-
휘어지는 고집적 반도체회로 구현
- 차세대 유연 스마트기기의 두뇌 상용화 길 열어 -
우리 학교 신소재공학과 이건재 교수팀이 입는 컴퓨터 및 플렉시블 디스플레이에서 가장 핵심적인 역할을 하는 유연한 고집적회로(LSI)를 구현하는데 성공했다.
자유롭게 휘어지는 스마트폰과 컴퓨터를 제작하기 위해서는 높은 집적도의 반도체회로, 즉 모바일 기기의 두뇌인 애플리케이션 프로세서(AP), 고용량 메모리 및 무선통신소자의 유연화가 필수적이다.
지금까지 플렉시블 디스플레이 구동에 필요한 박막트랜지스터(TFT)와 여러 유연소재들을 개발하는 연구는 활발히 진행되고 있다. 그러나 수천 개 이상의 고성능 나노반도체를 연결해 대량의 정보를 처리하고 저장할 수 있는 유연 고집적회로를 제작하지 못했다. 따라서 전체가 자유자재로 휘어지는 유연한 스마트기기 등 입을 수 있는 컴퓨터의 상용화에 어려움이 있었다.
이건재 교수팀은 고집적 무선통신소자를 단결정 실리콘에 형성한 뒤 100nm(나노미터) 두께의 매우 얇은 실리콘 칩의 회로를 뜯어내 플라스틱 기판위에 안정적으로 옮김으로써, 자유자재로 구부릴 수 있는 반도체회로를 구현했다.
이건재 교수는 “이번에 나노두께의 얇은 실리콘 소재로 개발한 반도체회로는 유연하면서도 고집적 고성능을 유지할 수 있고, 곧 상용화될 플렉시블 전자소자에 적용될 수 있을 뿐만 아니라, 인체 친화적 유연한 액정폴리머 소재위에 구현하였기 때문에 인체내부의 좁고 굴곡진 틈에 삽입할 수 있어서, 최근 미국 FDA가 승인한 인공망막의 통신 및 정보처리 기기에 적용하는 등 삶의 질을 향상시키는 데에도 기여할 수 있을 것이다"라고 말했다.
또한 이번 연구의 공저자로 참여한 KAIST 전기및전자공학과 이귀로 교수(나노종합기술원 원장)는 “이번성과는 세계 500조 규모의 반도체 및 디스플레이 시장에서 휘어지는 유연 고집적 회로로 패러다임이 바뀌는 시기에 개발된 핵심 원천기술”이라며 “향후 상용화를 위한 정부의 지원이 뒷받침 된다면 세계 시장에서 앞서가고 있는 한국 스마트폰, 반도체, 디스플레이 산업을 한 단계 더 업그레이드시켜 미래 먹거리로써 창조경제에도 이바지할 수 있을 것”이라고 평가했다.
이건재 교수는 현재 나노종합기술원, 한국기계연구원과 공동으로 이번 연구 결과물인 고집적 유연 반도체 회로를 롤투롤(Roll-to-Roll) 방식으로 양산하는 연구를 계획하고 있다.
한편, 이번 연구는 미국 화학회가 발행하는 나노과학기술(NT) 분야의 세계적 권위지인 ACS Nano 4월 25일자 온라인 판에 게재됐다.
휘어지는 고집적 반도체회로의 모습(좌), 얇고 유연한 고집적 통신소자를 적용한 인공망막의 모습(우)
유튜브 링크:http://www.youtube.com/watch?v=5PpbM7m2PPs&feature=youtu.be
2013.05.07
조회수 16495
-
휘어지는 고성능 배터리 제작기술 개발
- 플렉시블 OLED 디스플레이와 배터리의 완전 결합길 열려 -
휘어지는 디스플레이의 에너지원으로 반드시 필요한 고효율 유연 배터리를 KAIST 연구진이 세계 최초로 개발하는데 성공했다.
우리 학교 신소재공학과 이건재 교수팀이 유연한 고효율 배터리를 개발하는데 성공, 이 연구결과가 재료분야 세계적 학술지인 ‘나노 레터스(Nano Letters)’ 8월호 온라인판에 실렸으며, 미국 화학학회 뉴스레터인 C&EN(Chemical & Engineering News)에도 (8월 10일자) 특집으로 보도됐다.
얇고 가벼우면서도 유연한 디스플레이로의 혁신적인 기술 발전을 위해서는 필연적으로 휘어지며 충전밀도가 높고, 폭발위험이 극히 적은 고성능 유연 고상배터리의 개발이 요구돼 왔다.
그러나 고효율 배터리를 만드는 소재 중 산화물 양극재료는 고온의 열처리가 필요하기 때문에 플라스틱 기판위에서는 구현할 수 없을 뿐만 아니라 고온 열처리 없이 분말 형태로 만들 경우에는 충전밀도가 매우 낮다는 문제점이 있었다.
이번에 개발한 고성능 유연 고상배터리는 리튬코발트산화물(LiCoO2) 양극재료를 운모 희생기판에서 4㎛(머리카락의 약 10분의 1 두께) 정도인 박막형태로 고온 성장시켜 만든 후, 기판으로 쓰인 딱딱한 희생기판을 제거해 얇은 배터리 부분만 남긴 후 유연한 기판위에 전사해 완성했다.
이 교수 연구팀이 개발에 성공한 유연 배터리는 휘어지더라도 전압이 3.9~4.2V로 거의 변하지 않고, 충·방전 10,000번(방전심도 80%) 정도의 안정적 작동과 함께 2200㎼h/㎤의 높은 에너지밀도(패키징 포함)를 지닌 게 큰 특징이다.
이번 연구를 주도한 구민 박사는 “충전밀도가 높은 박막형태의 고효율 유연 배터리는 완전한 형태의 유연 전자 제품를 만드는 데 획기적인 역할을 할 것”이라고 말했다.
이건재 교수 연구팀은 현재 대량생산을 위한 레이저 리프트 오프(Laser lift-off) 기술과 충전용량을 높이기 위해 삼차원으로 적층하는 후속 연구를 진행 중인데, 이들 연구가 끝나는 대로 상용화 수준의 유연 배터리가 나올 것으로 이 교수 연구팀은 예상하고 있다.
한편, 이번 연구결과는 지난 13일부터 일주일간 미국에서 열린 세계적인 국제학회인 국제광자공학회(SPIE)에서 이건재 교수가 기조강연으로 발표했으며, 국내외에서 다수의 특허를 등록하거나 출원했다.
<동영상 설명>http://www.youtube.com/watch?v=Sh-SkpCZ4AE&feature=player_embedded굽힘 상태에서 상용 블루 LED를 켜며 전압특성이 유지되는 유연 배터리 모습
그림1. 연구팀이 이번에 개발한 유연한 배터리와 기존의 휘어지는 OLED를 결합해 만든 최초의 완전한 플렉시블 디스플레이
그림2. 연구팀이 개발한 플렉시블 배터리와 결합된 디스플레이의 구조
그림3. 연구팀이 개발한 휘어지는 배터리가 LED를 켜고 있다. 휘어져도 전압이 떨어지지 않아 안정적이다.
그림4. 휘어지는 고효율 배터리 제작공정. (g)운모를 제거하고 나서 (h)폴리머 기판으로 옮긴 후 (i)폴리머로 감싸는 공정이 연구팀의 독자기술이다.
그림5. 이건재 교수 연구팀이 유연배터리를 희생기판에서 레이저로 제거하는 연구를 수행하고 있다.
2012.08.21
조회수 17344
-
세계 최고 수준의 초신축성 전극소재 개발
- 정렬된 3차원 다공성 나노구조를 이용한 새로운 개념을 도입해 네이처 커뮤니케이션스(Nature Communications)지 6월호 실려 -
돌돌 말리는 전자책이나 유연한 디스플레이, 옷처럼 입을 수 있는 컴퓨터 등 차세대 전자 소자를 구현하는 핵심 부품인 유연한 신축성 전극을 국내 연구진이 개발했다.
우리 학교 신소재공학과 전석우 교수 연구팀이 정렬된 3차원 다공성 나노구조를 이용하여 세계 최고 수준의 초신축성 소재를 개발하는데 성공했다.
이번 연구 결과는 세계 최고 권위의 과학전문지 네이처(Nature)의 자매지인 ‘네이처 커뮤니케이션즈(Nature Communications)"지 6월 26일자 온라인판에 리서치 하이라이트로 공개됐다.
특히 이번 연구결과는 국내 연구진이 주축이 되어 일궈낸 값진 세계적인 성과로써 큰 의미가 있다.
전석우 교수팀은 연구팀이 보유한 세계 최대 면적의 3차원 나노 패터닝 기술을 이용하여 1인치 이상의 면적에 머리카락 굵기의 1/10에 해당하는 10마이크로미터의 두께를 가지는 정렬된 3차원 나노기공 구조를 제작했다.
연구팀은 제작된 나노기공 구조를 주형으로 활용하여 기공에 탄성중합체를 침투시킨 후에 주형을 제거하는 방법으로 역상의 3차원 신축성 나노소재를 제작하였고, 이 소재 내부에 액상의 전도성 물질을 침투시켜 초신축성 유연 전극을 개발하였다.
이렇게 개발한 전극을 200% 이상 늘어난 상태에서도 전기전도도의 저하 없이 발광다이오드(LED) 램프를 켤 수 있다.
기존에는 소재에 주름을 잡아 아코디언처럼 늘였다 줄였다 할 수 있게 만들거나 평면에 그물처럼 구멍을 뚫어서 신축성을 향상하는 방법을 사용했다. 하지만 이러한 방식은 신축성 향상이 제한적인데다 100%만 늘어나도 전기 전도도가 크게 저하되는 단점이 있었다.
전석우 교수는 “차세대 전자소자인 유연소자 개발에서 세계 최고 수준의 신축성 전극을 국내 기술로 개발함으로써 시장우위를 선점할 수 있을 것”이라고 말했다.
한편, 이번 연구는 KAIST 신소재공학과 전석우 교수(교신저자)의 지도아래 박준용 박사과정(제 1저자)이 주도적으로 진행하였고, KAIST 신소재공학과 김도경 교수, 미국 노스웨스턴대 후앙 교수, 미국 일리노이대 로저스 교수가 공동으로 참여했다.
그림 1. A는 3차원 나노패터닝 기술을 통해 제작된 다공성 고분자 주형. B는 A의 주사전자현미경(SEM) 이미지. C는 탄성중합체 침투 및 고분자 주형 제거를 통해 제작된 초신축성 3차원 소재.
그림 2. A는 3차원 초신축성 소재를 전극으로 이용하여 발광다이오드(LED) 소자를 구현하는 개념도이다. B는 220%까지 늘어난 후에도 밝기의 변화 없이 성공적으로 구동된 신축성 전자 소자이다.
그림 3. 이번 연구로 개발된 신소재의 개념도로써, 소재에 잡아당기는 힘이 작용했을 때 정렬된 3차원 나노기공 구조를 통하여 소재가 효과적으로 신축되는 모습을 형상화한 이미지이다.
2012.07.11
조회수 17041
-
열팽창이 작은 플라스틱 필름 기판 개발
-‘어드밴스드 머티리얼스’표지논문 선정,“자유자재로 휘어지는 디스플레이와 태양전지 상용화 앞당겨”-
자유자재로 휘거나 구부릴 수 있는(flexible) 디스플레이와 태양전지 제작에 필요한 열팽창이 작은(13ppm/oC 이하) 투명한 유리섬유직물* 강화 플라스틱 필름 기판이 국내 연구진에 의해 개발되었다. * 유리섬유직물(glass cloth) : 실처럼 만든 유리섬유를 사용하여 옷감처럼 직조한 유리섬유 강화재로, 강력하고 열팽창이 적어 조선, 건축, 자동차 및 전자산업 등 폭넓게 사용됨
우리학교 배병수 교수가 주도한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 직무대행 김병국)이 추진하는 선도연구센터(ERC)의 지원을 받아 수행되었고, 연구결과는 재료분야 최고 권위의 학술지인 ‘어드밴스드 머티리얼스(Advanced Materials)’ 표지논문(10월 25일)에 선정되는 영예를 얻었다.
배 교수 연구팀은 유리섬유직물과 굴절률이 똑같은 하이브리드 소재 수지를 독자적으로 제작한 후, 이를 유리섬유직물에 함침시켜 열팽창이 작은 투명한 플라스틱 필름 기판을 개발하였다.
차세대 꿈의 디스플레이로 불리는 자유자재로 휘거나 구부릴 수 있는 디스플레이나 미래 생활형 태양전지를 개발하기 위해서, 지금까지 전 세계 연구자들은 투명한 플라스틱 필름 기판을 사용하였다.
그러나 플라스틱 필름은 유리에 비해 온도가 올라가면서 열팽창이 점점 커져 기판 위에 디스플레이나 태양전지를 제작하기 어려워, 열팽창이 작은 투명한 플라스틱 필름 기판 개발이 절실히 요구되었다.
플라스틱의 열팽창을 낮추는 가장 쉬운 방법은 유리섬유직물을 보강하는 것인데, 이것은 플라스틱 안에 유리직물이 들어가므로 불투명해진다.
배 교수팀은 이를 해결하기 위해서, 유리섬유직물과 굴절률이 똑같은 특수한 하이브리드소재 수지를 직접 제작하여, 이를 유리섬유직물에 함침시켜 투명한 플라스틱 필름 기판을 개발하였다. 유리섬유직물과 함침된 하이브리드재료의 굴절률이 정확히 일치하면, 육안으로 전혀 차이를 느낄 수 없어 투명하게 되는 원리를 이용한 것이다.
배 교수팀이 개발한 투명 플라스틱 필름 기판은 유리섬유직물로 보강되었기 때문에 유리의 열팽창계수(9ppm/oC)에 가까운 낮은 열팽창계수(13ppm/oC)를 갖고, 내열성이 우수한 하이브리드소재를 이용하여 높은 온도(250oC 이상)에서도 디스플레이와 태양전지 등의 소자를 제작할 수 있는 장점이 있다.
배 교수팀의 투명 플라스틱 필름 기판은 휘어지는(flexible) 디스플레이와 태양전지의 기판 소재는 물론, 플라스틱의 특성(큰 열팽창과 낮은 내열성)으로 다양하게 사용되지 못하던 응용분야에 다각적으로 활용될 수 있을 것으로 전망된다.
연구팀은 이번에 개발한 투명 플라스틱 필름 기판을 이용하여 LCD나 아몰레드(AMOLED)에 사용되는 휘어지는(flexible) 산화물 박막 트랜지스터 (TFT)와 박막 태양전지를 직접 제작하여 응용 가능성을 높였다.
배병수 교수는 “이번에 개발한 투명 유리섬유직물 강화 플라스틱 기판은 성능도 우수하지만 가격도 저렴하면서 손쉽게 제작할 수 있어, 유리 기판을 대체하여 휘어지는 디스플레이나 태양전지의 상용화를 앞당길 수 있는 핵심기술이다. 앞으로 국내외 산업체, 연구소, 대학들과의 긴밀한 협력으로 다양한 소자들을 제작하여, 기술의 우수성을 검증 받고 활용성을 더욱 확대할 계획이다”라고 밝혔다.
2010.10.25
조회수 17569