벨 물리학상 발표 기자회견에서 노벨위원회는 위상학의 개념을 구멍이 한 개 뚫린 베이글 빵, 구멍이 없는 시나몬 빵, 유리컵 등에 비유했다. 시나몬 빵과 유리컵은 다르게 보이지만 구멍이 없다는 점만 따지면 위상학적으로 같은 물질이 된다. 하지만 구멍의 개수가 다른 베이글과 시나몬 빵은 위상학적으로 다른 물질이 되는 식이다.
즉 물질에서 위상학적이라 함은 연속적인 변형으로는 그 특성을 변화시킬 수 없는 절대적인 보존량을 말한다. 이러한 위상학적 특징을 이용해 정보저장 매체를 만들면 외부의 자극으로부터 보존되며 사용자의 의도대로 쓰고 지울 수 있는 이상적인 비휘발성 메모리를 제작할 수 있다.
강유전체와 달리 강자성체(자기적 균형이 깨진 상태, 외부 자기장을 제거해도 자기장이 그대로 남아있음)의 경우는 소용돌이 형태의 위상학적 결함 구조가 이미 구현됐다.
반면 외부 전기장 없이도 스스로 분극을 갖는 강유전체는 자성체에 비해 위상학적 결함 구조를 더 작은 크기로 안정시키고 더 적은 에너지를 이용해 조절할 수 있다는 장점이 있음에도 불구하고 초보적인 연구 단계에 머물러 있었다. 실험적으로 위상학적 결함 구조를 어떻게 안정화시키며 어떠한 방식으로 조절할 것인지에 대한 연구가 부족했기 때문이다.
연구팀은 문제 해결을 위해 강유전체 나노구조에서 비균일한 변형을 줘 위상학적 결함 구조를 안정시키는 데 성공했다. 연구팀은 강유전체 나노접시(ferroelectric nanoplate) 구조를 특정 기판 위에 제작해 접시의 바닥면에는 강한 압축 변형을 주는 동시에 옆면과 윗면은 변형에서 자유로운 구조를 만들었다.
이러한 구조는 방사형으로 압축변형 완화(Compressive strain relaxation)가 일어나 격자의 변형이 오히려 강유전체의 소용돌이 구조를 안정화시키게 된다. 연구팀은 이번 연구가 고밀도, 고효율, 고안정성을 갖춘 위상학적 결함기반 강유전 메모리에 핵심적인 원리를 제시했다고 말했다.
양 교수는 “강유전체는 부도체이지만 위상학적 강유전 준입자가 국소적으로 전자 전도성을 수반할 수 있어 새로운 양자소자 연구로 확대될 수 있을 것이다”고 말했다.
이번 연구는 한국연구재단의 창의연구지원사업, 선도연구센터지원사업, 글로벌프론티어사업 등의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 전기적 위상 결함 개수를 조절하여 만든 5가지의 다른 위상 구조
2018.02.08
조회수 29290
-
최원호 교수, 플라즈마로 바이오필름 제거 기술 개발
〈 박 주 영 박사과정, 최 원 호 교수, 박 상 후 박사 〉
우리 대학 물리학과 최원호 교수, 서울대 조철훈 교수 공동 연구팀이 대기압 저온 플라즈마를 통해 페트병 등 식품 보관 용기 표면에 존재하는 대장균, 박테리아 등 일명 바이오필름을 손쉽게 제거할 수 있는 기술을 개발했다.
이는 플라즈마를 물에 처리해 활성화시켜 발생하는 화학반응을 이용해 바이오필름을 제거하는 방식으로 기존 기술보다 안전하고 손쉬워 다양한 용도로 사용 가능할 것으로 기대된다.
박상후 박사, 박주영 박사과정이 공동 1저자로 참여한 이번 연구는 재료분야 국제 학술지 ‘미국화학회 어플라이드 머티리얼즈&인터페이시스(ACS Applied Materials & Interfaces)’ 2017년도 12월 20일자에 게재됐다.
대기압 플라즈마는 대기 중에서 여러 형태로 플라즈마 및 2차 생성물을 방출할 수 있는 장점을 갖는다. 번개도 플라즈마의 일종인데 번개를 통해 공기 중 질소가 질소화합물이 돼 땅 속에 스며들어 토양을 비옥하게 만드는 것이 대표적인 사례이다.
이런 장점을 활용해 플라즈마는 에너지 및 환경 분야부터 생의학 분야까지 다양한 연구와 산업분야에 응용되고 있으며 플라즈마의 반응성 및 활용성을 높이기 위한 연구들이 전 세계적으로 활발히 진행 중이다.
최근에는 의료기술, 식품, 농업 등 다양한 분야에 살균을 목적으로 한 활성화, 기능화 등 측면에서 대기압 플라즈마를 적용하고 있다.
그러나 대기압 플라즈마로부터 발생하는 활성종의 종류, 밀도, 역할 등은 현재까지도 명확하게 밝혀지지 않아 기술을 적용하는 데 큰 어려움이 있었다.
연구팀은 플라즈마를 물에 처리시켜 활성수로 만들어 대장균, 살모넬라, 리스테리아 등 유해한 미생물이 겹겹이 쌓여 막을 이룬 형태를 뜻하는 바이오필름을 제거하는 방법을 개발했다.
플라즈마를 처리할 때 발생하는 활성종은 수산기(하이드록시기, OH*), 오존, 과산화수소, 아질산이온, 활성산소 등이다. 연구팀은 그 중 수산기가 다른 활성종에 비해 100 배에서 1만 배 낮은 농도임에도 불구하고 산화력이 높아 바이오필름 제거에 큰 역할을 하는 것을 확인했다.
연구팀은 그 외에 발생된 오존, 과산화수소, 아질산 이온 등에 대해서도 바이오필름을 제거할 수 있는 기능이 있음을 정량적으로 증명했고 이를 통해 살균제로서 대기압 플라즈마의 역할을 규명했다.
연구팀은 향후 후속 연구를 통해 플라즈마로 수산기를 효율적으로 생산할 수 있는 기술을 개발할 예정이다.
최 교수는 2013년 플라즈마 발생이 가능한 포장재를 특허로 등록했고 지도학생 창업기업인 플라즈맵에 기술이전을 완료했다. 이번 연구를 통해 플라즈마 살균 기술의 상용화에 힘쓰는 중이다.
최 교수는 “이번 연구결과는 플라즈마 제어 기술과 플라즈마-미생물 간 물리화학적 상호작용을 이해하는데 유용한 기반이 될 것이다”며 “의학, 농업, 식품 분야에서의 플라즈마 기술의 활용이 가속화되는 계기가 될 것으로 기대한다”고 말했다.
이번 연구는 국가핵융합연구소의 미래선도 플라즈마-농식품 융합기술 개발 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1.플라즈마 발생이 가능한 포장재
그림2.대기압 플라즈마를 이용한 바이오필름 저감 실험 개략도
그림3.대기압 플라즈마 적용 개념도 및 핵심요소 평가 결과
그림4.스타트업 기업인 플라즈맵(Plasmapp)에서 시판중인 STERPACK 제품
2018.01.23
조회수 17293
-
신의철, 정민경 교수, 바이러스 간염 악화시키는 세포의 원리 규명
〈 신 의 철 교수, 정 민 경 교수 〉
우리 대학 의과학대학원 신의철 교수, 정민경 교수와 충남대 의대 최윤석 교수, 연세대 의대 박준용 교수로 이루어진 공동 연구팀이 바이러스 간염을 악화시키는 ‘조절 T 세포’의 염증성 변화를 발견했다.
이번 연구를 통해 다양한 염증성 질환을 이해하고 치료에 적용시킬 수 있을 것으로 기대된다.
이번 연구 결과는 국제 학술지 ‘소화기학(Gastroenterology)’ 2017년도 12월호 온라인 판에 게재됐다.
바이러스성 간염은 A형, B형, C형 등 다양한 간염 바이러스에 의해 발생하는 질환으로 간세포(hepatocyte)를 파괴시키는 특징을 갖는다.
이러한 간세포의 파괴는 바이러스에 의해 직접적으로 일어나는 것이 아닌 바이러스 감염으로 인해 활성화된 면역세포에 의한 것으로 알려져 있다. 그러나 그 상세한 작용 원리는 밝혀지지 않았다.
조절 T 세포는 다른 면역세포의 활성화를 억제해 인체 내 면역체계의 항상성을 유지하는 데 중요한 역할을 수행한다.
최근 연구에 따르면 염증이 유발된 상황에서는 조절 T 세포의 면역억제 기능이 약화되며 오히려 염증성 사이토카인 물질을 분비한다고 알려졌다. 그러나 A형, B형 등 바이러스성 간염에서는 이러한 현상이 과거에는 발견되지 않았다.
연구팀은 바이러스성 간염 환자에게서 나타나는 조절 T 세포의 변화에 주목했다. 이 조절 T 세포가 염증성 변화를 일으켜 TNF라는 염증성 사이토카인(면역 세포에서 분비되는 단백질) 물질을 분비할 수 있다는 사실을 처음 발견했다. 그리고 이 TNF를 분비하는 조절 T 세포가 바이러스성 간염의 악화를 유발함을 증명했다.
연구팀은 급성 A형 간염 환자를 대상으로 분석을 실시해 환자의 조절 T 세포의 면역억제 기능이 저하된 상태임을 밝혔고 TNF를 분비하는 것을 확인했다. 이를 통해 조절 T 세포 변화의 분자적 작용 원리를 밝히고 이를 조절하는 전사인자를 규명했다.
또한 조절 T 세포의 이러한 변화가 B형 및 C형 간염환자에게도 나타남을 발견했다.
이번 연구는 동물 모델이 아닌 인체에서 원리를 직접 밝히기 위해 충남대, 연세대 의대 등 임상 연구팀과 의과학대학원의 면역학 연구팀과의 협동 연구로 이뤄져 중개 연구(translational research)의 모범 사례가 될 것으로 예상된다.
신 교수는 “바이러스성 간염에서 간 손상을 악화시키는 조절 T 세포 변화에 대한 첫 연구사례이다”며 “향후 바이러스성 간염에서 효과적 치료 표적으로 이용할 수 있는 세포와 분자를 규명했다는 의의를 갖는다”고 말했다.
이번 연구는 삼성미래기술육성재단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 조절T세포에 의해 간손상이 악화되는 현상
그림2. 간염 환자와 정상인의 조절T세포 관찰 그래프
2018.01.08
조회수 13266
-
장석복, 백무현 교수, 상온에서 아릴기의 선택적 도입 반응 개발
우리 대학 화학과 장석복 교수와 백무현 교수 공동연구팀이 이리듐 촉매를 활용해 상온에서도 분자 내 원하는 위치에 아릴기를 선택적으로 도입하는 반응을 개발하는 데 성공했다. 또한 계산화학으로 반응 원리를 밝혀내 기존의 반응과 다른 경로로 이루어진다는 사실을 증명했다.
탄화수소는 자연상태에 많이 존재하지만 일반적 조건에서는 반응성이 낮아 합성의 원료로 사용되기 어렵다. 반응을 촉진시키기 위해 금속촉매를 활용하는 등 다양한 연구가 이루어지고 있다.
특히 의, 약학이나 재료화학 분야에서 중요하게 활용되는 대다수의 화합물들이 분자 내에 아릴기를 포함하고 있기 때문에 효율적이고 위치선택적으로 아릴기를 도입할 수 있는 반응의 개발은 유기화학 분야의 지속적인 연구주제이다.
안정적인 탄소-수소 결합에 아릴기 도입 반응을 유도하기 위해서는 탄소-수소 결합에 할로젠 원자나 유기금속을 붙여 사전활성화하거나 이 과정 없이 탄소-수소 결합을 직접 활성화(C-H functionalization)하는 과정을 거친다.
직접 활성화하는 방법이 효율성과 경제성이 뛰어나지만 개발된 반응 대부분이 고온의 반응온도, 과량의 첨가물이 필요한 격렬한 반응 조건을 필요로 하고 탄소-수소 결합이 분자 내에 많이 존재하므로 선택성 확보 역시 어려웠다.
연구진은 이리듐 촉매 하에서 아릴실레인(arylsilanes)을 반응제로 사용하여 탄소-수소 결합 활성화를 통한 아릴화 반응을 상온에서 구현하는 데 성공했다.
여태껏 전이금속 촉매를 사용하는 탄소-수소 결합 활성화를 통한 아릴화 반응이 대부분 높은 온도에서 이루어진 것과 달리 상온에서도 이 반응이 가능할 뿐 아니라, 분자 내에서 위치선택적으로 아릴기를 도입할 수 있다.
상온에서 아릴기 도입 반응에 성공할 수 있었던 것은 실험과 이론연구가 동시에 이루어졌기 때문이다. 기존에 알려진 아릴화 반응경로는 과정중 생성되는 금속교환반응 중간체(transmetallation intermediate)의 안정성 때문에 반응과정에서 높은 에너지가 요구됐다.
원리 연구를 통해 전이금속을 촉매로 하는 탄소-수소 결합 활성화를 통한 아릴화 반응에서 최초로 금속교환반응 중간체를 분리, 분석했다.
이를 바탕으로 금속교환반응 중간체만을 선택적으로 산화시키는 새로운 경로를 개발하여 에너지 장벽을 효과적으로 낮췄다. 또한 밀도범함수를 활용한 계산화학으로 실험 결과를 토대로 제안된 반응경로의 타당성을 검증했다.
장 교수는 “상온에서 위치 선택적 아릴화 반응을 이끌어 낸 것과 더불어 반응 메커니즘 연구를 통해 기존에 통상적으로 제안되어져 왔던 진행경과와는 다른 새로운 반응경로로 반응이 이루어짐을 규명했다”며 “이 반응경로를 알아내고 이를 바탕으로 고온이나 과량의 첨가물 없이도 선택적인 반응방법을 개발하였다는 점에서 그 의의가 크다”고 말했다.
연구결과는 국제학술지 네이처 케미스트리 12월 11일자 온라인 판에 게재됐다.
□ 그림 설명
그림1. 금속교환반응 중간체(transmetallation intermediate)의 X-ray 결정구조
그림2. 밀도범함수를 활용한 계산화학으로 본 중간체의 산화상태와 중간체에서 일어나는 환원성 제거반응(reductive elimination)에 필요한 에너지장벽(energy barrier)간의 상관관계
그림3. 연구진이 제안한 이리듐 촉매를 활용한 아릴화 반응 메커니즘
2018.01.02
조회수 14353
-
정우철 교수, 소량 금속으로 연료전지 수명 극대화기술 개발
〈 정우철 교수(오른쪽)와 연구진 〉
우리 대학 신소재공학과 정우철 교수 연구팀이 서울시립대학교 한정우 교수와의 공동 연구를 통해 소량의 금속으로 연료전지의 수명을 향상시킬 수 있는 새로운 전극소재 기술을 개발했다.
구본재 박사과정과 서울시립대 권형욱 박사과정이 공동 1저자로 참여한 이번 연구는 에너지, 환경 분야 국제 학술지 ‘에너지&인바이러멘탈 사이언스(Energy&Environmental Science)’ 2018년도 1호 표지논문에 선정됐다.
연료전지는 친환경이면서 신재생에너지원으로 주목받고 있는 에너지변환기술이다. 특히 세라믹 소재로 구성된 고체산화물 연료전지는 수소 이외에도 바이오매스, LNG, LPG 등 다양한 종류의 연료를 직접 전기에너지로 바꿀 수 있는 장점을 갖는다. 이를 통해 발전소, 전기자동차, 가정용 예비전원 등 분야에 폭넓게 사용될 것으로 전망되고 있다.
고체산화물 연료전지의 성능을 좌우하는 핵심 요소는 산소의 환원 반응이 일어나는 공기극으로 현재 페로브스카이트(ABO3) 구조의 산화물들이 주로 사용된다.
그러나 페로브스카이트 산화물들은 작동 초기 성능이 뛰어나지만 시간이 지날수록 성능이 저하돼 장기간 사용이 어렵다는 한계를 갖는다.
특히 공기극의 작동 조건인 고온 산화 상태에서 산화물 표면에 스트론튬(Sr) 등의 2차상이 축적되는 표면 편석 현상이 발생함으로써 전극의 성능을 낮추는 것으로 알려졌다. 아직까지 이러한 현상의 구체적인 원리와 이를 억제할 수 있는 효과적인 해결책이 나오지 않았다.
정 교수 연구팀은 페로브스카이트 산화물이 변형될 때 면 내 압축 변형이 일어나 스트론튬의 편석을 발생시키는 것을 계산화학적 및 실험적 결과를 통해 확인했다.
연구팀은 페로브스카이트 산화물 내부의 부분적인 변형 분포가 스트론튬 표면 편석의 주요 원인임을 규명했다.
이를 바탕으로 정 교수 연구팀은 크기가 다른 금속을 산화물 내에 장착함으로써 공기극 소재 내부의 격자변형 정도를 제어하고 스트론튬 편석을 효과적으로 억제하는데 성공했다.
정 교수는 “이 기술은 추가적인 공정 없이 소재를 합성하는 과정에서 소량의 금속입자를 넣는 것만으로 구현된다”며 “향후 고내구성 페로브스카이트 산화물 전극을 개발하는 데 유용하게 활용될 것으로 기대된다”고 말했다.
이 연구는 삼성전자 미래기술육성센터의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 본 연구의 Energy & Environmental Science 논문지의 커버 이미지
그림2. 전극의 격자변형 정도와 Sr 편석, 전극반응의 상관관계
그림3. 개발한 기술을 적용하여 안정화된 고체산화물 연료전지 공기극의 표면
2017.12.26
조회수 17188
-
이진환 교수, 스핀 전류로 초전도를 제어하는 신기술 개발
〈 이진환 교수, 최석환 박사 〉
우리 대학 물리학과 이진환 교수가 포항공대 및 연세대와의 공동 연구를 통해 스핀 전류를 이용해 물질의 초전도를 제어하는 기술을 최초로 개발했다.
연구팀이 사용한 물질은 철계열 초전도체인 FeAs 원자층과 페로브스카이트 Sr2VO3 원자층이 반복해서 자기조립에 의해 형성된 헤테로 구조 물질이다. 스핀 제어 주사 터널링 현미경의 탐침과 시료 사이에 흐르는 스핀 분극 전류에 의해 FeAs층의 자성이 C2구조와 C4구조 사이에서 변화하고 이로 인해 FeAs층의 초전도가 켜지고 꺼짐을 원자수준에서 명확히 보일 수 있었다.
최석환 박사(현 BK 박사후연구원)가 제1저자로 참여한 이번 연구는 대표 물리 학술지 ‘피지컬 리뷰 레터스(Physical Review Letters, PRL)’에 11월 27일자로 PRL 대표 논문(Editors’ Suggestion)으로 출판됐다.
이 연구는 스핀 분극 전류와 비분극 전류를 활용해 자성 배열을 국소적으로 바꿈으로써, 나노 자성 메모리를 구현하거나 초전도를 제어하는 트랜지스터 소자를 개발하는데 필요한 기본적인 물리 원리를 최초로 밝혔으며 동시에 이를 원자 수준에서 규명한 것으로 평가받고 있다.
이 연구는 상위 3%의 가장 중요한 PRL 논문에 대해 해당 분야의 권위자의 해설이 함께 실리는 Viewpoint in Physics에도 선정됐으며, 미국 국립 연구소들이 주도하는 일반인 대상의 과학 전문 온라인 뉴스 매체인 Phys.org에 매월 가장 중요한 10개 연구만 선정되는 특집(Feature) 기사로 소개되기도 했다.
또 이진환 교수가 독자 설계 제작하여 이 연구에 활용된 장비는 지난 10월호 최고 권위의 과학 장비 저널인 ‘리뷰 오브 사이언티픽 인스트루먼츠(Review of Scientific Instruments, RSI)’지의 표지 논문으로 선정되기도 했다.
이 장비의 측정 정밀도를 향상시키기 위해 개발하였으나 일반적인 모든 센서와 증폭기의 성능을 향상시킬 수 있는 수학적인 모델이 같은 과학 장비 저널 RSI에 수학적인 논문으로는 예외적으로 별도 정규 논문으로 게재됐다.
이진환 교수는 “모두가 그 기본 원리가 잘 알려진 간단한 주사 탐침 현미경 또는 상용 현미경으로 실험할 때, 우리는 반강자성 탐침을 이용한 스핀 제어 기능, 고자기장 구조에서 불가능할 것으로 여겨졌던 넓은 가변온도 기능, 체계적인 스핀제어 실험을 위한 다중 시료 장착 기능 등을 과감히 설계에 반영하였고, 그 결과 자연스럽게 다른 경쟁 그룹들이 수년 내에 따라 할 수 없는 자성과 초전도의 동시 제어 실험을 체계적으로 수행할 수 있었다”면서 “학내에 공용 헬륨 액화기가 없는 등 기초과학 연구 환경상의 약간의 어려움이 있지만, 이 연구의 물리학적인 성취를 실용적인 소자로 구현하기 위한 확장 연구와 함께, 앞으로도 보다 다양한 측정 기술 혁신으로 첨단 과학의 발전을 선도할 수 있기 위해 최선을 다할 것”이라고 말했다.
이번 연구는 한국연구재단이 추진하는 미래융합 파이오니어 사업과 이공학 개인기초연구지원 사업 등의 지원을 받아 수행됐다.
이 연구 논문은 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.227001 에서 확인할 수 있으며, Viewpoint in Physics와 Phys.org 특집 기사는
https://physics.aps.org/articles/v10/127 및 https://phys.org/news/2017-12-scientists-superconductivity-currents.html 에서 찾아볼 수 있다.
□ 그림 설명
그림1. 연구 개념도
2017.12.26
조회수 20414
-
최성율 교수, 이차원 소재 이용한 초저전력 유연메모리 개발
〈 최성율 교수, 장병철 박사과정 〉
우리 대학 전기및전자공학부 최성율 교수와 생명화학공학과 임성갑 교수 공동 연구팀이 2차원 소재를 이용한 고집적, 초저전력 비휘발성 유연 메모리 기술을 개발했다.
연구팀은 원자층 두께로 매우 얇은 이황화몰리브덴 채널 소재와 고성능의 고분자 절연막 소재를 이용해 이 기술을 개발했다.
우명훈 석사(현 삼성전자 연구원)와 장병철 박사과정 학생이 공동 1저자로 참여한 이번 연구는 국제적인 재료분야 학술지 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 11월 17일자 표지 논문으로 게재됐다.
사물인터넷, 인공지능, 클라우드 서버 기술 등의 등장으로 인해 메모리 중심의 컴퓨팅 전환과 함께 웨어러블 기기 산업의 수요 증가로 고집적, 초저전력 비휘발성 유연 메모리에 대한 필요성이 커지고 있다.
특히 원자층 두께의 매우 얇은 이황화몰리브덴 반도체 소재는 최근 포스트 실리콘 소재로 주목받고 있다. 이는 얇은 두께로 인해 기존 실리콘 소자에서 나타나는 단채널 효과를 억제해 고집적도 및 전력 소모 측면에서 장점을 갖기 때문이다.
또한 얇은 두께로 인해 유연한 특성을 가져 웨어러블 전자소자로의 응용이 가능하다는 이점이 있다.
하지만 이황화몰리브덴 반도체 소재는 불포화 결합(dangling bond)을 갖지 않는 표면 특성으로 인해 기존의 원자층 증착 장비로는 얇은 절연막을 균일하고 견고하게 증착하기 어렵다는 한계가 있다.
게다가 현재의 액상 공정으로는 저유전율 고분자 절연막을 10나노미터 이하로 균일하게 대면적으로 증착하기가 어려워 저전압 구동이 불가능하고 포토리소그래피 공정과 호환이 이뤄지지 않았다.
연구팀은 문제 해결을 위해 ‘개시제를 이용한 화학 기상증착법(initiated chemical vapor deposition, iCVD)’을 이용해 고성능의 고분자 절연막을 개발해 해결했다.
연구팀은 iCVD 공정을 이용해 이황화몰리브덴 반도체 소재 위에 10나노미터 두께의 터널링 고분자 절연막이 균일하고 견고하게 증착됨을 확인했다.
연구팀은 기존의 이황화몰리브덴 반도체 메모리 소자가 20V 이상의 전압으로 구동되는 반면 이번에 제작한 소자는 10V 부근의 저전압으로 구동됨을 확인했다.
최 교수는 “인공지능, 사물인터넷 등 4차산업혁명의 근간인 반도체 소자기술은 기존 메모리 소자를 뛰어넘는 저전력성과 유연성 등의 기능을 갖춰야 한다”며 “이번 기술은 이를 해결할 수 있는 소재, 공정, 소자 원천 기술을 개발했다는 의의를 갖는다”고 말했다.
이번 연구는 과학기술정보통신부 한국연구재단이 추진하는 글로벌프론티어사업, 미래소재 디스커버리 사업 등의 지원을 받아 수행됐다.
□ 그림 설명
그림1. Advanced Functional Materials 표지
그림2. 제작된 비휘발성 메모리 소자의 개념도 및 소자 단면 고해상도 투과전자현미경 이미지
2017.12.18
조회수 20247
-
한명준 교수, 새로운 양자역학적 자성 상태 확인
〈 한명준 교수 연구팀 〉
우리 대학 물리학과 한명준 교수 연구팀이 중앙대학교, 일본 이화학연구소 (RIKEN), 미국 아르곤 국립 연구소 (Argonne National Laboratory) 등과의 공동연구를 통해 새로운 양자역학적 자성 상태인 ‘Jeff = 3/2’의 존재를 처음으로 확인했다.
양자역학에서는 스핀 각운동량과 궤도 각운동량의 합으로 주어지는 총 각운동량을 보통 영문자 ‘J’로 표현한다. 이번에 확인된 특이 자성은 특정한 조건이 만족될 때만 나타나는 일종의 각운동량으로 볼 수 있는데, 학계에서는 ‘유효 (effective) 각운동량’이라는 의미로 흔히 ‘Jeff’로 표기해 왔다.
유효 각운동량이 3/2이 되는 경우는 그간 그 가능성에 대한 논의가 있기는 했지만 실제로 확인되지 못하고 있었는데 이번에 최초로 발견된 것이다.
이는 향후 초전도 현상, 양자 자성 등 관련 연구에도 새로운 발판이 될 것으로 기대된다.
정민용, 심재훈 석박사 통합과정이 참여한 이번 연구는 국제 학술지‘네이쳐 커뮤니케이션즈(Nature Communications)’에 게재됐다.
최근 학계에서는 스핀-궤도 결합이 강한 상황에서 통상적인 것과는 다른 독특한 양자 상태가 구현될 수 있다는 것이 알려지면서 활발한 연구가 진행되고 있다.
보통 전자의 스핀이나 오비탈이 나타내는 자기 모멘트와 달리 이 두 가지가 강하게 결합하여 형성된 유효 자기 모멘트 Jeff는 특이한 바닥상태와 상호작용 양상을 나타내며 이로부터 새로운 현상과 물성이 발현될 수 있다.
지난 10년 여 간의 연구가 주로 Jeff가 1/2인 경우에 대하여 이루어진 데에 반해 이 값이 3/2이 되는 경우에 대한 연구는 실제 사례를 찾지 못하며 더디게 진전되고 있는 상황이었다.
한 교수가 이끄는 연구팀은 지난 2014년 원자가 아니라 분자 오비탈에 기반해 특정 물질군에서‘Jeff = 3/2’상태가 구현될 수 있는 가능성을 이론적으로 예측한 바 있고 이번 연구는 이를 실험적으로 증명한 것이다.
한 교수 팀은‘Jeff = 3/2’상태에서는 일반적인 스핀 모멘트와는 다른 양자역학적 ‘선택 규칙 (Selection Rule)’이 적용되어야 한다는 점에 착안했다.
엑스레이를 이용해 원자 핵 근처에 있는 전자를 ‘여기 (excite)’시키면 여기된 전자는 다른 전자들과 상호작용을 하는 과정에서 흡수되기도 하고 재방출되기도 하는데 이 때 만족시키게 되는 물리법칙이 ‘선택 규칙 (Selection Rule)’이다.
양자역학에 따르면 이 선택 규칙은‘Jeff = 3/2’상태에서는 매우 독특해 보통의 스핀상태와는 뚜렷이 구분될 것이라는 예측이 가능하다. 이러한 아이디어에 따라 진행된 실험에서는 물질 내의 탄탈륨 원자에서 뽑아낸 두 가지 서로 다른 에너지 영역의 전자가 실제 이론 예측을 따르는 스펙트럼 양상을 보이는 것이 확인됐다.
이는‘Jeff = 3/2’모멘트 고유의 양자역학적 간섭현상이 반영된 것으로 그 존재에 대한 매우 직접적인 증거로 받아들여진다.
이 새로운 양자상태는 통상적인 물질의 자기 상태와 매우 다른 것으로서 그 특성에 대한 연구의 시발점이 될 것으로 기대되고 있다. 또한 이러한 자성상태와 상호작용으로부터 발현되는 다양한 물성에 대한 연구 역시 탄력을 받을 것으로 보고 있다.
이번 연구는 한국연구재단의 일반연구자 지원사업과 해외 과학기술 자원활용사업의 지원을 받아 수행됐으며 한국과학기술정보연구원의 슈퍼컴퓨터 자원을 사용했다.
□ 그림 설명
그림1. ‘Jeff=3/2’상태를 갖는 것으로 밝혀진 갈륨 탄탈륨 셀레늄화합물의 결정구조
그림2. 갈륨 탄탈륨 셀레늄화합물(GaTa4Se8)의 계산된 전자구조
2017.11.30
조회수 19319
-
박병국 교수, 열로 스핀전류를 얻는 소재기술 개발
〈 박병국 교수, 김동준 박사 〉
우리 대학 신소재공학과 박병국 교수 연구팀이 자성메모리(MRAM)의 새로운 동작 원리인 열로 스핀전류를 생성하는 소재기술을 개발했다.
이 연구는 고려대 이경진 교수, 충남대 정종율 교수와 공동으로 수행했고 ‘네이쳐 커뮤니케이션즈(Nature Communications)’ 11월 9일자에 게재됐다.
- 논문명: Observation of transverse spin Nernst magnetoresistance induced by thermal spin current in ferromagnet/non-magnet bilayers - 저자 정보 : 김동준(제1저자, 한국과학기술원 박사과정), 전철연, 최종국, 이재욱(한국과학기술원), Srivathsava Surabhi, 정종율 교수(충남대학교), 이경진 교수(고려대학교), 박병국 교수(교신저자, 한국과학기술원) 포함 총 8명
자성메모리는 실리콘 기반의 기존 반도체 메모리와 달리 얇은 자성 박막으로 만들어진 비휘발성 메모리 소자다.
외부 전원 공급이 없는 상태에서 정보를 유지할 수 있으며 집적도가 높고 고속동작이 가능한 장점이 있어 차세대 메모리 기술로 경쟁적으로 개발되고 있다.
자성메모리의 동작은 자성소재에 스핀전류를 주어 자성의 방향을 제어하는 방식으로 이루어진다. 기존 자성메모리에서는 스핀전류를 전기로 생성하는데, 본 연구에서 열로 스핀전류를 발생시키는 소재기술을 개발했다.
그동안 열에 의해 스핀전류가 생성되는 현상, 즉 스핀너런스트 효과(spin Nernst effect)가 이론적으로 발표됐으나 최근까지 기술적 한계로 실험적으로 증명되지 못하였다.
하지만 이번 연구에서 스핀궤도결합이 큰 텅스텐(W)과 백금(Pt) 소재를 활용하고 스핀너른스트 자기저항 측정방식을 도입해 스핀너른스트 효과를 실험적으로 규명했고 열에 의한 스핀전류의 생성효율이 기존의 전기에 의한 스핀전류의 생성효율과 유사함을 밝혔다.
박병국 교수는 “본 연구는 열에 의한 스핀전류 생성이라는 새로운 물리현상을 실험적으로 규명한 것에 의미가 크고, 추가 연구를 통하여 자성메모리의 새로운 동작방식으로 개발할 예정이다.” 라고 밝혔다.
열에 의해 동작하는 자성메모리의 개발은 전력소모를 획기적으로 낮출 수 있어 웨어러블, 모바일 및 사물인터넷 등 저전력 동작이 요구되는 전자기기의 발전에 기여할 것으로 기대된다.
이 연구성과는 과기정통부 미래소재디스커버리사업과 중견연구자사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 스핀너른스트 현상을 이용한 열인가 자성메모리의 개념도
그림2. 스핀너른스트 기반 열인가 스핀전류 생성에 관한 주요 연구 결과
2017.11.27
조회수 17035