본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%A7%88%EC%9D%B4%ED%81%AC%EB%A1%9C
최신순
조회순
이건재 교수, 유연한 청색 박막 마이크로 LED 기술 개발
〈 이 건 재 교수 〉 우리 대학 이건재 교수 연구팀과 한국나노기술원(KANC) 협력팀이 고효율의 유연 박막 수직형 청색 마이크로 LED 저비용 양산 기술을 개발했다. 이 기술을 통해 청색 마이크로 LED 생산 기술의 활성화를 유도해 차세대 유연 디스플레이의 대중화에 기여할 수 있을 것으로 기대된다. 이번 연구 성과는 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 6월호 표지논문으로 게재됐다. 2018년 세계 최대 가전박람회(CES)에서 공개된 마이크로 LED TV는 아몰레드(AMOLED)를 대체할 차세대 디스플레이로 각광받았다. 마이크로 LED는 기존 LED 칩 크기를 크게 축소시켜 적, 녹, 청색의 발광소재로 사용하는 기술로 낮은 전력과 빠른 응답속도를 갖는다. 하지만 현재 산업계에서는 두꺼운 미니 LED 칩을 소형화해 개별 전사하는 방식을 사용해 수천만 화소의 디스플레이를 대량 생산하기 어렵고 높은 제조 가격 등으로 인해 초기 시장에서는 수 억 원대의 프리미엄 고가제품이 될 수밖에 없을 것으로 예측된다. 마이크로 LED 디스플레이가 모바일 및 TV 등의 분야에서 대중화되기 위해서는 칩 개별전사가 아닌 수 십 만개의 LED를 한 번에 전사하는 박막형 마이크로 LED 전사 기술이 필수적이며 모든 색 구현에 중요한 고효율 청색 박막 마이크로 LED 기술이 핵심이다. 이 교수팀은 올해 초 두께 2마이크로미터 이하의 박막형 적색 마이크로 LED를 개발한 데 이어 이번 연구를 통해 수천 여개의 박막형 청색 마이크로 LED를 한 번에 플라스틱 위에 구현하는 원천기술을 개발하는 데 성공했다. 이는 모든 색깔을 저비용으로 구현하기 위한 핵심적인 기술이다. 개발된 청색 마이크로 LED는 수직형 박막 구조를 가지며 매우 유연하다. 또한 1제곱밀리미터(mm2)당 30밀리와트(mW) 이상의 강한 빛을 내며 기존 수평형 박막 마이크로 LED보다 광 효율이 3배 이상 뛰어나고 발열이 적어 10만 시간(10년 이상) 구동될 수 있다. 이건재 교수는 “마이크로 LED 디스플레이를 대중화하기 위해서는 박막 전사기술, 고효율 소자 구조, 접속 및 패키징 기술이 필요하며 올해 말까지 새 전사방법을 활용해 스마트 워치 급 풀 칼라 마이크로 LED 디스플레이를 구현할 예정이다”고 말했다. 이 연구 결과는 과학기술정보통신부·한국연구재단 기초연구사업(선도연구센터) 지원으로 수행됐다. □ 그림 설명 그림1. 고효율의 유연 수직형 청색 마이크로LED 어레이(어드밴스드 머티리얼즈 2018년도 6월호 표지) 그림2. 고효율의 유연 수직형 청색 마이크로 LED 30x30 어레이
2018.06.18
조회수 10302
이건재 교수, 유연 수직형 마이크로 LED 개발
〈 이 건 재 교수 〉 우리 대학 신소재공학과 이건재 교수팀과 생명과학과 김대수 교수팀이 유연한 수직형 마이크로 LED 기술을 개발했으며, 이를 동물의 뇌에 삽입하여 빛으로 행동을 제어하는 데 성공하였다고 밝혔다. 마이크로 LED는 기존 LED 칩 크기를 크게 축소시켜 적, 녹, 청색의 발광소재로 사용하는 기술로서, 저전력과 빠른 응답속도, 뛰어난 유연성을 가져 차세대 디스플레이로 각광받고 있다. 현재 산업계에서는 200마이크로미터(μm) 이상의 크기를 갖는 두꺼운 미니 LED 칩을 소형화해 개별 전사하는 방식을 채택하고 있어 대량 생산이 어렵고 생산단가가 높으며, 소요 시간이 오래 걸리는 등의 한계를 갖고 있다. 이번 연구에서 이 교수 연구팀은 수직 LED용 양산 장비를 자체적으로 설계하여 5마이크로미터의 두께, 80마이크로미터 이하의 크기를 갖는 2500여 개의 박막 LED를 이방성 도전 필름을 활용하여 한 번에 플라스틱 기판으로 전사함과 동시에 상호 연결된 유연한 수직형 마이크로 LED를 구현하였다. 이러한 수직형 마이크로 LED는 기존 수평형 마이크로 LED와 비교해 3배 이상 향상된 광 효율을 갖으며, 박막 LED의 발열로 인한 수명, 낮은 해상도 및 신뢰성 문제를 해결할 수 있다. 이 교수는 2009년부터 마이크로 LED 연구를 진행해 왔으며, 20여 개의 국내외 원천 특허를 등록하였을 뿐만 아니라, 지난 4년 간 교신저자로서 총 임팩트 팩터 600에 달하는 40여 편의 논문을 발표하였다. 한편, 뇌과학 분야에서는 빛을 이용한 인간 뇌의 신경회로를 밝히는 광유전학이 주목받고 있다. 이번에 개발한 기술은 뇌의 모든 신경세포를 자극하는 전기자극과 달리 흥분 및 억제 신경세포만을 선택적으로 자극할 수 있기 때문에 정밀한 뇌 분석, 고해상도의 뇌 지도 제작 및 신경세포 제어가 가능하다. 이번 연구에서는 30 밀리와트/제곱밀리미터(mW/mm2) 이상의 강한 빛을 내는 유연 마이크로 LED를 쥐의 뇌에 삽입하여 대뇌 표면으로부터 깊은 곳에 위치한 운동 신경세포를 활성화시켜 쥐의 행동을 제어하였을 뿐만 아니라, 발열이 적어 뇌조직의 손상 없는 생체 삽입형 유연 전자 시스템을 구현하였다. 이건재 교수는 “이번에 개발된 수직 마이크로 LED 및 전사 패키징 기술은 저전력을 필요로 하는 스마트워치, 모바일 디스플레이, 웨어러블 조명 등에 바로 활용될 수 있을 것이며, 인간이 아직 풀지 못한 뇌과학 및 광치료, 바이오센서 분야에서도 큰 기여를 할 수 있을 것이다”라고 이번 연구의 의의를 밝혔다. 이번 연구는 스마트 IT융합시스템 연구단의 지원을 받아 수행되었으며, 세계적 과학 학술지인 ‘나노 에너지(Nano Energy)’에 2월 1일자로 게재되었다. □ 관련 영상 □ 그림 설명 그림1. 이번 기술을 이용해 제작한 마이크로 LED 그림2. 유연한 수직형 마이크로 LED의 구조 그림3. 유연한 수직형 마이크로 LED를 활용한 광유전학적 쥐의 행동 제어 실험 개략도 그림4. 이방성 도전 필름을 활용한 전사 및 패키징 기술 개략도
2018.01.29
조회수 17205
김정원 교수, 초저잡음 마이크로파 주파수 합성기 개발
우리 대학 기계항공공학부 김정원 교수 연구팀이 광섬유 광학 기술을 이용해 X-밴드 레이더에 활용할 수 있는 초저잡음 마이크로파 주파수 합성기를 개발했다. 이번 기술은 레이더 뿐 아니라 통신, 센서, 정밀계측 등 다양한 분야에서 활용 가능하고 기술이전을 통한 국산화도 가능할 것으로 기대된다. 권도현 박사과정이 1저자로 참여한 이번 연구 성과는 ‘포토닉스 리서치(Photonics Research)’ 2018년도 1월호에 게재됐다. 레이더는 자율주행 자동차, 기상관측, 천문연구, 항공관제, 군용탐지 등 민간 및 군용 분야에서 다양하게 활용된다. 고성능 레이더 내에서의 속도 탐지 및 이미지 분해능 개선, 통신 및 신호처리 능력 향상을 위해서는 레이더 송신신호의 위상잡음(phase noise)을 낮추는 것이 필수적이다. 또한 우수한 주파수 스위칭과 변조 성능 역시 레이더 신호원의 중요한 요구 조건이다. 하지만 위상잡음이 낮은 마이크로파 주파수 합성기는 고가일 뿐더러 수출승인(EL) 품목으로 자국 밖 수출이 금지되거나 특별 허가를 받아야 하는 경우가 많다. 김 교수 연구팀은 고가의 재료나 실험실 밖 환경에서 사용이 어려운 기술 없이도 부품의 신뢰성과 가격경쟁력이 확보된 광섬유광학 기술과 상용 디지털신디사이저(DDS) 부품만을 이용했다. 이를 통해 매우 우수한 위상잡음 수준을 가지며 주파수 스위칭 및 다양한 변조가 가능한 마이크로파 주파수 합성기를 개발했다. 이 주파수 합성기는 광섬유 레이저 기술을 이용해 펄스(pulse) 형태의 빛을 생성한다. 이 때 빛 펄스 간의 시간 간격을 매우 일정하게 만들어 1초 동안 1 펨토초(1천조분의 1초)라는 아주 작은 시간의 오차를 갖는 빛 펄스들을 생성했다. 그리고 이 빛 펄스들을 전기 신호로 변환하는데 이 때 펄스 간 시간 간격에 의해 정해지는 반복률(repetition-rate)의 정수배에 해당하는 임의의 사인파(sinusoidal) 형태의 전기 신호를 생성할 수 있다. 이번 연구에서는 여러 가능한 주파수 대역들 중에서 최근 이슈가 된 사드(THAAD) 레이더를 비롯한 고성능 레이더와 우주 통신 분야에서 그 중요성이 커지는 X-밴드(8-12 GHz) 마이크로파 주파수 대역에서 동작하는 주파수 합성기를 구현했다. 이번 기술은 기존의 최고 성능 오븐제어 수정발진기(OCXO) 기반 주파수 합성기들의 위상잡음보다 월등하게 우수한 성능을 보였다. 또한 전자전(electronic warfare) 및 레이더 시스템에서 중요하게 여겨지는 빠른 주파수 변환 속도와 다양한 주파수 변조 기능 역시 가능함을 선보였다. 이 시스템의 또 다른 장점은 기존 마이크로파 주파수 합성기와 달리 매우 낮은 잡음의 광신호 또한 함께 생성할 수 있다는 것이다. 이러한 저잡음 광신호를 이용하면 레이더 수신기에서 이전에는 없던 새로운 신호 분석 기능도 제공할 수 있다. 김 교수는 “이 연구에서는 X-밴드 신호원을 선보였지만 같은 원리를 활용해서 보다 고주파 대역의 초저잡음 신호도 생성할 수 있다”며 “드론처럼 소형, 저속 물체들에 대한 민감한 탐지에도 활용 가능할 것이다”고 말했다. 이번 연구는 한국연구재단 중견연구자지원사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 광섬유광학 기반 X-밴드 레이더 신호원의 개념도 그림2. 10-GHz에서의 위상잡음 측정 결과와 기존의 최고성능 주파수 합성기들과의 성능 비교
2018.01.18
조회수 15209
성형진 교수, 미세유체칩 내 액적 위치 제어 기술 개발
우리 대학 기계공학과 성형진 교수 연구팀(유동제어연구실)이 열모세관 현상을 이용해 미세유체칩 내 액적의 위치를 정교하게 제어하는 기술을 개발했다. 박진수 박사과정이 1저자로 참여한 이번 연구는 영국왕립화학회(Royal Society of Chemistry)에서 발간하는 미세유체기술 및 마이크로타스(microTAS) 분야의 국제학술지인 랩온어칩(Lab on a Chip)지 2017년 6호의 표지논문으로 선정됐다. (논문명: Acoustothermal tweezer for droplet sorting in a disposable microfluidic chip) 극소량의 유체 샘플을 이용해 동전만한 크기의 미세유체칩 내에서 복잡한 실험을 수행하기 위해서는 정교한 미세유체 기술이 필요하다. 특히 서로 섞이지 않는 두 유체로 구성된 액적을 기반으로 하는 미세유체역학 분야에서 액적의 위치를 정교하게 제어할 수 있는 기술이 필수적이다. 하지만 기존의 액적위치 제어기술은 한 쪽 방향으로만 제어할 수 있거나 마이크로 크기 수준에서는 정교하게 제어하지 못했다. 연구팀은 독자적으로 개발한 음향열적가열법을 통해 마이크로 수준의 동적 온도구배를 형성했고 이를 통해 미세유체칩 내에서 액적의 위치를 마이크로 크기 수준에서 정교하게 제어했다. 궁극적으로는 원하는 배출 유로로 액적을 분리할 수 있음을 증명했다. 성형진 교수 연구팀은 그동안 광력과 음향력 기반의 미세유체역학, 난류, 고체-유체 상호작용 연구 분야에서 탁월한 연구 성과를 내 SCI급 국제 학술지에 300여 편의 논문을 게재한 바 있다. 이번 연구는 한국연구재단의 창의연구지원사업, 글로벌박사펠로우십과 KAIST-KUSTAR의 지원으로 수행됐다. 박진수 박사과정은 “본 연구에서 개발된 기술은 액적의 양쪽에서 서로 반대방향으로 작용해 균형을 이루는 열모세관 힘을 이용해 액적의 위치를 마이크로스케일에서 정교하게 제어할 수 있다”고 말했다. 성 교수는 “본 연구에서 개발된 기술이 액적 기반 미세유체칩 내 생화학반응, 제약, 물질 합성 등에 널리 활용될 수 있을 것으로 기대된다”고 말했다. □ 그림 설명 그림1. 랩온어칩 표지
2017.03.20
조회수 17055
김희탁 교수, 빛으로 물질 끌어올려 구조체 제작하는 기술 개발
〈 김희탁 교수 〉 우리 대학 생명화학공학과 김희탁 교수 연구팀이 새로운 형태의 임프린트 리소그래피 기술을 개발했다. 이 기술은 빛을 이용해 물질을 수직으로 끌어올려 마이크로-나노 구조체를 제작하는 방식으로 복잡하고 정교한 구조를 이전보다 훨씬 손쉽게 제작할 수 있을 것으로 기대된다. 최재호 박사과정이 1저자로 참여한 이번 연구는 나노기술분야 국제 학술지 ‘에이씨에스 나노(ACS Nano)’ 1월 12일자 온라인 판에 게재됐다. 임프린트 리소그래피란 모형을 마치 도장을 찍듯이 각인하고자 하는 물질에 찍어 마이크로-나노 구조체를 제작하는 기술이다. 경제적이고 손쉽게 마이크로-나노 구조 제작이 가능해 기존의 포토리소그래피 기술을 대체할 유망한 리소그래피 기술로 손꼽힌다. 그러나 열, 용매, 자외선 등을 필요로 하는 기존의 임프린트 리소그래피 기술은 물질을 수축시키는 특성이 있어 정확한 구조를 제작하기 어렵다는 한계가 있다. 연구팀은 문제 해결을 위해 가시광선 영역의 빛을 아조벤젠 고분자 물질에 조사했다. 이를 통해 아조벤젠 물질을 수직방향으로 끌어올려 마이크로-나노 구조체를 형성하는 새로운 형태의 광유도 임프린트 리소그래피 기술을 개발했다. 아조벤젠 물질은 빛이 편광하는 방향에 따라 액화돼 흐르는 독특한 특성을 갖는다. 이는 편광 방향을 조절한다면 아조벤젠 물질의 움직임을 통제할 수 있다는 뜻이다. 기존의 아조벤젠 물질을 이용한 구조체 제작은 수평 방향으로 흐르는 현상에만 주목해 수직방향으로의 유체화 현상에 대한 이해와 이를 이용한 구조 제어는 거의 이뤄지지 않았다. 연구팀은 아조벤젠 물질을 움직임을 수직방향으로 유도했다. 빛의 수직방향 편광 성분에 의해 수직으로 흐를 수 있게 만들었고 이 흐름이 각인된 모형의 빈 공간을 채우며 마이크로-나노 구조체를 형성하게 된다. 연구팀이 개발한 임프린트 리소그래피 기술은 기존 기술이 갖고 있던 물질의 수축 문제를 극복해 100 나노미터 이하의 나노 구조체까지 구현하는 데 성공했다. 또한 마이크로-나노 구조체가 결합된 다중 규모의 복잡하고 정교한 구조도 제작했다. 연구팀은 앞으로 수직방향의 아조벤젠 물질의 움직임을 이용해 여러 응용분야에 쓰일 정교하고 다양한 마이크로-나노 구조체를 쉽게 제작하는 데 크게 기여할 것이라고 예상했다. 김 교수는 “아조벤젠 물질이 수평방향으로만 물질 이동을 한다는 기존 틀을 깨고 수직방향 이동을 규명했다”며 “이를 이용해 한 층 진보된 형태의 임프린트 리소그래피를 선보였다는 데 의의가 있다”고 말했다. 이번 연구는 KAIST의 엔드-런(End-Run) 프로그램의 지원을 받아 수행됐다. □ 그림 설명 그림1. 새로운 형태의 임프린트 리쏘그라피 공정 개요도 그림2. 본 기술을 통해 제작된 다양한 구조체 그림3. 복잡한 구조체를 제작한 데이터
2017.02.09
조회수 11295
조용훈 교수, 종이 위에서 빛나는 초소형 반도체 레이저 개발
우리 대학 물리학과 조용훈 교수 연구팀이 종이 위에서 작동하는 초소형 반도체 레이저를 개발했다. 나노 크기의 광결정 소자를 흡수성이 높은 종이와 결합함으로써 최첨단 반도체 센서를 저렴한 가격으로 다양한 질병 진단에 활용할 수 있을 것으로 기대된다. 이 연구 결과는 소재 분야 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 11월 17일자에 게재됐다. 빛을 매개체로 사용하는 광소자는 높은 대역폭을 갖고 있어 대용량으로 정보 전송이 가능하고 낮은 전력으로도 구동할 수 있다. 일반적으로 반도체 광소자는 직접적으로 특정 기능을 수행하는 부분 외에 이들을 단순히 지탱하기 위한 반도체 기판이 필요하다. 반도체 기판의 부피는 전체 소자 부피의 대부분을 차지하고 자연적으로 부패하지 않는 물질이기 때문에 소자를 폐기할 때 환경 문제를 일으킨다. 연구팀은 문제 해결을 위해 두꺼운 반도체 기판을 제거했고 일상생활에서 쉽게 구할 수 있는 종이를 광소자의 기판으로 사용했다. 종이의 주원료는 나무이기 때문에 자연적으로 썩어 없어진다. 또한 일상생활에서 쉽게 찾아볼 수 있고 가격이 저렴하기 때문에 종이를 이용한 소자는 단가를 획기적으로 낮출 수 있다. 종이는 기계적으로도 우수한 특성들을 지닌다. 자유자재로 구부릴 수 있고 접었다 피는 것을 반복해도 끊어지지 않는다. 이러한 특성은 기존 플렉서블 기판들이 구현하고자 하는 우수한 특성이다. 연구팀은 반도체 광소자를 종이 위에 옮기기 위해 나노 광소자를 마이크로 스탬프로 떼어 내는 기술을 이용했다. 이를 통해 반도체 기판에 높은 집적도로 패터닝(특정 부분을 깎아내는 식각 과정을 통해 회로를 새겨 넣는 과정)한 나노 광소자를 새로운 종이 기판에 원하는 간격으로 재배열 할 수 있었다. 이번에 종이 위에 결합된 광소자는 폭 0.5 마이크로미터. 길이 6 마이크로미터, 높이 0.3 마이크로미터 크기로 머리카락(약 0.1 mm) 두께의 100분의 1 수준이다. 연구팀은 개발한 광소자를 유체 채널(Fluid channel)이 형성된 종이 위에 결합해 굴절률 센서로도 활용 가능함을 증명했다. 이미 상용화된 임신진단키트 등에서도 볼 수 있듯이 종이는 좋은 흡수성을 가지고 있고 광결정 소자는 높은 민감도를 가지고 있어 센서 응용에 매우 적합하다. 조 교수는 “이 기술은 종이를 광소자의 기판으로 사용함으로써 최근 화두인 친환경 광소자 플랫폼을 만드는데 크게 기여할 수 있다”며 “저렴한 종이와 고성능 광결정 센서를 결합해 전체 소자의 단가는 낮추면서 성능은 뛰어난 적정기술로 활용할 수 있다”고 말했다. 물리학과 김세정 박사가 1저자로 참여한 이번 연구는 서강대학교 신관우 교수, 우리 대학 이용희 교수가 참여했고, 한국연구재단 중견연구자지원사업과 KAIST 기후변화연구허브사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 종이 기판 위 광결정 레이저 모식도 그림2. 종이 기판위에서 동작하는 광결정 공진기 레이저 및 굴절률 센서
2016.11.25
조회수 18569
스마트폰 과다 사용 절제 가능 앱 개발
이 의 진 교수 스마트폰은 우리 일상에서 없어선 안 될 중요한 도구이다. 하지만 무분별하고 무절제한 사용으로 인해 회의, 모임, 각종 그룹 활동에 방해가 되는 사례가 많아지고 있다. 이러한 문제 해결을 위해 KAIST(총장 강성모) 지식서비스 공학과 이의진 교수 연구팀이 스마트폰 사용을 절제할 수 있는 ‘락앤롤(Lock n’LOL)’ 앱을 개발했다. 스마트폰의 과도한 사용 요인은 알림 메시지로 유발된 외부적 사용 요인과, 습관으로 인한 내부적 사용 요인 두 가지로 구분된다. 또한 단순 메시지 전송 외에도 사진 촬영, 정보 검색 등의 이유로 필요한 경우가 많아 스마트폰 사용 빈도를 줄이기 어려웠다. 연구팀은 이런 문제들은 감안해 스마트폰 사용을 공동으로 절제할 수 있는 그룹 중재 앱인 락앤롤을 개발했다. 락앤롤 앱은 ▲ 공동화면 잠금 및 알림 무음 기능 ▲ 잠깐 사용하기 기능▲ 근거리 사용자 탐지 및 알림 등 세 가지 주요 기능을 제공한다. 공동화면 잠금 및 알림 무음 기능은 그룹 스터디와 같은 단체 활동에 유용하다. 구성원들이 단체로 스마트폰을 잠금 모드로 바꿈으로써 그룹 활동이 원활하게 이뤄질 수 있도록 돕는다. 잠깐 사용하기 기능은 스마트폰 사용이 꼭 필요한 경우 제한된 시간에만 사용을 할 수 있는 기능이다. 한 시간에 5분 사용가능한 시간이 주어지고 추가 이용을 위해선 다른 사람의 허락을 받아야 한다. 마지막 근거리 사용자 탐지 기능은 근거리에 위치한 친구를 자동으로 탐지해 상호간 그룹 스마트폰 절제 수행을 추천하는 기능이다. 특히 근거리 사용자 탐지 기술은 GPS와 같은 위치 서비스가 없어도 와이파이 핫스팟 검색결과를 이용해 근거리에 위치한 친구를 찾아 그룹 절제를 실행할 수 있도록 돕는다. 연구팀은 개발된 앱을 기반으로 KAIST에서 지난 5월부터 25일 간 스마트폰 사용을 절제하는 ‘락앤롤 캠페인’을 진행했다. 캠페인 기간 동안 천 여 명의 학생이 참여해 누적 1만 시간 이상 스마트폰 사용을 절제한 것으로 조사됐다. 참여자들은 락앤롤을 통해 그룹 활동에 대한 방해가 줄고 효과적으로 집중할 수 있었다고 말했다. 이 교수는 “향후 사물인터넷 시대에서는 그룹 활동 방해와 같은 디지털 폐해가 더욱 심각해질 것이다”며 “우리 연구는 이러한 문제의 공학적 해결책을 제시했다는 의의가 있다”고 말했다. 향후 연구팀은 고도화된 상황인지 기술을 적용해 지능적인 사용 중재 서비스를 제공하는 후속 연구와, 청소년들의 스마트폰 사용 절제를 돕기 위한 가족 참여형 서비스 출시를 계획 중이다. 이번 연구는 KAIST 모바일 소프트웨어 플랫폼 연구 센터와 마이크로소프트 애저(Microsoft Azure)의 지원을 받아 진행됐다. □ 사진 설명 사진 1. 스마트폰 사용 절제 어플리케이션 락앤롤앱 캡쳐화면 사진 2. 락앤롤 앱 누적사용자 및 누적절제시간 그래프
2015.07.29
조회수 9869
빛과 물질의 성질 동시에 갖는 양자 입자 상온에서 관측
조 용 훈 교수 우리 대학 물리학과 조용훈 교수 연구팀이 육각형의 반도체 막대 구조에서 빛과 물질의 성질을 반절씩 동시에 갖는 양자 입자를 상온에서 관측하는 데 성공했다. 연구 결과는 나노 분야 학술지 ‘나노 레터스(Nano Letters)’ 8일자에 게재됐다. 실생활에 응용되는 광소자는 빛과 물질의 상호작용을 기반으로 한다. 빛이 물질 내부에 충분히 오랫동안 머물 수 있는 적절한 조건을 만들면 서로가 강하게 상호작용을 하며 빛도 물질도 아닌 제 3의 입자가 생성되는데 이를 폴라리톤이라고 한다. 특히 반도체 내부에 존재하는 엑시톤과 빛을 강하게 결합시킨 경우를 엑시톤 폴라리톤이라 부른다. 이처럼 빛이 물질 내부에 충분히 머물기 위해선 좋은 품질의 거울 구조를 만드는 것이 필수적이다. 그러나 100%에 가까운 반사율을 갖는 거울 구조를 만드는 반도체 기술은 공정이 매우 복잡하고 제작 시간이 오래 걸린다는 한계가 있다. 문제 해결을 위해 연구팀은 거울 대신 육각기둥모양의 질화물 반도체 마이크로막대를 이용했다. 이 막대를 사용하면 거울이 없어도 전반사의 원리로 인해 빛이 물질 내부에 갇혀 빛과 물질이 강한 상호작용을 하게 된다. 연구팀은 빛이 갇혀서 맴돌게 되는 위치에 질화물 반도체 양자우물을 성장시켜 기존 구조보다 약 5배 이상 강한 빛과 물질의 상호작용을 얻었다. 이를 통해 상온에서도 엑시톤 폴라리톤 입자가 형성됨을 검증했다. 새로운 입자인 엑시톤 폴라리톤은 빛과 물질이 지닌 장점을 동시에 갖는데, 빛으로부터 얻은 고유 특성으로 인해 전자에 비해 10만 배, 원자에 비해 10억 배 가벼운 질량을 갖게 된다. 이렇게 가벼운 질량은‘보즈-아인슈타인 응축’을 관측할 수 있는 임계온도를 올려주는 역할을 해 그 동안 절대영도(영하 273도) 근처에서 연구된 양자 현상들을 상온에서도 관측할 수 있는 가능성을 열어 준다. 또한 엑시톤으로부터 얻은 고유 특성으로 레이저, 광학 스위치 등 빛을 이용한 비선형 광학 시스템보다 10배 이상 낮은 구동 전류를 갖는 폴라리톤 기반의 신개념 광학 소자로도 응용이 가능하다. 조 교수는 “전통적 레이저의 문턱전류의 한계를 넘는 폴라리톤 레이저 개발로 이어질 수 있을 것”이라며, “지속적인 연구를 통해 상온에서 작동이 가능한 양자 광소자로 활용되길 기대한다”고 말했다. 물리학과 공수현 박사(1저자), 고석민 박사(2저자)의 참여로 이루어진 이번 연구는 한국연구재단의 중견연구자 지원사업과 모험연구 지원사업의 지원을 받아 수행됐다. □ 그림 설명 그림 1. 반도체 코어-쉘 마이크로 막대 모식도 그림 2. 질화물 반도체 코어-쉘 마이크로 막대 구조 현미경 사진. 육각기둥모양(위)과 양자우물구조(아래) 그림 3. 코어-쉘 마이크로 막대 구조의 단면 굴절율 분포(위)와 마이크로 막대 구조 안의 전기장 분포(아래)
2015.07.15
조회수 9948
최명철 교수팀 연구 성과, 사이언스지 퍼스펙티브에 소개
우리 학교 바이오및뇌공학과 최명철 교수팀이 최근 발표한 ‘마이크로튜불의 새로운 구조’에 관한 논문이 과학 분야 가장 권위 있는 학술지인 사이언스(Science) 퍼스펙티브(Perspective)에 지난달 28일 소개됐다. 퍼스펙티브는 전 세계의 학술지 중 가장 영향력 있는 논문을 선정해 재조명하는 섹션이다. KAIST 송채연 박사와 최명철 교수, 미국 UC Santa Barbara의 Safinya교수와 Wilson교수, 이스라엘 Hebrew University의 Raviv교수로 구성된 국제 공동연구팀은 가속기 엑스선 산란장치(synchrotron x-ray scattering)와 전자현미경을 이용해 마이크로튜불의 초미세구조를 이해하고, 이를 제어하는 스위치를 발견해 새로운 단백질 나노튜브 구조를 최초로 밝힌 연구결과를 네이처 머티리얼즈(Nature Materials)에 발표한 바 있다. 튜불린(마이크로튜불의 기본 단위체)의 형태 변화가 마이크로튜불의 구조 형성에 결정적인 영향을 미친다.연구진은 이 형태 변화를 제어하는 스위치를 찾음으로써 마이크로튜불의 새로운 크기와 형태의 구조를 발견했다. 사이언스 홈페이지
2014.03.11
조회수 16130
단백질 나노튜브의 자기조립 분자스위치 발견
- 한국, 미국, 이스라엘 국제 공동 연구 성과 - - 암 치료와 뇌 질환 메커니즘 단서 - 우리 학교 바이오및뇌공학과 최명철 교수와 송채연 연구교수는 미국 산타바바라 캘리포니아대학교, 이스라엘 히브리대학교와 공동으로 세포분열과 세포간 물질수송에 열쇠가 되는 단백질 나노튜브의 자기조립 구조를 제어하는 분자스위치를 발견했다. 연구 결과는 세계적 학술지 ‘네이처 머티리얼즈(Nature Materials, IF=35.7)’ 19일자에 게재됐다. 마이크로튜불(microtubule, 미세소관)은 사람의 몸속에서 세포분열·세포골격·세포간 물질수송 도구로 사용되는 튜브 형태의 단백질로 굵기가 25나노미터(1나노미터는 머리카락 굵기의 10만분의 1)에 불과하다. 대부분의 암 치료 약물은 마이크로튜불의 형성을 교란해 암세포 분열을 억제하는 것으로 작용 메커니즘이 알려져 있다. 알츠하이머병은 세포간 물질수송을 담당하는 마이크로튜불의 구조적 안정성이 떨어지면서 신경세포에서의 신호전달이 제대로 이루어지지 않아 생기는 대표적 뇌질환이다. 연구팀은 싱크로트론 X선 산란장치(synchrotron x-ray scattering: 전자를 빛의 속도에 가깝게 가속시켜 강력한 X선을 발생시키는 장치)와 투과전자현미경을 이용해 단백질 나노튜브의 자기조립 구조를 서브나노미터(1나노미터 미만)의 정확도로 측정했다. 연구팀은 이번 연구를 분자 레벨에서 레고 블록을 쌓아 올리는 것에 비유해 가로×세로×폭이 각각 4×5×8 나노미터인 단백질 블록을 쌓아 올려 25나노미터 굵기의 튜브를 형성하는 메커니즘을 추적했다. 이 과정에서 연구팀은 레고 블록의 형태를 제어하는 분자스위치를 발견했다. 또 지금까지 보고된 바 없는 전혀 새로운 크기와 형태의 단백질 튜브 구조를 만들어 내는데 성공했다. 최명철 교수는 “인간의 생명 시스템은 고도의 자기조립 구조체를 형성해 복잡한 생물학적 기능을 하고 있지만 한편으로는 극히 단순한 물리학적 원리에 의해 제어가 가능하다는 새로운 패러다임을 제시했다”고 이 연구의 의의를 밝혔다. 또 “이번 연구는 암 치료와 뇌질환 메커니즘을 규명하고자하는 작은 발걸음이며 앞으로 바이오 나노튜브를 이용한 공학적 응용이 무궁무진할 것으로 기대한다”고 말했다. 이번 연구는 한국연구재단의 국제협력사업, 신진연구자지원사업, 학문후속세대양성사업, KAIST 고위험 고수익 프로젝트(High Risk High Return Project)의 지원으로 수행됐다.
2014.01.21
조회수 21508
휴대용 음향카메라 개발
- 세계 3대 디자인 공모전 ‘레드 닷 디자인 어워드’ 수상 - 우리 학교 산업디자인학과 배석형 교수가 ㈜에스엠인스트루먼트 및 ㈜현대자동차와 공동으로 개발한 세계 최초의 ‘휴대용 음향카메라’가 세계 3대 디자인 공모전 중 하나인 레드 닷 디자인 어워드(Red Dot Design Award)의 제품디자인 부문 수상작으로 선정됐다. 자동차 운전자라면 한번쯤 원인을 알 수 없는 소음 때문에 골머리를 앓은 경험이 있을 것이다. 자동차를 비롯한 공업제품에서 비정상적인 소음이 발생하면 설계의 오류나 부품의 마모, 파손 등 다양한 문제가 있을 수 있는데 소음이 발생하는 위치를 사람의 청각으로 정확하게 찾아내기는 쉽지 않다. 이러한 상황에서 유용하게 쓰일 수 있는 장치가 음향카메라다. 열 감지 카메라가 온도의 분포를 색으로 표현하듯이 음향카메라는 마이크로폰 배열을 이용해 측정한 소리의 분포를 색으로 표현해 소음원의 위치를 보여준다. 하지만 기존의 음향카메라는 크고 무거울 뿐만 아니라 조립 및 설치 방법이 복잡하고 삼각대 위에 고정된 상태로만 사용할 수 있어 설치가 어려운 좁은 공간이나 자동차의 바닥면 등은 측정이 불가능한 경우가 많았다. 이번에 개발된 휴대용 음향카메라는 가로 39cm × 세로 38cm, 무게 1.78kg으로 크기와 무게가 기존 제품에 비해 각각 40%, 30%에 불과해 사용자가 자유롭게 들고 움직이면서 측정대상을 탐색할 수 있다. 다섯 가닥의 나선형으로 배치된 30개의 마이크로폰과 고해상도 카메라는 공업제품의 개발 및 수리 과정에서 중요한 350Hz~12kHz 주파수 대역의 소음의 분포를 이미지와 합성해 사용자에게 직관적으로 보여주며 동영상으로 저장할 수도 있다. 새로 개발된 제품은 기존의 제품과는 달리 일체형으로 측정에 앞서 마이크로폰을 조립하는 불편을 해소했다. 가운데 손잡이는 인체공학적으로 설계되어 사용자가 한 손으로도 음향카메라의 무게를 안정적으로 지탱할 수 있다. 또 받침대 역할을 하기도 하는 양 옆의 손잡이는 두 손을 이용해 다양한 방식으로 음향카메라를 잡을 수 있도록 설계되어 좁은 공간이나 바닥면 등도 사용자가 무리한 자세를 취하지 않고 측정할 수 있다. 현대자동차 남양연구소 이강덕 NVH 연구위원은 “지난 2월부터 휴대용 음향카메라를 신차 개발단계에서 다양하게 활용하고 있다”며 “한 손으로 들 수 있을 만큼 작고 가볍기 때문에 기존의 음향카메라로는 비추기 어려웠던 부분도 자유롭게 탐색할 수 있고 혼자서도 사용할 수 있어 작업 과정이 크게 향상됐다”고 말했다. 배석형 교수는 국제 디자인 공모전 수상과 관련해 “첨단 기술에 디자인 요소를 효과적으로 결합한 점을 인정받았다”며 “과학기술에 대한 수준 높은 이해가 가능한 KAIST 산업디자인학과의 역량을 보여준 좋은 사례”라고 말했다. 한편, 소음진동 전문기업 ㈜에스엠인스트루먼트는 지난 2006년 KAIST 창업보육센터에서 시작, 2년 만에 독자적인 기술력을 확보해 자립했으며 끊임없는 변화와 혁신을 통해 국가 소음진동 기술 발전에 기여하고 있다. 그림1. 레드 닷 디자인 어워드에서 수상한 휴대용 음향카메라 SeeSV-S205 그림2. 휴대용 음향카메라를 이용해 소음이 발생하는 위치를 찾는 모습 그림3. 휴대용 음향카메라를 이용해 자동차의 소음을 측정한 이미지
2013.04.04
조회수 15968
유룡 교수, 벌집 모양 규칙적 구조의 제올라이트 개발
- 사이언스誌 발표,“제올라이트 학계의 20여년 숙원 과제 해결!”- 우리 학교 화학과 유룡 교수 연구팀은 벌집모양의 메조나노기공과 보다 미세한 크기의 마이크로나노기공이 규칙적으로 배열되어 있는 ‘육방정계 구조규칙적 위계나노다공성 제올라이트’ 신물질을 개발하는데 성공하였다. 유 교수팀은 2009년 나노판상형태의 초박막 제올라이트 물질을 합성하여 세계 최고 권위의 과학 학술지인 네이처誌에 게재한데 이어, 벌집모양의 메조나노기공을 갖는 제올라이트 물질의 개발 성과로 사이언스誌 2011년 7월호(7월 15일자)에 논문을 게재하여 제올라이트 연구의 우수성과 학술적 중요성을 모두 인정받았다. 제올라이트는 가솔린 생산을 비롯하여 석유화학산업 전반에 걸쳐 세계적으로 가장 널리 이용되는 촉매물질이다. 촉매는 다양한 화학 반응에서 사용되어 반응을 촉진시킴은 물론, 반응 시간을 단축시켜 경제성을 높이는 데 활용되는 물질이다. 화학 산업 분야에서 사용되는 촉매 물질들은 사용 후 분리를 용이하게 하기 위해 주로 고체 형태로 이루어진 촉매를 사용하는데, 제올라이트는 현재 사용되고 있는 다양한 고체 촉매들 중에서 40% 이상을 차지할 정도로 매우 높은 비율로 다양한 화학 산업 전반에 걸쳐 이용되고 있는 물질이다. 때문에, 제올라이트의 촉매 효율을 높일 경우, 이에 따른 경제적 효과는 막대하다고 할 수 있다. 기존에 산업 전반 분야에 사용되고 있는 일반 제올라이트 촉매 물질들은 내부에 무수한 미세구멍(나노세공)들이 규칙적으로 뚫려 있지만 그 직경이 매우 작아 반응 대상 분자의 확산 속도가 느리기 때문에 촉매활성이 낮은 단점이 있었다. 이를 해결하기 위해 연구팀은 미세한 마이크로나노기공과 그 보다 큰 직경의 메조나노기공이 동시에 규칙적으로 배열*되어 있는 제올라이트 물질을 합성하였다. 이러한 구조의 물질은 제올라이트 학계에서 수많은 연구자들이 합성하고자 지난 20여 년 이상을 시도해온 물질로서, 이번에 유 교수팀이 드디어 제올라이트 학계의 20여 년 동안의 숙원 과제를 해결하는 방법을 제시한 것이다. * 작은 도로만 있어 교통체증이 심한 대도시에 큰 도로와 작은 도로를 유기적으로 구성하는 도시계획을 수립, 시행함으로써 원활한 교통 흐름을 만들어 내는 원리와 같다. 크고 작은 나노세공이 유기적으로 연결된 제올라이트 내부에서 분자의 흐름이 훨씬 수월해진다. 이번에 개발한 제올라이트 물질은 연구팀이 특수 설계한 계면활성제를 사용하여 합성할 수 있었다. 이 계면활성제는 머리 부분에 제올라이트 마이크로 기공 유도체를 포함하여 제올라이트 골격의 형성을 유도하고, 소수성 꼬리 부분은 제올라이트의 마이크로 기공보다 더 큰 메조 기공을 벌집 구조 모양으로 배열할 수 있도록 하였다. 지금까지 알려져 있는 제올라이트 합성 원리는 하나의 기공 유도 분자가 하나의 매우 작은 마이크로 기공을 유도했던 반면에, 본 연구팀이 개발한 방법은 하나의 분자가 서로 다른 크기의 기공을 규칙적으로 유도한다는 점에서 기존의 방법과 차별화된다. 유교수팀이 세계 최초로 2009년에 개발한 2 nm 극미세 두께의 나노판상형 제올라이트가 2차원적인 형태로 이루어진 물질이었다면, 이번에 합성에 성공한 ‘육방정계 구조규칙적 위계나노다공성 제올라이트’는 3차원적 구조 규칙성을 띤 나노구조물로 지금까지 볼 수 없었던 이상적이고 안정적인 벌집 구조를 갖고 있다. 때문에, 새로 개발한 제올라이트는 산업적으로는 중요하지만 커다란 분자 크기 때문에 기존의 제올라이트를 사용하기 쉽지 않았던 물질의 촉매로 사용할 수 있게 되었다. 유룡 교수는 “이번에 개발한 제올라이트는 지금까지 볼 수 없었던 이상적이고 안정적인 기공구조를 갖고 강한 산성을 띠고 있어 기존의 제올라이트의 단점을 충분히 보안한 물질이다. 따라서 앞으로 산업적으로 중요한 많은 고부가 가치 반응에서 고성능 촉매로 사용될 수 있을 것으로 기대한다. 뿐만 아니라, 이번 연구를 통해 본 연구단이 개발한 합성 방법이 여러 종류의 제올라이트에도 적용이 가능함을 보이면서 앞으로 200여 가지가 넘는 기존의 제올라이트들의 단점도 해결할 수 있을 것이다.”고 연구의의를 밝혔다. 이번 논문의 제1저자인 나경수 박사는 성균관대학교 화학과를 조기졸업하고 KAIST에서 석사와 박사를 4년 반만에 마친 수재다. 지난 2월에는 KAIST 우수 박사학위 논문상을 수상하기도 했으며, 현재 유룡 교수가 맡고있는 KAIST 화학과 기능성 나노물질 연구단에서 박사후 과정 중이다. [그림1] ‘육방정계 구조규칙적 위계나노다공성 제올라이트’의 주사 전자현미경 사진. 균일한 두께와 길이의 뾰족한 바늘 모양의 결정들이 전 영역에 걸쳐 고루 존재하는 것을 볼 수 있다. [그림2] ‘육방정계 구조규칙적 위계나노다공성 제올라이트’의 투과 전자현미경 사진
2011.07.15
조회수 20225
<<
첫번째페이지
<
이전 페이지
1
2
3
4
>
다음 페이지
>>
마지막 페이지 4