-
3차원 반도체 소자 구현할 나노 인쇄 기술 개발
최근, 나노 스케일의 물리/화학 센서부터 미터 스케일의 에너지 수확 소자까지, 전자 소자에 적용되는 소재 및 구조들의 형태가 점점 고도화되며 복잡한 형태로 발전해나가고 있다. 그에 따라 범용성이 높은 3차원 구조체 제작 기술의 개발에 많은 연구자들이 관심을 두고 있다.
우리 대학 기계공학과 박인규 교수와 한국기계연구원(KIMM) 정준호 전략조정본부장 공동연구팀이 `차세대 3차원 나노구조체 인쇄 기술'을 개발했다고 4일 밝혔다.
공동연구팀은 신축 기판 위 2차원 나노구조체의 안정적 구현과 인쇄될 기판의 표면 마이크로 구조 설계를 통해 3차원 나노구조체를 인쇄할 수 있음을 처음으로 선보였다.
기계공학과 안준성 박사후연구원이 제1 저자로 참여한 이번 연구는 저명 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 2023년 2월 온라인판에 출판됐다. (논문명: Nanoscale three-dimensional fabrication based on mechanically guided assembly)
현재 개발되고 있는 인쇄 방법 중, 기계적 좌굴을 이용한 인쇄 방식은 얇은 곡면 형태의 복잡한 3차원 형상을 높은 자유도로 제작할 수 있으면서 제작된 구조체를 원래의 형상으로 되돌릴 수 있다는 이점 덕분에 차세대 인쇄 기술로 주목을 받고 있다. 또한, 금속, 세라믹 등 다양한 재료와 소자에 적용할 수 있다는 점과 설계된 대로 정확하게 구현할 수 있다는 높은 프로그래밍 가능성을 이점으로 갖는다. 그러나 현재까지 개발된 기계적 좌굴 기반의 3차원 인쇄 기술은 2차원 구조체 전사 공정의 불안정성과 나노구조체 설계의 어려움으로 인해 마이크로 스케일보다 큰 3차원 구조체만 제작할 수 있다는 치명적인 한계를 갖고 있다.
최근에는 이를 해결하기 위해 전자빔 리소그래피 (electron beam lithography)를 이용해 2차원 형상을 구현하고 물에 녹는 접착 필름을 사용해 신축 기판 위에 3차원 구조체를 인쇄하는 기술 등이 개발되고 있지만, 높은 제작 비용, 밀리미터 스케일 이하의 좁은 인쇄 면적, 낮은 공정 신뢰성으로 인해 보편적 인쇄 기술로 발전하기에는 많은 어려움이 남아 있다. 따라서, 복잡한 3차원 형상으로 설계된 나노구조체를 실제로 구현할 수 있는 제작 기술을 개발하는 것은 차세대 3차원 인쇄 기술과 나노구조체를 기반으로 한 고성능 광학/전자/바이오 소자의 개발에 큰 발전을 이룰 수 있을 것으로 전문가들은 예상하고 있다.
연구팀은 나노 스케일까지 안정적으로 2차원 구조체를 인쇄할 수 있는 나노전사 인쇄 기술과, 신축 기판에 가해진 압축력에 의해 좌굴된 최종 형상을 예측할 수 있는 설계 기법을 개발해 차세대 3차원 나노구조체 인쇄 기술을 구현했다. 공유 결합 기반의 나노 전사 인쇄 기술은 탄성중합체 기판 위에 50 나노미터(nm) 선폭을 갖는 금속/세라믹 물질의 안정적인 전사를 가능하게 했다. 또한, 전사될 신축 기판의 마이크로 패터닝을 통해 인쇄될 물질의 선택적인 접착과 좌굴을 쉽게 하고 접합부의 형상을 제어해 기판의 국부적인 신장률을 설계할 수 있음을 보였다. 이를 통해 3차원 좌굴 구조체의 변형 정도(deflection), 방향성(direction), 모드(mode)를 제어함으로써 3차원 구조체의 형상을 설계하고 예측할 수 있는 나노 스케일 인쇄 방법을 고안했다. 최종적으로, 개발된 3차원 나노구조체 인쇄 공정은 유독성/폭발성 가스 감지를 위한 고성능 신축 가스 센서를 제작하는데 응용됐다. 이는 나노 스케일의 무기물 물질을 설계 및 제작하고 실제 응용 소자에 적용할 수 있음을 보인 것에서 그 의미가 크다.
연구를 지도한 KAIST 박인규 교수, 한국기계연구원 정준호 박사는 "개발된 차세대 3차원 나노구조체 인쇄 기술은 나노구조체 제작 공정의 본질적인 문제인 낮은 범용성 및 디자인 다양성과 대량 생산의 어려움을 해결할 수 있을 것으로 기대되고, 추후 반도체 소자를 포함한 다양한 나노 전자 소자 제작에 활용될 수 있을 것이다ˮ라며 "이는 나노구조체 제작 기술의 압도적 선도 국가가 되기 위한 발판이 될 것이다ˮ고 연구의 의의를 설명했다.
한편 이번 연구는 과학기술정보통신부의 재원으로 한국연구재단 중견연구자지원사업, 극한물성시스템 제조플랫폼기술의 지원을 받아 수행됐다.
2023.04.04
조회수 7745
-
반도체 소자 내의 복잡한 움직임을 관측할 수 있는 초고속 카메라 개발
우리 대학 김정원 교수 연구팀이 반도체 소자 내의 미세 구조와 동적 특성을 고해상도로 측정할 수 있는 초고속 카메라 기술을 개발하였다고 밝혔다.
기존에는 볼 수 없었던 반도체 소자 내에서의 빠르고 불규칙적인 복잡한 움직임을 이제 초고속 카메라로 관측할 수 있게 되었다.
기계공학과 나용진 박사가 제 1저자로 참여하고 기계공학과 유홍기, 이정철 교수팀 및 한국표준과학연구원(KRISS) 서준호, 강주식 박사팀이 참여한 공동연구팀의 이번 논문은 국제학술지 ‘빛: 과학과 응용(Light: Science & Applications)’ [IF=20.257] 2월 15일 字에 게재됐다. (논문명: Massively parallel electro-optic sampling of space-encoded optical pulses for ultrafast multi-dimensional imaging)
최근 마이크로 및 나노 소자들의 복잡도와 기능성이 급격하게 향상됨에 따라 이들 소자 내의 미세 구조와 동적인 움직임을 실시간으로 정확하게 측정해야 할 필요성이 급증하고 있다. 미세 구조 측정 측면에서는 다양한 3차원 집적회로와 소자들의 발전으로 더 큰 웨이퍼 영역에 대해 더 높은 분해능 및 측정속도를 가지는 계측 기술이 반도체 산업에서 중요해지고 있다. 한편 동적 특성의 측정은 마이크로 및 나노 소자 내에서의 물리현상들을 이해하고 다양한 응용 분야들로 발전시키는 데 중요하다. 특히 다양한 역학 현상의 관측을 위해서는 더 높은 해상도, 더 빠른 측정속도 및 더 큰 측정범위를 필요로 하지만 기존의 측정 기술들은 여러가지 한계들을 가지고 있었다.
이번 연구는 기존의 한계를 극복한 새로운 초고속 카메라 기술을 개발하였다. 100펨토초(10조분이 1초) 정도의 매우 짧은 펄스폭을 가지는 빛 펄스를 1000개 이상의 다른 색을 가지는 펄스들로 쪼갠 후, 각기 다른 색을 가진 펄스들을 이용하여 서로 다른 공간적 위치에서의 높낮이를 정밀하게 측정할 수 있는 기술이다. 구현한 기술은 초당 2.6억개의 픽셀들에 대한 높낮이의 차이를 최고 330피코미터(30억분의 1미터) 수준까지 측정할 수 있을 정도로 빠르고 정밀하다. 연구팀은 이를 이용하여 복잡한 3차원 형상을 고속으로 정밀하고 정확하게 측정할 수 있는 초고속 카메라 기능을 선보였고, 기존의 측정 기술로는 관측하기 어렵던 복잡하고 비반복적인 고속의 동역학 현상들을 성공적으로 관측할 수 있었다.
이번에 개발한 초고속 카메라 기술의 고속 형상 이미징 속도와 높은 공간 분해능을 이용하면 반도체 공정이나 3D 프린팅 과정을 실시간으로 모니터링하며 공정을 제어할 수 있어 점점 고도화 및 집적화 되는 공정의 수율을 크게 향상시킬 수 있을 것으로 기대된다. 또한 다양한 진폭이 존재하면서 동시에 매우 빠른 순간 속도를 갖는 미세 구조의 움직임을 포착할 수 있음을 보여, 기존에 관찰하지 못했던 복잡한 비선형(nonlinear) 및 과도(transient)의 물리 현상들을 탐구하는 차세대 계측 기술로 발전할 수 있을 것으로 기대된다.
김정원 교수는 “이번 연구에서는 1차원적인 선 모양의 빛을 스캔해서 움직이는 방식으로 2차원 표면의 높낮이를 측정하였으나, 향후에는 2차원 표면의 높낮이를 스캔 없이 한번에 측정할 수 있는 방식으로 기술을 발전시킬 예정”이라고 밝혔다.
한편 이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 중견후속연구, 선도연구센터, 기초연구실 및 중견연구 사업의 지원을 받아 수행됐다.
2023.03.02
조회수 7647
-
기존보다 30% 향상된 고성능 리튬-황 전지 개발
우리 대학 생명화학공학과 이진우 교수 연구팀이 POSTECH 한정우 교수 연구팀, LG에너지솔루션 차세대전지연구센터(센터장 손권남 박사)와 공동연구를 통해 기존 대비 에너지 밀도와 수명 안정성을 대폭 늘린 리튬-황 전지를 개발하는 데 성공했다고 19일 밝혔다.
리튬-황 전지는 상용 리튬 이온 전지에 비해 2~3배 정도 높은 에너지 밀도를 구현할 수 있을 것으로 기대되고 있어, 차세대 이차전지 후보군 중 많은 관심을 받고 있다. 특히, 전기자동차 및 전자기기와 같이 한 번에 얼마나 많은 양의 에너지를 저장할 수 있는지가 중요한 응용 분야의 경우, 리튬-황 전지 기술개발의 중요성이 더욱 대두되고 있다.
높은 수준의 에너지 밀도를 지닌 리튬-황 전지를 구현하기 위해서는 전지 내부에 들어가는 무거운 전해액의 사용량을 줄이면서도 높은 용량과 구동 전압을 확보하는 것이 필수적이다. 하지만, 전지 내부의 전해액 양이 줄어들면, 양극에서 발생하는 리튬 폴리 설파이드 용해 현상에 의한 전해액 오염정도가 극심해져 리튬 이온 전도도가 낮아지고 전기화학 전환 반응 활성이 떨어져 높은 용량과 구동 전압을 구현하는 것이 제한된다.
전 세계적으로 많은 연구진이 리튬 폴리 설파이드의 지속적인 용해 현상 및 전환 반응 활성을 개선하기 위해서 다양한 기능성 소재들을 개발해왔으나, 현재까지는 리튬-황 파우치셀 수준에서의 높은 에너지 밀도와 수명 안정성을 확보하는 데 어려움을 겪고 있다. 파우치셀이란 양극, 음극, 분리막과 같은 소재를 쌓은 후, 필름으로 포장된 형태의 배터리이다. 파우치셀은 가장 진보된 형태의 베터리 중 하나로 간주되며, 응용분야에 따라 다양한 모양으로 제작할 수 있다는 장점이 있다.
이진우 교수 연구팀은 이번 연구를 통해 리튬 폴리 설파이드의 용해 현상과 전기화학 전환 반응성을 대폭 향상할 수 있는 철(Fe) 원자 기반의 기능성 양극 소재를 개발하는 데 성공했다. 연구팀은 최적화된 전자구조를 지닌 철 원자 기반 기능성 소재를 양극에 도입함으로써, 리튬 폴리 설파이드의 용해 현상을 효율적으로 억제할 수 있는 효과뿐만 아니라 리튬 폴리 설파이드가 불용성의 리튬 설파이드로 전환될 수 있는 반응성 또한 개선할 수 있었고, 전지 내부에 소량의 전해액 양을 사용하더라도 높은 가역 용량, 구동 전압, 그리고 수명 안정성을 구현할 수 있었다.
특히, 이번 연구에서 개발된 양극 기능성 소재를 활용함으로써, 기존의 상용화된 리튬이온 배터리 대비 약 30% 정도 향상된 에너지 밀도인 A h 수준의 리튬-황 파우치셀에서 320W h kg-1 이상의 에너지 밀도 (베터리의 단위 무게 당 저장할 수 있는 총 에너지의 양)를 확보하는 성과를 거뒀다. 더욱이, 철(Fe)은 가격이 매우 저렴한 소재이기 때문에 이번 연구에서 개발된 양극 기능성 소재가 향후 리튬-황 전지 산업 분야에서 활용될 가능성도 열려있다.
생명화학공학과 이진우 교수는 "우수한 리튬-황 전지 양극 기능성 소재를 개발함에 있어, 전자 교환 현상 유도를 통한 전자구조 제어 기술이 전도유망할 수 있음을 보여줬다ˮ고 설명하면서, "앞으로도 기능성 소재의 전자구조를 제어할 수 있는 다양한 기술개발을 통해, 리튬-황 파우치셀 수준에서의 높은 에너지 밀도와 수명 안정성을 확보하려는 노력이 지속돼야 한다ˮ고 설명했다.
한편 이번 연구 결과는 이진우 교수 연구실의 임원광 박사(現 퍼시픽 노스웨스트 내셔널 레보터리 박사후 연구원), 박철영 박사과정, 그리고 POSTECH 한정우 교수 연구실의 정현정 박사과정이 공동 제1 저자로 참여하였으며, 국제 학술지 `어드밴스드 머티리얼즈 (Advanced Materials)'에 2022년 12월 17일 字 온라인판에 게재됐다.
이번 연구는 한국연구재단이 추진하는 중견연구와 LG에너지솔루션의 지원을 받아 수행됐다. 이진우 교수 연구팀은 다년간 LG에너지솔루션과 공동연구를 수행해오면서 LG에너지솔루션의 연구팀과 산학 협업을 통해 리튬 폴리 설파이드의 용해 현상 억제 및 전기화학 전환 반응성 개선 등을 위한 핵심 아이디어를 도출해오고 있으며, 앞으로도 리튬-황 전지 상업화에 기여하기 위해 LG에너지솔루션과 리튬-황 전지 내 반응 현상에 대한 설명과 소재 개발에 대해서 지속적인 협업을 진행할 계획이다.
2023.01.19
조회수 8296
-
코어-쉘 나노입자의 원자 구조와 물성 규명 성공
우리 대학 물리학과 양용수 교수, 화학과 한상우 교수, 기계공학과 유승화 교수 공동연구팀이 한국기초과학지원연구원, 한국화학연구원과의 공동연구 및 미국 로런스 버클리 국립연구소(Lawrence Berkeley National Laboratory), 영국 버밍엄 대학교(University of Birmingham)와의 국제 협력 연구를 통해 팔라듐-백금 코어-쉘 구조 나노입자의 3차원 계면구조와 그 특성을 규명했다고 3일 밝혔다.
코어-쉘(core-shell) 구조 나노입자는 서로 다른 물질로 이루어진 코어(알맹이)와 쉘(껍데기)이 맞붙은 형태로 합성된 나노물질이다. 코어와 쉘 간의 경계면에서 코어를 이루는 물질과 쉘을 이루는 물질 간의 원자 간격 차이로 인해 원자 구조의 변형이 일어나며, 이 변형을 제어함으로써 나노입자의 광학적, 자기적, 촉매적 성질들을 변화시킬 수 있다.
특히 수소연료전지 제작에 필수적으로 사용되는 촉매에 값비싼 백금이 주로 사용되는데, 코어-쉘 구조를 최적화할 수 있다면 훨씬 적은 양의 백금을 이용해 더욱 높은 성능의 촉매를 제작 가능하다는 점 때문에 많은 연구자의 관심을 끌고 있다. 하지만 지금까지의 코어-쉘 나노입자의 계면 연구들은 대부분 2차원 분석이나 앙상블-평균(ensemble-averaged) 분석을 통해 이루어져 쉘 내부에 묻힌 3차원적인 코어-쉘 경계면의 구조와 그에 따른 특성을 정확히 파악하기 어려웠다는 한계가 있다.
연구팀은 자체 개발한 원자 분해능 전자토모그래피 기술을 이용해 팔라듐과 백금으로 이루어진 코어-쉘 구조 나노입자의 3차원 계면 원자 구조를 최초로 규명했다. 병원에서 인체 내부의 3차원적인 구조를 엑스레이 CT를 이용해 측정하는 것과 마찬가지로, 전자토모그래피는 투과전자현미경을 이용해 물질에 대한 초고분해능 CT를 촬영하는 기술이라고 볼 수 있다. 이는 다양한 각도에서 물질의 2차원적인 투과전자현미경 이미지들을 얻고, 이로부터 3차원적인 구조 정보를 재구성해내는 방식으로 작동한다. 연구팀은 전자토모그래피의 3차원 분해능을 끌어올려 물질 내부의 원자들을 하나하나 관찰 가능한 수준으로 재구성하고, 코어-쉘의 3차원 원자 구조를 약 24pm(피코미터)의 정밀도로 규명했다. 1pm(피코미터)는 1미터의 1조 분의 일에 해당하는 단위로, 24pm는 수소 원자 반지름의 약 1/2 정도에 해당하는 매우 높은 정밀도다.
얻어진 구조를 통해 연구팀은 나노입자 내부의 코어-쉘 경계면의 구조를 단일 원자 단위로 파악할 수 있었고, 계면구조로부터 파생되는 원자들의 변위와 구조 변형에 대한 단일 원자 수준의 3차원적인 지도를 작성해 정량적으로 해석했다. 이를 통해 팔라듐-백금의 코어-쉘 나노입자 표면에 분포하는 각각의 원자들의 촉매 활성도를 규명했으며, 적절한 변형이 가해질 경우 촉매 활성도를 크게 높일 수 있음을 밝혔다.
물리학과 조혜성 석박사통합과정 학생이 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)'에 10월 10일 字 게재됐다. (논문명 : Direct strain correlations at the single-atom level in three-dimensional core-shell interface structures)
연구팀은 얻어진 3차원적 원자 변위와 구조 변형 지도에서 푸아송 효과(Poisson effect)로 알려진 탄성체 성질이 코어-쉘 나노입자 전체뿐만 아니라 단일 원자 수준에서도 일어난다는 것을 발견했다. 연구팀은 또한 이론적으로만 예측돼왔던 계면과 표면에서의 구조 변형도에 대한 상관성을 실험적으로 확인하고 이를 정량적으로 해석했다. 이러한 구조의 변형이 나노입자 전체에서 비슷하게 분포하는 것이 아니라 나노입자의 모양에 따라 위치별로 다르게 나타날 수 있음을 밝혔으며, 이러한 실험적인 발견은 분자 정역학(molecular statics) 시뮬레이션을 통해 이론적으로도 재확인됐다.
특히, 실험적으로 얻어진 3차원적인 원자 구조 정보는 양자역학적 계산을 통해 실제 물질의 물성과 직접적으로 연관될 수 있다는 점에서 그 의의가 크다. 이번 연구에서는 표면에서의 구조 변형도를 밀도범함수이론(density functional theory)의 양자역학적 계산 결과와 대응시킴으로써 표면에서의 촉매 활성도를 나타내는 표면의 산소 환원 반응(oxygen reduction reaction)을 각각의 표면 원자에 대해 계산했고, 이는 코어-쉘 구조와 촉매 특성 간의 관계를 단일 원자 수준에서 규명한 최초의 사례다.
연구를 주도한 양용수 교수는 "이번 연구는 그동안 2차원적인 분석, 또는 낮은 분해능에 국한되어 온 코어-쉘 구조 연구에서 벗어나 원자 하나하나까지 3차원적으로 들여다본다는 완전히 새로운 시각을 제시한다ˮ며 "이는 결과적으로 각각의 원자를 제어하는 사전적 설계를 통해 물질의 촉매 특성뿐만 아니라 구조와 연관된 모든 물성을 원하는 대로 최적화할 가능성을 보여준다ˮ라고 연구의 의의를 설명했다.
한편 이번 연구는 삼성미래기술육성재단 사업의 지원을 받아 수행됐다.
2022.11.03
조회수 11806
-
닫힌 계면을 갖는 구조체의 보편적 이동 특성 규명
우리 대학 물리학과 김갑진 교수와 한국표준과학연구원(KRISS) 황찬용 박사, 한국과학기술연구원(KIST) 김경환 박사 공동연구팀이 자기 스커미온의 전류 구동 현상을 이용해 닫힌 계면을 갖는 구조체가 형태를 유지한 채 이동할 때의 보편 특성을 규명했다고 13일 밝혔다.
자기 스커미온(magnetic skyrmion)은 수 nm 수준의 자성체 박막, 즉 얇은 자석 내부에 존재하는 소용돌이 모양 혹은 방사형의 스핀 구조를 갖는, 2차원 공간상의 안정한 원형 구조체이다. 이 구조체는 위상학(topology)적 원리에 의해 쉽게 사라지지 않는 안정성을 갖고, 크기가 수십 nm 수준으로 작으며 전류를 흘려 주면 수~수백 m/s의 매우 빠른 속도로 움직이기 때문에 기존의 하드 디스크를 대체할 고속, 고집적 비휘발성 메모리 소자 개발에 응용될 수 있음에 주목되어 왔다. 따라서 보다 정밀한 자기 스커미온 기반 소자를 만들기 위해 자기 스커미온의 속도와 가해 준 전류량의 관계를 정확히 파악하는 것은 중요한 연구 과제로 여겨져 왔다.
연구팀은 비자성체/강자성체/산화물 3중층 구조의 소자에서 연구팀의 독자 기술인 자기장 변화 방식으로 자기 스커미온을 대량 생성, 크립(creep) 운동 영역(스커미온의 속도가 박막의 무작위적 결함과 열적 효과에 영향을 받는 영역)에서의 자기 스커미온 속도-전류밀도 관계를 분석했다. 두 연구팀은 약 70만 개 이상의 빠르고 느린 자기 스커미온의 이동 궤적을 추적, 분석하여 이동 속도-전류밀도 간의 스케일링 법칙을 찾아냈다. 그 결과 자기 스커미온은 2차원 공간상의 구조체임에도 불구하고 1차원 공간상에서 주로 나타나는 ‘호핑(hopping)’ 법칙을 따르는 것으로 나타났다. 이는 2차원에서 움직이는 선을 원형으로 말아 놓을 경우 운동 법칙이 전혀 달라짐을 실험적으로 확인한 것이다. 이를 통해 연구팀은 기존에 알려지지 않은 새로운 보편성 부류(universality class, 같은 스케일링 법칙을 공유하는 집단)의 구분 기준으로 계면의 열리고 닫힘, 즉 ‘구조적 위상(structural topology)’이 존재함을 제안했다.
우리 대학 물리학과 송무준, 유무진 연구원이 공동 제1저자로 참여하고, 박민규 박사가 공동교신저자로 참여한 본 연구는, KAIST(김갑진 교수 연구팀), KRISS(황찬용 박사 연구팀), KIST(김경환 박사 연구팀)의 공동연구로 진행되었으며, 권위 있는 국제학술지 ‘어드밴스드 머테리얼즈(Advanced Materials, IF 32.1)’에 표지논문(front cover)으로 선정돼 10월 6일 게재됐다. (논문명: Universal Hopping Motion Protected by Structural Topology)
이번 연구에서 연구팀은 기존에 자세히 밝혀지지 않은 크립 영역에서의 자기 스커미온의 전류에 의한 거동 특성을 실험적으로 밝혀내고, 이것이 닫힌 계면을 갖는 구조체의 보편 특성임을 제안했다. 이번 연구는 자기 스커미온 기반 메모리 및 컴퓨팅 소자 개발에 활용될 것이며, 다양한 분야의 닫힌 계면 구조를 갖는 구조체의 거동 특성을 분석하는 기반 이론으로써 활용될 것으로 기대된다.
한편 이번 연구는 KAIST 글로벌 특이점 연구사업, 삼성미래기술육성사업, 한국연구재단 선도연구센터/중견연구자지원사업의 지원을 받아 수행됐다.
2022.10.13
조회수 7733
-
항체를 활용한 신개념 생체 형틀법 최초 개발
우리 대학 신소재공학과 장재범 교수 연구팀이 다세포 생물이 갖는 특정 단백질 구조체를 활용할 수 있는 새로운 개념의 생체 형틀법을 최초로 개발했다고 10일 밝혔다. 긴 시간 동안 특정 기능에 최적화된 생명체가 갖는 복잡하고 정교한 구조체를 형틀로 삼아 이를 모방한 무기물 구조체를 만드는 방법을 생체 형틀법 이라고 한다. 이는 에너지, 광학, 마이크로로봇 분야 등에 응용돼왔다.
장 교수 연구팀은 항원-항체 반응에 착안해 특정 단백질을 항체로 표적화한 뒤, 항체에 붙어 있는 1.4 나노미터(nm) 크기의 금 입자에서 다양한 금속 입자들을 성장시킴으로써 특정 단백질 구조체를 모방한 금속 구조체를 합성하는 데 성공했다. 개발된 생체 형틀법은 일반적인 항원-항체 반응과 금속 입자 성장법을 기반으로 하기 때문에 다양한 생명체에 폭넓게 응용 및 적용될 수 있을 것으로 기대된다.
신소재공학과 송창우, 송대현 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 머티리얼즈(Advanced Materials)'에 7월 7일 字 온라인 출판됐다. (논문명 : Multiscale Functional Metal Architectures by Antibody-Guided Metallization of Specific Protein Assemblies in Ex Vivo Multicellular Organisms).
생명체가 갖는 특정 기능에 최적화된 다양한 구조체들은 복잡하고 계층적 구조를 기반으로 하여 인공적인 합성 방법을 통해 재현하기 어렵다. 따라서 이러한 생체 구조체를 형틀로 해 동일한 모양의 무기물 구조체를 합성하는 생체 형틀법이 개발돼왔으며, 합성된 생체 재료들은 촉매, 에너지 저장 및 생산, 센서 등 다양하게 활용돼왔다.
하지만 개발된 생체 형틀법 중 특정 단백질 구조체를 형틀로 사용한 경우는 적으며, 있다 하더라도 바이러스나 효모와 같은 단세포 생물의 특정 단백질 구조체를 형틀로 활용한 연구들 뿐이었다.
생명체의 특정 단백질 구조체를 활용하는 생체 형틀법은 원하는 생체 구조체만을 활용 가능하며 합성하고자 하는 생체 재료의 목적에 맞는 단백질을 선택해 사용할 수 있다는 장점이 있다.
연구팀은 기존의 생체 형틀법 한계를 해결을 위해 특정 단백질을 이미징할 때 활용하는 항원-항체 반응을 생체 형틀법에 적용했다.
연구팀이 사용한 항체는 1.4 나노미터(nm) 크기의 금 입자가 달려있고 이는 금속 입자 성장을 위한 종자(seed) 역할을 하게 되어 특정 단백질을 표적화한 항체로부터 다양한 금속 입자를 성장시킬 수 있다.
연구팀은 인간 세포 내부의 미세소관, 미토콘드리아, 핵, 세포막, 세포질에 존재하는 특정 단백질에서만 금 입자를 성장시키는 데 성공했으며, 세포 수준뿐만 아니라 조직 수준인 쥐의 뇌, 신장, 심장에서도 개발한 방법을 적용할 수 있다는 것을 보였다.
나아가 연구팀은 금 입자뿐만 아니라 은, 금-백금, 금-팔라듐 입자를 세포 내부 미세소관 구조체를 따라 합성함으로써 합성된 세포를 액상 반응의 촉매로 활용 가능하다는 것을 증명했다. 또한, 세포 표면에 철 입자를 성장시킨 후 자석으로 조절할 수 있음을 보여 향후 이러한 금속 입자가 성장된 세포들을 조절하거나 군집 행동을 구현하는 것이 가능함을 보였다.
연구팀이 개발한 신개념 생체 형틀법은 다세포 생물뿐만 아니라 항체 염색이 가능한 식물, 균류, 바이러스 등의 생명체에도 활용 가능해 다양한 생체 구조체를 모방한 생체 재료 합성에 이용될 것으로 기대된다.
제1 저자인 송창우 박사과정은 "이번 연구는 기존의 생체 형틀법으로 구현할 수 없었던 다세포 생물의 특정 구조체를 모방한 금속 구조체를 합성한 최초의 사례이며, 이를 통해 생체 형틀법을 활용할 수 있는 생체 구조체의 범위를 넓혔다ˮ 라며 "합성된 생체 재료는 이번 연구에서 보여준 촉매뿐만 아니라 전기화학 및 바이오센서에도 활용 가능할 것으로 예상된다ˮ 라고 말했다.
한편 이번 연구는 한국연구재단 과학난제도전 융합연구개발사업, 우수신진연구사업, 뇌과학원천기술개발사업 등의 지원을 받아 수행됐다.
2022.08.10
조회수 8867
-
기계공학과 박인규 교수, 팽창하는 입자를 이용한 불규칙한 마이크로 돔 구조 기반 고감도 압력센서 개발
우리 대학 기계공학과 박인규 교수 연구팀이 한국생산기술연구원 조한철 박사와 공동 연구를 통해 3D 마이크로 구조 기반의 표면 형태 제어 기술 및 고감도 압력센서 설계 관련 원천기술을 개발했다.
최근 인간과 전자기기 간의 상호작용 기술의 중요성 증가에 따라, 그 매개체 역할을 하는 센서 기술 개발에 대한 관심이 증가하고 있다. 고성능 센서 기술은 스마트 기기, 보안 및 안전, 의료 및 헬스케어 분야와 같은 고부가가치 산업에 주로 적용되고 있다. 최근에는 뛰어난 센서 특성과 함께 유연한 특성으로 인해 사람의 피부와 같은 굴곡진 부위에 쉽게 부착 가능한 유연 압력센서 및 웨어러블 센서 응용에 대한 관심이 급증하고 있다. 특히, 표면에 3D 마이크로 구조가 어레이된 필름을 사용하면 센서의 전반적인 특성을 향상시킬 수 있어, 3D 마이크로 구조의 크기 및 밀도를 제어할 수 있는 기술이 필수적으로 요구된다.
하지만, 기존의 연구들은 원하고자 하는 패턴의 역상으로 제작된 몰드에 액상의 엘라스토머를 부어 제작하기 때문에 몰드 제작 공정이 필수적으로 요구되며, 3D 마이크로 구조의 크기/밀도 등을 조절하는데 한계가 있어 제작 유연성에 있어 큰 한계점이 존재했다.
공동 연구진은 이러한 문제를 해결을 위해, 온도에 의해 팽창하는 입자를 이용하여 표면에 3D 마이크로 구조를 제작하는 기술을 개발하였다. 본 연구에서 핵심으로 사용한 물질은 온도에 의해 팽창하는 미소 입자이다. 이 입자는 상온에서는 초기 상태인 6~11 ㎛를 유지하는데, 특정 온도를 가하면 내/외부의 변화로 인해 약 30~50 ㎛로 크기가 변하게 된다. 해당 입자를 유연 엘라스토머와 혼합하여 유연 필름을 제작한 뒤에 열팽창을 시키는 표면에 3D 마이크로 구조가 어레이된 유연 필름의 제작이 가능하다 (그림 1).
이를 활용하여 고민감도의 유연 압력센서에 적용하였다 (그림 2). 본 센서는 기존에 제안되었던 3D 마이크로 구조 기반 압력센서에 비해 높은 감도를 보여주었으며 내구성/검출한계/응답속도 등에서도 뛰어난 성능을 보였다. 이를 활용하여 다양한 사용자 맞춤형 어플리케이션에 적용하였다. 첫 번째로 손가락형 압력센서에 적용하였다. 개발된 손가락형 압력센서는 높은 감도로 인해 미세한 압력 변화를 감지할 수 있었으며 이를 이용하여 손가락의 미세한 맥박 변화, 물체를 누르는 힘 등에 대해 정밀하게 감지/구분할 수 있음을 보였다. 두 번째로는 대면적 어레이 센서로 제작하여 인간-컴퓨터 상호작용에 적용하였다. 이를 통해 손목의 움직임을 감지하고 획득한 신호를 기계학습에 적용하여 마우스 커서를 움직일 수 있음을 증명하였다 (그림 3).
이번 연구는 제 1 저자로는 정영 박사후연구원(KAIST 기계공학과)과 최중락 박사과정 학생(KAIST 기계공학과)이, 교신저자로는 조한철 박사(한국생산기술연구원)와 박인규 교수(KAIST 기계공학과)가 참여했으며, 과학기술정보통신부의 재원으로 한국연구재단의 중견연구자 과제 (박인규 교수), 창의도전연구 과제 (정영 박사), 신진연구자 과제 (조한철 박사)의 지원을 받아 수행되었다. 본 연구 결과는 재료연구 분야 최상위 학술지 중 하나인 Advanced Functional Materials (Impact factor 18.81) 지 2022년 7월 4일자로 논문이 게재되었으며, 후면 표지논문 (Back cover)에 선정되었다. (논문명: “Irregular Microdome Structure-Based Sensitive Pressure Sensor Using Internal Popping of Microspheres”)
2022.08.01
조회수 8458
-
호르몬 조절 수용체 구조와 작용 메커니즘 규명으로 뇌기능 향상 물질 개발 가속
우리 대학 생명과학과 송지준 교수 연구팀이 초저온 전자 현미경(cryo-Electron Microscopy)을 이용해 호르몬 조절 물질인 소마토스타틴(somatostatin)과 그 수용체인 소마토스타틴 리셉터 2(Somatostatin Receptor 2, 이하 SSTR2) 복합체의 3차원 원자 해상도 구조를 규명해 호르몬 조절 메커니즘을 밝혔다고 6일 밝혔다.
소마토스타틴은 성장호르몬의 분비를 억제하는 작용이 있는 호르몬으로 내장과 뇌에 관련된 호르몬이며, 호르몬 분비 조절, 세포의 증식, 뇌 신경 물질 전달에 관한 작용을 한다.
송 교수 연구팀은 연세대학교 이원태 교수 연구팀, 피씨지-바이오텍 연구팀과의 공동연구를 통해, 소마토스타틴과 결합해 다양한 호르몬의 분비를 억제하는 SSTR2 복합체 구조를 3차원 원자 해상도로 초저온 전자현미경을 이용해 규명하고, 소마토스타틴이 SSTR2를 통해 호르몬 분비를 억제하는 메커니즘을 규명했다. 이러한 연구 결과는 호르몬 분비의 이상에서 유발되는 말단비대증, 신경 뇌분비 종양을 제어하는 방법을 개발하는데 적용될 수 있을 것으로 기대된다.
생명과학과 윤어진 박사과정이 공동 제1 저자로 참여한 이번 연구는 국제 저명 학술지 `이라이프(eLife)' 에 4월 22일에 출판됐다. (논문명 : Cryo-EM structure of the human somatostatin receptor 2 complex with its agonist somatostatin delineates the ligand binding specificity)
SSTR2은 세포막에 존재하는 막 단백질로, 세포 밖의 소마토스타틴을 신호로 인식해 세포 내로 전달하는 역할을 한다. 최근 생명과학과 이승희 교수 연구팀에서도 소마토스타틴이 인지기능 향상에 기여한다 것을 밝힌 바 있다. 이렇게 소마토스타틴의 생체 내 기능 및 질병에 역할의 중요성에도 불구하고, 소마토스타틴이 세포막에 존재하는 수용체와 결합하는 자세한 메커니즘에 대해서는 알려지지 않았고, 신약 개발에 필수적인 역할을 하는, 3차원 원자구조는 알려지지 않았다.
송지준 교수 연구팀은 소마토스타틴이 수용체인 SSTR2와 결합하는 원리를 규명하기 위해, 초저온 전자현미경을 이용해 소마토스타틴이 결합된 SSTR2 복합체의 원자 3차원 구조를 규명했다. 또한 연구팀은 소마토스타틴과 수용체가 결합한 3차원 구조를 바탕으로 소마토스타틴과 결합하는데 중요한 아미노산들을 발견하고, 이들의 기능성을 세포 내에서 확인했다.
연구팀은 더 나아가 인공지능을 이용한 구조예측 프로그램인 알파폴드(AlphaFold)를 이용해 소마토스타틴 수용체의 이성질 형태(같은 분자식을 갖는 화합물이지만 분자 구조가 다른 형태)인 SSTR1, SSTR3, SSTR4, SSTR5의 구조를 예측해 이성질 형태 각각의 소마토스타틴 결합 메커니즘을 밝혀냈다.
이번 연구 결과는 소마토스타틴 수용체의 작용 메커니즘을 이용해 말단비대증, 신경뇌분비 종양의 제어 및 뇌기능을 향상할 수 있는 물질 개발에 이용될 수 있을 것으로 기대된다.
한편 이번 연구는 한국연구재단 바이오-의료기술개발사업의 지원을 받아 수행됐다.
2022.05.09
조회수 7921
-
물과 산소로 햇빛을 이용해 과산화수소를 생산하는 고효율 촉매 개발
우리 대학 신소재공학과 강정구 교수 연구팀이 물과 산소만으로 햇빛을 이용해 과산화수소를 생산하는 고효율 촉매를 개발했다고 31일 밝혔다. 과산화수소는 주로 소독, 염색, 산화제, 의약품, 반도체, 디스플레이, 로켓 추진연료 등 다양한 산업군에 쓰이는 유용한 자원이다.
연구팀이 개발한 나노구조체 촉매는 빛을 흡수해 산소 분자를 과산화수소 분자로 선택적으로 환원시키며, 지구에 풍부하고 친환경적인 물을 산화제로 이용하기 때문에 친환경적이고 경제적인 원천기술이다.
이 기술은 현재 공정에서 이용되는 고가의 팔라듐 촉매보다 각각 1,500배, 4,500배, 115,000배 저렴한 코발트, 티타늄, 철 산화물을 이용했기 때문에 경제성이 뛰어날 뿐만 아니라, 환경 문제를 유발하는 유기화합물 없이 물과 산소, 햇빛만으로 과산화수소를 생산하기 때문에 친환경적인 특성을 가진다.
김건한 박사(現 옥스포드 대학교 화학과, 우리 대학 신소재공학과 졸업)가 제1 저자로 참여하고, 우리 대학 화학과 김형준 교수 연구팀이 공동으로 참여한 강정구 교수 연구팀의 이번 연구 결과는 재료 분야 국제 학술지 `어드밴스드 에너지 머티리얼즈(Advanced Energy Materials, IF 29.37)' 2월 25일 字 온라인 게재됐다. (논문명: Triphasic metal oxide photocatalyst for reaction site-specific production of hydrogen peroxide from oxygen reduction and water oxidation)
현재 과산화수소 생산은 대부분 `안트라퀴논 공정'을 통해 생산된다. 이 공정은 고압의 수소 기체와 값비싼 팔라듐 기반 수소화 촉매를 이용하기 때문에 경제성과 안전성에서 문제를 가지고 있을 뿐만 아니라 반응 중에 이용되는 유기 오염 물질이 방출되기 때문에 환경 문제를 유발한다.
반면, 햇빛을 에너지원으로 이용해 산소를 과산화수소로 환원시키는 광촉매는 물리적으로 반도체 특성을 갖는 전이 금속산화물을 이용할 수 있기 때문에 기존 팔라듐 촉매보다 수 천배 이상 저렴하다. 또한, 지구에 풍부한 산소로부터 태양에너지를 통해 과산화수소를 생산할 수 있어 안전하고 친환경적인 특성을 가진다. 하지만 기존 과산화수소 생산 광촉매는 산소로부터 과산화수소를 생산하기 위해 전자를 전달하는 산화 반응에 과산화수소보다 더 비싼 알코올류의 산화제를 첨가해야 했다. 또한, 생산된 과산화수소가 광촉매 표면에서 빠르게 분해돼 촉매 효율이 떨어지는 단점을 가지고 있었다.
이에 강정구 교수 연구팀은 고가의 팔라듐 촉매보다 훨씬 저렴한 코발트, 티타늄, 철 산화물을 요소-수열 합성법을 통해 나노 구조화했다. 두 가지 이상의 금속 조합을 갖는 금속산화물의 경우, 일반적으로 각기 다른 금속이 혼합되어 한 가지 구조의 상을 형성한다. 하지만 연구팀은 코발트 전구체의 비율을 높여 철과 코발트 산화물을 분리한 후, 2가 철 산화물의 화학적 비안정성을 이용해 티타늄 산화물과 다시 분리함으로써, 각기 다른 세 가지 금속 산화물이 각자의 산화물 상으로 분리되어 형성되는 삼상 산화물 (Triphasic metal oxide)을 합성했다.
삼상 산화물 광촉매는 2차원적으로 넓은 나노시트(nanosheet) 형태의 코발트 산화물이 있고, 그 위에 코어-쉘(core-shell) 구조를 가진 철 산화물-티타늄 산화물 나노입자가 배열된 독특한 구조를 하고 있다. 또한, 연구팀은 김형준 교수 연구팀과 공동 연구를 통해, 코어-쉘 구조의 나노입자는 효율적으로 가시광선과 자외선을 흡수해 전자를 전달함을 계산 과학을 통해 입증에 성공했다.
코발트 산화물은 기존 물 산화 반응 촉매로 가장 잘 알려진 물질이기 때문에, 물 분자를 흡착해 산소로 환원하고 전자를 제공할 수 있는 능력이 있다. 즉, 물을 산화제로 이용하기 때문에 기존 광촉매에서 이용하는 알코올류를 이용하지 않고도 환원 반응점(reduction reaction-site)으로 원활한 전자전달을 할 수 있다. 한 편, 철 산화물-티타늄 산화물 코어-쉘 나노입자는 각각 가시광선과 자외선을 흡수할 수 있어 효율적인 방법으로 태양광을 흡수할 수 있을 뿐 아니라 산소 흡착 능력이 우수해 반응물인 산소 분자를 선택적으로 흡착할 수 있다.
또한, 구조적으로 코발트 산화물 나노시트 위에 배열되어 있어, 물 산화 반응에서 생긴 전자를 철 산화물이 받아 효율적으로 티타늄 산화물에 전달해 산소 환원 반응을 통한 과산화수소를 생산할 수 있다. 이렇게 생성된 과산화수소는 환원점과 산화점이 분리돼있는 광촉매의 구조적인 특성으로 인해 분해되지 않고 안정적으로 농축되는 특성을 가진다.
강 교수는 "신재생에너지를 이용한 친환경적인 이 기술은 수소 분자와 유기물질을 이용하지 않아 안전성이 뛰어나고, 비교적 값이 저렴한 전이 금속산화물을 이용하기 때문에 경제성이 뛰어나다ˮ라고 소개하면서 "3가지 상의 각 구역에서 산소 환원 반응, 전자-홀 수송, 그리고 물 산화 반응이 일어나기 때문에 광촉매에서 문제가 되고 있던 과산화수소 분해 문제나 알코올 산화제 이용 문제에서 벗어나며 이를 통한 높은 촉매 효율은 기존에 가장 효율이 높다고 알려진 귀금속계 촉매보다 수 천배 저렴할 뿐만 아니라 약 30배 정도 높은 생산성능을 가져 광촉매를 통한 과산화수소 생산의 상용화에 이바지할 것이다ˮ고 말했다.
한편 이번 연구는 과학기술정보통신부 글로벌프론티어사업의 하이브리드인터페이스기반 미래소재연구단의 지원을 받아 수행됐다.
2022.03.31
조회수 12846
-
물리학 난제였던 유전율 텐서 측정 구현
우리 대학 물리학과 박용근 교수 연구팀이 기존에는 이론조차 존재하지 않았던 물리학 난제 중 하나인 유전율 텐서의 3차원 단층 촬영 방법을 개발했다고 4일 밝혔다.
유전율 텐서는 빛과 물질의 상호작용을 근본적으로 기술하는, 물질의 광학적 이방성(異方性, 방향에 따라 달라 보이는 특성)을 정량적으로 표현할 수 있는 중요한 물리량이다. 유전율은 고등학교 물리학에서도 다루는 기본적인 개념이지만, 지금까지 3차원 유전율 텐서를 실험적으로 측정할 수 있는 방법이 존재하지 않았다. 병리학, 재료과학, 연성물질 과학, 또는 디스플레이 등 다양한 분야에서 갖는 중요성에도 불구하고, 직접적으로 측정할 방법이 없다는 한계가 있었다. 현재까지도 3차원 광학적 이방성은 2차원 편광현미경 측정 및 시뮬레이션을 통해 부정확하게 추정할 수밖에 없다.
3차원 유전율 텐서의 측정은 물리학, 광학 분야의 오래된 난제 중 하나였다. 1967년 광학적 이방성을 무시하고 유전율 텐서를 3차원 굴절률 수치로 단순화하여 측정하는 기술이 발명돼 지난 50여 년간 빠르게 성장하고 상용화까지 성공했지만, 여전히 3차원 유전율 텐서를 측정하는 방법은 개발되지 못했다.
여태껏 이 문제가 풀리지 못했던 까닭은, 3개의 고유치를 가지는 유전율 텐서를 측정하기에는 빛의 편광 방향 자유도가 2개로 제한되기 때문이다.
재료과학 분야 최고 권위지인 `네이처 머티리얼즈(Nature Materials, IF 43.84)'에 3일 발표된 이번 연구(논문명: Tomographic measurements of dielectric tensors at optical frequency)에서 연구팀은 이러한 한계를 극복하고 광학적 이방성 구조의 3차원 유전율 텐서 단층 촬영 이론을 개발해 구현하는 데 성공했다.
기존의 고정관념에서 벗어나, 빛의 방향을 살짝 틀어주어 중첩된 정보를 활용하면, 편광 방향 자유도를 3개로 늘려서 유전율 텐서의 3개 고유치를 모두 구할 수 있다는 점에 착안한 것이 연구진의 핵심 아이디어다. 이렇게 3개의 편광 자유도를 제어하는 것과 동시에, 병원에서 사용하는 엑스레이, 컴퓨터단층(CT) 촬영처럼, 여러 각도에서 광학적 이방성 구조를 홀로그래피 현미경을 개발하여 촬영함으로써 3차원 유전율 텐서를 직접적으로 측정했다.
연구팀은 개발된 방법을 이용해 뒤틀린 네마틱 (twisted nematic) 액정과 같은 잘 알려진 3차원 광학적 이방체의 3차원 유전율 텐서를 성공적으로 측정함으로써 기술의 구현을 입증했다. 더 나아가 열적 비평형 상태로 성장-소멸-융합하는 액정 동역학, 반복되는 위상학적 특이점 구조의 액정 네트워크 등 기존의 방법들로 추정하기 어려웠던 3차원 유전율 텐서를 실험적으로 최초 측정하는 성과를 거뒀다.
제1 저자인 물리학과 신승우 박사는 "지금까지 직접 볼 수 없던 유전율 텐서를 실제로 측정할 수 있는 방법론을 처음으로 개발한 것이 큰 의미ˮ라며 "액정, 카이랄 물질, 암조직과 같은 병리 조직 내부의 콜라겐 파이버 등과 같은 광학적 방향성을 보이는 다양한 물질들의 3차원 구조를 정량적이고 비침습적으로 직접 관측할 수 있기에 여러 분야에 범용적, 필수적으로 사용할 수 있는 도구로 기대한다ˮ라고 말했다.
이번 연구는 박용근 교수 연구팀의 기술 개발 이외에도 다학제적 접근을 통해 결실을 볼 수 있었다. UNIST 물리학과 정준우 교수, 우리 대학 생명화학공학과 김신현 교수, 우리 대학 화학과 윤동기 교수 연구팀들이 오랜 기간 발전시켜온 액정 구조체 제작 기술 덕분에, 다양한 액정 구조체를 통해 기술의 실험적 검증을 효과적으로 진행할 수 있었다.
한편 이번 연구는 과학기술정보통신부의 정보통신기획평가원, 한국연구재단 창의연구사업 및 G-CORE 사업의 지원을 받아 수행됐다.
2022.03.04
조회수 10375
-
강화학습을 활용한 인공지능으로 자유구조 메타표면 최적화 성공
우리 대학 전기및전자공학부 장민석 교수 연구팀이 KC ML2(반도체 제조 솔루션 기업 KC에서 설립한 연구조직) 박찬연 박사와 공동연구를 통해 강화학습에 기반한 자유 구조의 메타 표면 구조 설계 방법을 제안했다고 25일 밝혔다.
메타 표면은 빛의 파장보다 훨씬 작은 크기의 구조를 이용해 이전에 없던 빛의 성질을 달성하는 나노광학 소자를 뜻한다. 나노광학 소자는 빛의 특성을 미시 단위에서 제어하여, 자율주행에 쓰이는 라이다(LiDAR) 빔조향 장치, 초고해상도 이미징 기술, 디스플레이에 활용되는 발광소자의 광특성 제어, 홀로그램 생성 등에 활용될 수 있다. 최근 나노광학 소자에 대한 기대 성능이 높아지면서, 이전에 있던 소자구조를 훨씬 뛰어넘는 성능을 달성하기 위해 자유 구조를 가지는 소자의 최적화에 관한 관심이 증가하고 있다. 자유 구조와 같이 넓은 설계공간을 가진 문제에 대해 강화학습을 적용해 해결한 사례는 이번이 최초다.
우리 대학 서동진 연구원 및 ML2 남원태 연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `ACS 포토닉스(ACS Photonics)' 2022년 2월호 전면 표지논문으로 게재됐다. (논문명 : Structural Optimization of a One-Dimensional Freeform Metagrating Deflector via Deep Reinforcement Learning)
강화학습은 동물이 학습하는 방법을 모방한 인공지능 방법론이다. 동물 행동 심리학에서 `스키너의 상자'라고 알려진 실험이 그 모티브가 되었는데, 해당 실험은 상자 내부에 쥐를 넣고 누르면 먹이가 나오는 지렛대를 함께 두는 방식으로 진행된다. 처음에 무작위 행동을 하던 쥐는 지렛대를 누르면 먹이가 나오는 것을 확인한다. 시간이 지날수록 더 높은 빈도수로 지렛대를 누르게 되는데, 이렇게 어떠한 보상(먹이)이 행동(지렛대를 누르는 행위)을 `강화'하는 것을 관찰할 수 있다. 해당 실험과 매우 유사한 구조를 갖는 강화학습은 행동 주체가 자기를 둘러싼 `환경'으로부터 `보상'을 받으면서 환경에 대해 배워나가는 인공지능 방법론이다.
2016년 이세돌 9단과의 대국에서 승리한 구글 딥마인드의 `알파고(AlphaGo)'가 그 대표적 사례다. 알파고는 바둑판으로 표현되는 환경과의 상호작용을 통해 바둑의 복잡한 규칙을 학습했고, 우주에 있는 원자보다 많다고 알려진 경우의 수 중 최적에 가까운 선택을 할 수 있었다. 최근 인공지능 학계에서 강화학습은 인간의 지능과 가장 유사한 형태의 인공지능 방법론으로 크게 주목받고 있다.
연구팀은 복잡한 환경을 쉽게 학습할 수 있는 강화학습의 특징을 메타 표면 자유 구조의 최적화에 활용하는 아이디어를 제안했다. 이전에 메타 표면 자유 구조 최적화 기술은 너무 많은 경우의 수로 인해 해결하기 어려운 것으로 여겨졌다. 따라서 기존 연구 방향은 주로 간단한 기본도형 등으로 구조를 단순화한 방식을 활용했다. 하지만 해당 방식은 기하학적 구조가 제한된다는 한계가 있었고, 더욱 복잡한 구조에 대한 최적화 기술은 달성하기 어려운 것으로 여겨졌다.
연구팀이 제안한 알고리즘은 아주 간단한 아이디어에서 출발한다. 강화학습의 `행동'을 구조의 구성요소를 하나씩 `뒤집는' 것으로 정의하는 것이다. 이것은 기존에 구조를 전체적으로 생성하는 방식으로만 생각되었던 자유 구조의 최적화에 대한 발상을 뒤집는 것이었다. 연구팀은 해당 방법을 이용해 메타 표면에 대한 특별한 사전지식 없이도 가능한 구조를 넓게 탐색하고 최적 구조를 발견할 수 있음을 보였다. 또한, 많은 입사 조건에서 최신 성능과 비슷하거나 앞서며 특정 조건에서는 100%에 가까운 효율을 달성했다.
이번 연구를 통해 자유 구조 최적화 분야의 새로운 돌파구를 찾을 것으로 기대되며, 광소자뿐 아니라 많은 분야의 소자 구조 최적화에도 활용될 수 있을 것으로 기대된다.
제1 저자인 서동진 연구원은 "강화학습은 복잡한 환경에서 최적의 경우를 찾는 데에 효과적인 알고리즘이다. 이번 연구에서 해당 방법으로 자유 구조의 최적화를 수행하는 것에 성공하는 사례를 남겨 기쁘다ˮ고 말했다.
장민석 교수는 "광공학에 인공지능 기술을 적용하는 분야에서 좋은 결과가 나와 과학의 위상을 높이는 데 기여하기를 희망한다ˮ고 말했다.
한편 이번 연구는 한국연구재단의 중견연구자지원사업(전략연구), 한-스위스 이노베이션프로그램, 그리고 미래소재디스커버리 사업의 지원을 받아 수행됐다.
2022.02.25
조회수 11160
-
화학 색소 없는 구조색 컬러 인쇄 기술 개발
우리 대학 생명화학공학과 김신현 교수 연구팀이 한국화학연구원 이수연 박사 연구팀과의 공동 연구를 통해 자연을 모방한 구조색을 맞춤형으로 인쇄하는 기술을 개발했다고 14일 밝혔다.
구조색은 색채에 의존하지 않고 물체의 구조에 의해 나타나는 유채색으로, 일반적인 화학 색소에 의한 색과는 구별된다. 구조색은 영롱하고 반짝이는 색감을 가지며, 자연에서 나타나는 수컷 공작새의 깃털이나 카멜레온의 피부, 모르포나비의 날개 등에서 관찰된다. 특히 우리 조상들은 자연의 구조색을 진귀하게 여겨 나전칠기 공예에 사용한 전복 껍데기를 사용했으며, 신라 시대 유물에서도 구조색을 보이는 비단벌레 장식이 발견되고 있다.
연구팀이 개발한 구조색 인쇄 기술은 화학 색소 대신 콜로이드 입자의 3차원 결정 구조를 이용해 발색하며, 맞춤형으로 제작 가능한 인쇄 공법을 통해 광학 소자, 광학 센서, 위변조방지 소재를 포함한 광범위한 분야에 적용 가능할 것으로 기대된다.
생명화학공학과 김종빈 박사과정이 제1 저자로 참여한 이번 연구 결과는 사이언스 자매지 `사이언스 어드밴시스(Science Advances)' 11월 24일 자 온라인판에 게재됐으며, 특허로 출원했다. (논문명 : Direct writing of customized structural-color graphics with colloidal photonic inks, 콜로이드 잉크의 직접 프린팅을 통한 구조색의 맞춤형 패턴 형성)
구조색을 인공적으로 형성하는 방법으로 콜로이드 나노입자를 3차원 결정 구조로 만드는 전략이 사용됐다. 그러나 일반적으로 콜로이드의 결정화는 까다로운 공정 조건과 긴 공정 시간을 요구하는 한계점이 있었다. 게다가 콜로이드 결정을 원하는 구조와 패턴을 보이도록 성형하는 것은 복잡한 제조 공정이 필요해 실용화가 거의 불가능했다.
공동연구팀은 새롭게 형성한 콜로이드 잉크의 인쇄 공정을 통해 콜로이드 결정을 패턴화할 수 있는 새로운 기술을 개발했다. 이를 통해 단순한 인쇄 공정으로 정교한 콜로이드 결정 구조 형성 및 패턴화가 가능했다. 특히 인쇄를 통해 그래픽의 디자인, 색의 명도와 채도, 기계적 물성, 각도 의존성 등을 자유롭게 맞춤형으로 설계할 수 있었다.
기술의 핵심은 콜로이드 잉크의 최적화에 있다. 연구팀은 인쇄에 적합하도록 잉크의 물성을 제어함과 동시에 자발적인 콜로이드 결정 형성을 통해 우수한 광 특성을 발현할 수 있도록 잉크를 설계했다. 이를 통해 그래픽의 기본 성분인 선을 머리카락 굵기 수준의 높은 해상도로 최대 15 mm/s의 속도로 인쇄할 수 있었으며, 면의 경우 90%에 달하는 반사도를 달성할 수 있었다.
특히 기존의 구조색 패턴 화법으로는 다색 패턴 형성이 매우 복잡한 공정을 요구하는 데 반해 연구팀은 서로 다른 잉크를 동시에 사용해도 서로 혼합되지 않도록 설계해 다색 패턴을 손쉽게 제작할 수 있었다.
새롭게 개발된 인쇄 방법은 유리, 금속, 플라스틱 등의 비흡수성 기판뿐만 아니라 천, 종이 등에도 인쇄 가능하며, 인쇄된 구조색 패턴은 각도에 따라 색이 변하며, 카멜레온과 같이 늘리거나 휘어 색이 변하도록 조절할 수 있다.
김신현 교수는 "새롭게 개발한 구조색 기반 컬러 인쇄 기술이 MZ 세대들에게 개성을 어필할 수 있는 새로운 도구가 될 수 있을 것ˮ이라고 말했다.
한편 이번 연구는 한국도레이과학진흥재단의 연구기금과 한국연구재단의 나노소재원천기술개발사업의 지원을 받아 수행됐다.
2021.12.14
조회수 10002