-
스마트 나노센서를 이용한 신약 효능 분석기술 개발
- 사람 몸속에서의 효능을 실시간 모니터링 할 수 있어 - - 나노-바이오-영상-분자화학 등이 융합 -
KAIST가 신약 효능을 분석하는 새로운 기법의 기술을 개발했다.
우리 학교 생명과학과 이상규 박사가 생체나노입자를 사람세포에 적용해 살아있는 세포에서 신약의 효능을 실시간으로 모니터링 하는 기술을 개발했다.
이 기술을 이용하면 사람 몸속에서도 신약의 효능을 보다 정확하게 파악할 수 있을 것으로 기대된다.
지금까지는 신약 후보물질을 몸속으로 투여하고 세포를 추출한 후 효과를 분석했다. 그러나 세포를 용해한 후 세포의 기능이 정지된 상태에서 분석함으로써 예상치 못했던 부작용으로 대부분의 후보물질이 탈락하게 된다. 이 때문에 엄청난 비용과 노력을 들이더라도 신약개발을 성공하기가 매우 어려웠다.
연구팀은 수많은 나노입자가 서로 연결되면 커다란 복합체를 형성할 수 있다는 아이디어에 착안했다. 나노입자를 세포 내부에 적용해 본 결과 실제로 살아있는 세포 안에서 나노입자 간의 결합을 통해 복합체가 빠르게 형성되는 것을 확인했다.
형성된 복합체는 나노센서 역할을 하게 돼 약물이 세포 내에 투여되는 과정에서 약물 타겟과의 결합을 실시간으로 관찰할 수 있었다.
연구팀은 이 나노센서 기술을 ‘스마트한 눈(InCell SMART-i)’이라고 명명했다. 살아있는 세포 안에서 일어나는 신약의 효능작용을 한 눈에 볼 수 있기 때문이다.
이상규 박사는 “이 기술은 나노-바이오-영상-분자화학 등이 융합된 차세대 원천기술로 신약개발에 효과적으로 적용 가능한 매우 중요한 기술”이라며 “신약물질의 직접 개발을 원하는 기업으로 기술이 이전돼 상용화가 멀지 않았다”고 말했다.
한편, KAIST 생명과학과 이상규 박사와 리온즈신약연구소(주) 김태국 박사가 개발한 이 기술은 최근 세계적인 화학지인 ‘앙게반테 케미(Angewandte Chemie International Edition)’ 지 9월호에 주목받는 논문(Hot Paper)으로 선정됐다.
그림1. 사람 세포 내에 도입된 스마트 나노 센서가 약물과 약물 타겟 간의 결합에 따라 세포 내에 스팟(같은 나노클러스터)을 형성하고 이를 실시간으로 탐지해 낼 수 있는 원천기술의 모식도
그림2. 약물타겟 A 또는 B가 발현되어 있는 사람세포에 약물을 처리하면 세포 내에서 약물과 약물타겟이 서서히 결합되면서 스마트 나노센서에 의해 이러한 스팟 (같은 나노클러스터) 형태로 실시간으로 센싱-감지된다. 따라서 살아 있는 사람세포 안에서 신약의 효능작용을 실시간으로 마치 비디오를 보는 것처럼 라이브로 모니터링 할 수 있는 나노-바이오-영상-분자화학 등이 융합된 차세대 원천기술이다.
2011.09.05
조회수 16817
-
뼈 형성 모방, 고성능 리튬전지 소재 개발
- 재료분야 세계적 학술지 Advanced Materials지 온라인판 게재- 리튬이차전지, 차세대 유․무기 나노복합소재 개발에 응용 가능해
우리학교 신소재공학과 강기석(35세) 교수팀과 박찬범(41세) 교수팀이 뼈의 형성 과정을 모방해 우수한 나노구조를 갖는 ‘리튬이차전지용 전극소재 합성을 위한 원천기술개발’에 성공했다고 22일 밝혔다.
뼈는 자연계에 존재하는 대표적인 나노복합소재로써 콜라겐이라는 단백질 섬유를 따라 칼슘인산염 나노결정이 생성․성장함으로써 생성된다.연구팀은 이러한 자연현상을 모방해 차세대 고안전성 리튬전지용 양극소재인 철인산염을 나노튜브 형태로 합성하는 데 성공했다.
리튬이차전지의 성능을 향상시키기 위해서는 에너지를 저장하거나 방출하기 위한 리튬의 빠른 이동이 필수적이다. 이를 위해 전극소재의 구조를 나노화하게 되면 표면적이 넓어지고 리튬의 확산에 필요한 거리가 짧아지기 때문에 보다 효과적으로 에너지를 저장하거나 방출할 수 있다.
이 기술의 핵심은 3차원 나노 구조를 갖는 생체재료 위에 철인산염을 균일하게 성장시킨 후 생체재료를 효과적 제거해 나노튜브구조를 얻는 것이다.
연구팀은 간단한 단백질의 일종인 펩타이드의 자기조립공정을 이용해 콜라겐 섬유와 유사한 구조 및 물성을 지니는 단백질 나노섬유를 합성한 뒤, 철 이온과 인산이온의 수용액상 침착반응을 이용해 단백질 나노섬유를 철인산염으로 균일하게 코팅했다.
이후 열처리를 통해 펩타이드 나노섬유를 탄화시키면, 내벽이 전도성 탄소층으로 코팅된 철인산염 나노튜브를 얻을 수 있었다 (그림).
연구팀은 철인산염 나노튜브가 차세대 리튬이차전지 전극소재로써 매우 우수한 특성을 가짐을 확인했다.
이번 연구는 생체재료분야와 리튬전지분야의 융합연구를 통해 이뤄졌으며, 기술적인 돌파구가 필요한 리튬전지개발에 이러한 접근방식이 새로운 해결방안이 될 수 있다는 가능성을 제시한 우수한 연구사례로 평가받고 있다.
이 기술을 이용하면 철인산염 외에 각종 다른 기능성 소재 개발에 응용이 가능해 리튬이차전지 뿐만 아니라 차세대 유․무기 나노복합소재 개발이 기여할 것으로 예상된다.
한편, 이번 연구결과는 재료분야 세계적 학술지 어드밴스드 머티리얼스(Advanced Materials) 12월 21일자 온라인판에 실렸다. 또한, 그 중요성을 인정받아 ‘네이처 퍼블리싱 그룹(Nature Publishing Group)’ 아시아 판에도 소개됐다.
2010.12.22
조회수 17062
-
플렉시블 디스플레이용 개스 배리어 기판기술 개발
- 나노 복합체 개스 배리어 기판 원천기술 확보 -
- 투산소도와 투습도 낮아 식품 포장재에 바로 활용 가능 -
우리학교 물리학과 윤춘섭 교수팀이 금오공과대학 고분자공학과 장진해 교수와 공동으로 플라스틱 기판의 투산소도를 1/1,000로 낮춘 독창적 개념의 플렉시블 디스플레이용 개스 배리어(Gas Barrier) 기판을 개발했다.
이번 성과는 평판형 나노입자를 플라스틱 기판에 분산시킨 후 박리 및 배향시키는 나노 복합체 기판 원천기술 개발을 통해 가능해졌다고 공동연구팀은 밝혔다.
개발된 나노 복합체 기판 기술은 차세대 디스플레이인 플렉시블 유기발광 디스플레이(OLED)의 구현에 필수적인 기계적 고유연성, 저 투습도 및 저 투산소도, 높은 광투과도 조건을 모두 만족시킬 수 있는 획기적인 기판 기술로 평가받고 있다.
현존하는 세계최고 수준의 플렉시블 개스 배리어 기판 기술은 플라스틱 기판위에 유기 고분자 층과 무기물 층을 교차로 증착시킨 다층 박막 구조를 가진다. 이 구조로 인해 기판을 곡률반경이 작게 휘거나 접을 경우 무기층에 균열이 생겨 개스 배리어 기능을 상실한다. 이 때문에 기계적 유연성에 한계를 가질 뿐만 아니라 생산 단가가 높은 문제점을 가지고 있었다.
이번에 윤 교수팀이 개발한 나노 복합체 기판 기술은 기판의 골격을 형성하고 있는 유기 고분자가 유연성을 담당하고, 평판형 나노입자가 개스 배리어 기능을 담당한다. 그로 인해 높은 기계적 유연성과 개스 배리어 특성을 동시에 확보할 수 있고 롤투롤(Roll to Roll) 공정이 가능해 생산 단가를 낮출 수 있는 장점이 있다.
플렉시블 디스플레이는 차세대 디스플레이로 각광받고 있으며, 미국을 위시한 일본, 영국, 독일 등 IT 선진국에서는 플렉시블 디스플레이를 모바일 통신기기용 접는 디스플레이, 입는 디스플레이, 디지털 광고판, 스마트 카드, 군복 소매에 부착할 수 있는 작전용 디스플레이 등에 적용하기 위해 대학, 연구소, 기업 및 군이 연구개발 협력체를 구성해 플렉시블 OLED 디스플레이 기술개발을 활발하게 추진하고 있다.
플렉시블 디스플레이를 구현하기 위해서는 유연성이 좋은 플라스틱 기판을 사용해야 하는데, 플라스틱은 내부에 미세한 공간이 있어 개스 분자들이 쉽게 스며들 수 있다. OLED 디스플레이에 습기나 산소가 소자 내부로 침투하면 OLED 소자를 구성하는 유기물질의 분해가 일어나 소자의 기능이 상실되기 때문에 디스플레이의 수명을 단축시킨다.
지금까지 우수한 개스 배리어 특성을 갖는 고유연성 기판의 부재가 플렉시블 OLED 디스플레이의 구현을 막는 중요한 요인 중 하나가 되어 왔다. 이로 인해 현재 상용화되고 있는 소형 모바일 통신기기의 OLED 디스플레이에는 유연성이 없는 유리 기판을 사용하고 있다.
또한, 개발된 나노 복합체 개스 배리어 기판 기술은 플렉시블 디스플레이 뿐만 아니라 투습도 및 투산소도에 대한 요구 조건이 덜 엄격한 식품 포장재에 바로 활용이 가능하다.
식품의 장기 저장 시 산화와 부패를 방지하기 위해서는 투산소도와 투습도가 낮은 포장재의 사용이 필수적이다. 개발된 나노 복합체 기판은 투산소도가 10-2~10-3cc/m2/day로서 현재 일반적으로 사용되고 있는 식품 포장재 투산소도의 1/10 이하이기 때문에 식품 보관 기간을 최소 5배 이상 늘릴 수 있어 식품 유통 구조에 대변혁을 가져올 수도 있다.
라면 봉지와 같은 기존의 식품 포장재는 투산소도와 투습도를 낮추기 위해 플라스틱 필름위에 알루미늄 코팅을 하는데, 인체에 해로운 알루미늄과 음식물의 직접적인 접촉을 피하기 위해 알루미늄 코팅위에 보호막 코팅을 다시 입혀야 되는 번거로운 공정을 거쳐야 한다.
그러나 나노 복합체 개스 배리어 기판 기술을 이용하면 알루미늄 코팅과 보호막 코팅이 필요 없기 때문에 생산 공정이 단순해져 생산 단가도 훨씬 저렴해 지고 친환경적인 장점이 있다.
한편, 윤 교수는 2008년부터 지경부 산업원천기술개발사업의 지원을 받아 ETRI와 공동연구과제로 연구를 수행하고 있으며, 개발된 개스 배리어 기판 기술의 특허 등록을 마치고 관련기업과 기술 이전을 협의 중이다.
<용어설명>
○ 플렉시블 디스플레이 : 기존에 유리를 기판으로 사용한 평판형 디스플레이와 달리 유연한 플라스틱 기판을 사용하여 종이와 같이 말거나 접을 수 있는 디스플레이를 말하며, 휴대하거나 착용하기 쉬워 차세대 디스플레이로 각광받고 있다.
○ 유기발광 디스플레이(OLED) : 전기를 가하였을 때 유기물질에서 발생하는 자발광을 이용한 디스플레이로서 LCD에 비해 빠른 응답 속도, 높은 발광 효율, 넓은 시야각, 얇은 두께 등 우수한 특성을 가지고 있어 꿈의 디스플레이로 불린다. 아직 대면적 화면 구현에는 기술적인 난관이 있어 현재는 주로 소형 모바일 통신기기에 상용화되어 사용되고 있다.
○ 롤투롤(Roll-to-Roll) 공정 : 공정하고자 하는 재질을 두루마리 형태로 감아 한 두루마리에서 다른 두루마리로 감아 옮기면서 연속으로 진행하는 공정을 말한다.
○ 개스 배리어(Gas Barrier): 플라스틱 기판으로 스며드는 개스의 통과를 차단 시키는 역할을 하는 방어벽.
2010.09.06
조회수 18750