-
페로브스카이트 상에서 이산화탄소 열화학적 환원반응 기작 규명
우리 대학 생명화학공학과 이재우 교수 연구팀이 페로브스카이트* 상에서 발생하는 이산화탄소의 열화학적 환원반응의 기작을 규명하고, 반응을 최적화하기 위한 요인을 다변화하는 데에 성공했다고 13일 밝혔다.
☞ 페로브스카이트: ABO3 (A = 란탄족, B = 전이금속)의 분자식을 가진 입방체 구조의 산화금속으로 차세대 태양전지에 응용되는 물질로 알려져 있다.
이 교수 연구팀은 이산화탄소의 환원반응 성능을 예측하기 위해, 기존에 주로 활용돼왔던 산소 공공 형성 에너지 계산 외에도 수소 흡착에너지, 이온 전도도 및 이산화탄소의 흡착상태를 분석해 성능 예측의 정확도를 더욱 높일 수 있다는 것을 확인했다. 연구팀이 다변화에 성공한 요인을 통해, 탄소중립 실현을 개발될 다분야의 이산화탄소 전환 및 환원 촉매의 성능을 더욱 정확하게 예측할 수 있을 것으로 기대된다.
우리 대학 생명화학공학과 임현석 박사와 김이겸 박사과정이 공동 제1 저자로 참여하고 영남대학교 화학공학부 강도형 교수 연구팀과의 협업을 통해 이루어진 이번 연구 결과는 국제 학술지 `ACS 카탈리시스(ACS Catalysis)'에 9월 17일 字 온라인판에 게재됐으며, 연구의 파급력을 인정받아 표지논문(Front cover)으로도 선정됐다. (논문명 : Fundamental Aspects of Enhancing Low-Temperature CO2 Splitting to CO on a Double La2NiFeO6 Perovskite).
페로브스카이트는 고온에서, 그리고 지속적인 산화환원을 거치면서도 그 구조를 안정적으로 유지할 수 있어 산화탄소 환원반응 및 물 분해반응에 활용될 수 있는 물질로 주목받고 있다. 하지만 기존에는 다양한 조성의 페로브스카이트 상에서 이산화탄소 환원반응의 성능을 예측하는 요인으로 `산소공공 형성 에너지' 만을 활용했기 때문에 그 정확도가 다소 떨어진다는 단점이 있었다.
이 교수 연구팀은 란타넘-니켈-철산화물(La2NiFeO6 분자식) 더블 페로브스카이트를 합성하고 란타넘-니켈산화물(LaNiO3)과 란타넘-철산화물(LaFeO3)과의 비교 분석을 실시했다. 페로브스카이트 내 니켈(Ni) 구역은 산소 공공의 형성뿐만이 아닌 수소 흡착과 이온 전도도를 향상하는 것을 통해 입자의 환원을, 철(Fe) 구역은 이산화탄소의 강한 흡착을 방지해 이산화탄소의 해리 반응을 촉진하는 것을 확인했다. 이에 La2NiFeO6 더블 페로브스카이트에서는 각 구역의 역할이 시너지로 발현돼 각각의 단일 페로브스카이트 대비 월등한 이산화탄소 전환을 보이는 것을 확인해 일련의 요인들이 모두 성능을 예측하는 데 활용될 수 있다는 것을 연구팀은 확인했다.
이재우 교수는 "페로브스카이트는 대량생산이 가능해 스크리닝 과정을 거쳐 최적화한 조성으로 페로브스카이트를 생산할 시, 이산화탄소를 전환해 활용하는 탄소 포집 및 활용저장 기술(CCUS)의 조기 실현에 기여할 것ˮ이라고 설명했다.
공동 제1 저자인 임현석 박사는 "연구를 통해 페로브스카이트 상에서의 이산화탄소 전환뿐만이 아닌, 물 분해 기반의 수소생산 등 다양한 반응연구를 촉진해 탄소중립에 다방면으로 기여할 수 있을 것ˮ이란 기대를 표했으며, 김이겸 박사과정생도 "페로브스카이트 촉매에서의 이산화탄소 전환 반응 기작 규명을 통해 분리와 반응이 동시에 진행될 수 있는 열화학 전환기술 상용화에 큰 역할을 할 수 있을 것ˮ 으로 기대했다.
한편 이번 연구는 한국연구재단과 한국에너지기술연구원의 지원을 받아 수행됐다.
2021.10.13
조회수 11102
-
에너지 비용 낮춘 상온 액상 분리막 개발
우리 대학 생명화학공학과 고동연 교수 연구팀이 상온에서 크기 차이 0.1 나노미터(nm) 이하의 액상 유기물질을 직접 분리할 수 있는 유기용매 정삼투 시스템을 개발했다고 12일 밝혔다.
액체 혼합물의 대규모 분리 공정은 주로 물질의 끓는점 차이를 이용하는 증류법을 이용하는데, 이때 전 세계적으로 막대한 양의 에너지가 소비된다. 특히, 석유화학 산업의 기초가 되는 액상 탄화수소들은 섬유, 플라스틱 등 일상생활과 밀접한 소재 개발에 필수적이기 때문에 이들을 저에너지, 저탄소 공정을 통해 분리하는 새로운 미래지향적인 패러다임이 필요하다.
연구진이 개발한 초미세 다공성 탄소 분리막은 위와 같은 에너지 문제를 해결할 수 있는 기술로, 액상 탄화수소를 크기와 모양에 따라 상온에서 연속적으로 분리할 수 있는 기술이다.
생명화학공학과 서혁준 석박사통합과정 학생이 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 사이언스(Advanced Science)' 에 온라인 게재됐으며, 연구의 파급력을 인정받아 뒷표지 논문으로 선정됐다. (논문명 : Shape-Selective Ultramicroporous Carbon Membranes for Sub-0.1nm Organic Liquid Separation)
연구팀이 이번에 개발한 유기용매 정삼투법은 정밀하게 디자인된 기공 크기 및 구조를 갖는 탄소 분리막을 이용한다. 이는 외부 동력원 없이 자연스러운 농도 기울기 및 화학적 포텐셜을 기반으로 크기 및 모양 차이에 따라 탄화수소 화학종들의 분리가 진행되는 에너지 효율적 기법으로, 기존의 증류법보다 약 10배 정도 낮은 에너지 소모량을 요구한다. 이와 같은 유기용매 정삼투법은 분리막 재료의 기공 크기 디자인에 따라 석유화학, 정유, 제약 및 반도체 공정 등 다양한 분야에 활용 가능하기 때문에 산업 전반의 에너지 효율성을 극대화하며 동시에 탄소 배출량을 줄일 수 있는 획기적인 기술이다.
특히 연구팀은 상온에서 서로 다른 크기와 모양을 갖는 헥산 이성질체의 혼합물들을 모양 차이에 따라 손쉽게 분리할 수 있음을 증명했다. 탄소 분리막은 0.7 나노미터(nm) 이하의 단단한 슬릿 형태(slit-like structure)를 갖는 초미세 기공을 가지며, 이처럼 작은 나노 공간에서 분자들의 확산을 조절하여 크기 차이가 0.1 나노미터(nm) 이하인 분자들까지 정밀하게 걸러낼 수 있다.
특히, 이번 연구에 이용된 탄소 분리막은 속이 비어있는 실과 같은 기다란 형태(할로우 파이버, Hollow Fiber)를 가지고 있어, 이의 산업적 적용성과 파급 효과는 상당할 것으로 기대된다. 할로우 파이버 분리막은 적은 비용으로 대량생산이 매우 쉬우며, 기존의 평면적인 분리막 대비 수십 배 높은 표면적을 가지고 있어 차세대 분리막 형태로 주목받는 소재다.
연구팀은 그동안 불가능했던 분리막을 이용한 0.1 나노미터(nm) 이하 크기의 액체 분자들의 크기 및 모양에 따른 분리에 성공해 저에너지, 저탄소 분리 공정의 새로운 막을 열게 됐다. 수많은 소재의 원재료가 되는 탄화수소 분자들을 적은 비용 및 저탄소 배출공정으로 분리 정제할 수 있는 새로운 방식은 화학산업의 초미의 관심사다.
고동연 교수는 "우리나라는 원유를 수입하고, 이를 분리 및 정제해 다양한 고부가가치 제품을 창출하는데 여러 집약된 기술에 의존하고 있어 이에 대한 파격적 비용 절감은 석유화학 산업계의 글로벌 경쟁력 강화와 직결된다ˮ며, "특히 용매 사용량이 많은 제약 분야 및 반도체 화학 공정에도 널리 사용될 수 있을 것으로 기대된다ˮ고 연구의 의의를 설명했다.
한편, 이번 연구는 한국연구재단 우수신진연구사업의 지원을 받아 수행됐다.
2021.08.13
조회수 12356
-
탄소중립 인공 광합성 기술 개발
우리 대학 생명과학과 조병관 교수 연구팀이 기후변화의 주된 요인인 C1 가스(이산화탄소, 일산화탄소 등 탄소 1개로 구성된 가스)를 고부가가치 바이오 화학물질로 전환하는 기술을 개발했다고 9일 밝혔다.
조 교수 연구팀은 광 나노입자가 빛을 받으면 내놓는 전자를 미생물이 에너지원으로 이용할 수 있도록 고효율 광 나노입자가 표면에 부착된 미생물-광 나노입자 인공광합성 시스템을 개발했다. 이 기술은 빛을 유일한 에너지원으로 활용해 미생물이 C1 가스를 다양한 바이오 화학물질로 전환하는 친환경 C1 가스 리파이너리 기술로 정부가 선언한 2050 탄소중립 실현을 위한 다양한 응용 가능성을 제시한다.
생명과학과 진상락 석박사통합과정 학생이 제1 저자로 참여한 이번 연구는 국제 학술지 `미국국립과학원회보(Proceedings of National Academy of Science, PNAS)'에 2월 23일 字 온라인판에 게재됐다.(논문명: Acetogenic bacteria utilize light-driven electrons as an energy source for autotrophic growth)
아세토젠 미생물은 우드-융달 대사회로를 통해 C1 가스를 아세트산으로 전환할 수 있다. 이에 C1 가스로부터 바이오 화학물질 생산을 위한 바이오 촉매로 활용 가능성이 커 탄소 포집 및 활용 기술로 많은 주목을 받고 있다.
아세토젠 미생물은 C1 가스 대사를 위한 환원 에너지를 당이나 수소를 분해해 얻는다. 당이나 수소를 대체하기 위해 나노입자 크기의 개별 광전극 역할을 하는 광 나노입자를 미생물 표면에 부착시켜 빛에너지를 미생물로 전달시키면 당이나 수소 없이도 C1 가스를 활용할 수 있다.
기존기술은 광 나노입자를 생합성해 세포 표면에 부착시키는 방법으로 광 나노입자의 구조와 크기를 조절하기 어려워 C1 가스 대사 효율을 높이는 데 한계가 있었다. 이는 구조와 크기에 따라 광전도효과의 성능에 차이가 생기는 광 나노입자의 독특한 특성 때문이다.
이와 같은 한계를 극복하기 위해 연구팀은 구조와 크기가 균일하고 우수한 광전도효과를 나타내는 고효율 광 나노입자를 화학적 방법으로 합성하고, 산업적으로 활용 가능한 아세토젠 미생물 중 하나인 `클로스트리디움 오토에타노게놈(Clostridium autoethanogenum)'의 표면에 부착시켰다.
연구팀은 광 나노입자를 부착한 미생물이 C1 가스로부터 아세트산을 생산할 수 있음을 입증해 빛을 이용한 친환경 인공광합성 시스템을 구축하고 구축된 인공광합성 시스템 미생물의 전사체 분석(세포 내 모든 RNA를 분석해 유전자 발현 유무를 규명하는 기술)을 통해 광 나노입자로부터 생성된 전자가 미생물 내로 전달되기 위한 전자수용체를 규명했다.
연구를 주도한 조병관 교수는 "C1 가스 고정과정에서 사용되는 당 또는 수소를 친환경 빛에너지로 대체할 수 있고, 미생물 기반의 생합성 광 나노입자를 활용한 기존 인공광합성 시스템의 한계를 극복했다ˮ며 "고효율 광 나노입자를 사용해 인공광합성 효율을 증대시킬 수 있고, 광 나노입자로부터 생성된 전자를 효율적으로 수용할 수 있는 인공미생물 개발연구에 실마리를 제공했다ˮ 고 의의를 설명했다.
한편 이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 C1 가스 리파이너리 사업단 및 지능형바이오시스템 설계 및 합성연구단(글로벌프론티어사업)의 지원을 받아 수행됐다.
2021.03.09
조회수 99231
-
급속 충전이 가능한 하이브리드 리튬이온 전지 개발
우리 대학 신소재공학과 강정구 교수 연구팀이 우수한 성능의 고에너지·고출력 하이브리드 리튬이온 전지를 개발했다고 3일 밝혔다.
연구팀은 메조기공(mesopore, 2~50nm(나노미터) 크기의 구멍)과 마이크로 기공(micropore, 2nm(나노미터) 이하 크기의 구멍)이 동시에 존재하는 다공성 구조의 전도성 탄소 구조체 기반의 고용량 음극재와 양극재 개발을 통해 고성능 하이브리드 리튬이온 전지를 구현했다.
강 교수팀이 개발한 하이브리드 리튬이온 전지는 이미 상용화된 리튬이온 배터리와 견줄만한 에너지 밀도와 슈퍼 축전기의 출력 밀도 특성을 모두 갖춘 차세대 에너지 저장 소자다. 수 초에서 수 분의 급속충전이 가능해서 전기차를 비롯해 전기 트램과 스마트 전자기기 등에 활용이 기대된다.
이번 연구 결과는 재료 분야 국제 학술지 `어드밴스드 에너지 머터리얼(Advanced Energy Materials, IF 25.245)' 11월 10일 字에 실렸으며 연구 우수성을 인정받아 표지논문으로 선정됐다. (논문명: Metal-Organic Framework-Derived Anode and Polyaniline Chain Networked Cathode with Mesoporous and Conductive Pathways for High Energy Density, Ultrafast Rechargeable, and Long-Life Hybrid Capacitors)
리튬이온 배터리는 현재 대표적인 상업용 에너지 저장 시스템(Energy Storage System, ESS)이다. 미래 이동 수단으로 꼽히는 친환경 전기차(Electric Vehicles, EVs)부터 각종 스마트 전자기기에 이르기까지 전자 산업에 필수적인 요소로 자리 잡고 있어 `제2의 반도체'로 불린다.
리튬이온 배터리는 2019년 노벨 화학상 수상으로 실효성이 증명됐으며, 넓은 구동 전압과 높은 에너지 밀도로 현존하는 에너지 저장 시스템 중 가장 높은 점유율을 보유하고 있다. 반면 유계 전해질의 낮은 이온 전도도, 느린 전기화학적 반응 속도, 전극재의 한정성 등의 특성에 의한 낮은 출력 밀도, 긴 충전 시간, 음극 및 양극 비대칭에 따른 큰 부피 등 근본적인 문제점 때문에 최근 고성능 전극재 및 차세대 에너지 저장 소자 개발을 위한 연구가 활발히 진행되고 있다.
하이브리드 전지는 배터리용 음극의 높은 저장 용량과 축전기용 양극의 빠른 이온 충·방전의 장점을 모두 지니고 있어 차량용 리튬이온 배터리를 대체할 수 있는 차세대 에너지 저장 소자로 많은 주목을 받고 있다. 하지만 고에너지 및 고출력 밀도의 전지를 구현하기 위해서 배터리용 음극의 전기 전도도와 이온 저장 특성 개선, 축전기용 양극의 이온 저장 용량 증가, 그리고 서로 다른 이온 저장 메커니즘에 따른 두 전극의 최적화 과정이 필요하다.
강 교수 연구팀은 다공성 구조의 환원된 산화 그래핀을 활용한 전도성 탄소 기반의 음극 및 양극 소재를 개발하는 한편 속도 특성이 개선된 고용량 음극과 양극을 통해 고에너지·고출력의 하이브리드 리튬이온 에너지 저장 장치를 구현하는 데 성공했다.
연구팀은 우선 배터리용 음극 재료로 다공성 나노결정인 금속-유기 골격체(Metal-Oraganic Frameworks, MOFs)의 탄화 과정을 통해 5~10 나노미터 크기의 몰리브덴 금속 산화물 (MoO2)이 결합된 탄소 구조체를 만들었다. 탄화 과정에서 탄소 구조체를 감싸는 산화 그래핀은 환원되면서 전도성 탄소 결합 형성으로 전기 전도도를 향상시키며, 선택적 금속 식각으로 마이크로 기공이 형성된 다공성 구조를 제작했다.
이러한 마이크로 기공은 전해질 속 리튬이온(Li+)의 침투를 쉽게 하며, 나노 크기의 금속 산화물과 환원된 산화 그래핀 껍질은 전기 전도도 향상을 통해 높은 용량과 고율 방전 특성을 보인다.
연구팀은 이와 함께 축전기용 양극 재료로 섬유형 전도성 고분자를 환원된 산화 그래핀 면에 가교화 시켜 새로운 구조를 만드는 제작기술을 적용했다. 전도성 고분자인 폴리아닐린 (polyaniline, PANI)은 저온에서 순간적으로 중합돼 환원된 산화 그래핀 면에서 강한 결합력(π-π 결합)을 가지며, 질소 도핑 효과에 의해 음이온 (PF6-)의 흡착을 가능케 한다.
전도성 폴리아닐린 고분자-환원된 산화 그래핀 양극은 환원된 산화 그래핀 대비 200% 증가한 이온 저장 용량과 함께 상용화된 활성탄 (activated carbon, AC)에 준하는 에너지 저장 특성을 보였다.
연구팀은 이러한 과정을 거쳐 새로 개발한 음극재(MoO2@rGO)와 양극재(PANI@rGO)를 활용해 고성능 하이브리드 전지를 개발했다.
연구팀 관계자는 "이 하이브리드 전지는 기존 리튬이온 배터리 수준의 고에너지 밀도와 함께 넓은 구동 전압 범위에서 고출력 특성을 보인다ˮ면서 "태양전지 모듈로 수십 초 내 급속충전이 가능해서 기존에 나와 있는 에너지 저장 시스템의 한계를 개선했다ˮ고 말했다.
연구를 주도한 강정구 교수도 "리튬이온 배터리 수준의 에너지 밀도는 물론 고출력 밀도에 의한 급속충전이 가능한 최첨단 리튬이온 전지ˮ라고 소개하면서 "활용 범위를 전기차를 포함해 모든 전자기기로까지 확대한다면 인류 삶의 질을 높일 것으로 기대한다ˮ고 의미를 부여했다.
한편 이번 연구는 과학기술정보통신부 글로벌프론티어사업의 하이브리드 인터페이스 기반 미래소재연구단과 미래창조과학부 수소에너지 혁신기술사업의 지원을 받아 수행됐다.
2020.12.04
조회수 41248
-
초투과성 분리막을 이용한 이산화탄소 전환 시스템 개발에 성공
우리 대학 생명화학공학과 고동연 교수 연구팀이 에너지 집약 산업체의 이산화탄소 배출량을 줄이는 동시에 산업 부산물을 유용한 자원으로 전환하는 신개념 고체 탄산화 시스템을 개발했다고 23일 밝혔다.
연구팀이 개발한 이 시스템은 *중공사막 형태의 `초투과성 분리막'을 이용해 연속적으로 이산화탄소 포집과 전환이 가능하기 때문에 탄소 배출량을 대량으로 줄일 수 있다.
☞ 중공사막: 가운데가 비어있는 형태의 막. 인공 신장 투석기나 정수기 따위의 여과재로 사용된다.
생명화학공학과 황영은 박사과정이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `ACS 서스테이너블 케미스트리 앤드 엔지니어링(ACS Sustainable Chemistry & Engineering)' 10월호에 실렸는데 연구의 파급력을 인정받아 표지논문으로 선정됐다. (논문명 : Solid Carbonation via Ultrapermeable PIM-1 Hollow Fiber Membranes for Scalable CO2 Utilization).
최근 탄소배출권 가격이 오르면서 산업계의 이산화탄소 배출 비용에 대한 절감도 절실히 요구되고 있다. 또한 에너지 집약 산업체의 부산물(석탄회 및 철강 슬래그 등)에 대한 처리비용도 날로 증가하고 있어 이산화탄소를 산업 부산물과 반응시켜 부가가치가 있는 물질로 전환하는 데 관심이 쏠리고 있다.
특히, 이산화탄소를 탄산칼슘 등의 고체 탄산염으로 전환해 건설 소재로 이용하는 기술은 전 세계 시장에서 2030년까지 연간 약 1조 달러의 수익을 창출할 것으로 예상되며, 배출되는 이산화탄소를 연간 약 30~60억 톤 감축할 수 있는 기술로 주목받고 있다.
고동연 교수팀이 개발한 고체 탄산화 기술은 이산화탄소와 알칼리 금속(칼슘, 마그네슘)의 자발적 결정화 반응을 이용하는 일종의 자연모방 기술이다. 이 기술은 이산화탄소를 열역학적으로 가장 안정된 탄소 저장체인 고체 탄산염(CaCO3, MgCO3)으로 전환하는 기술이다. 고체 탄산염은 고품위 물성 제어를 통해 건설·토목 소재, 제지산업, 고분자, 의약, 식품, 정밀화학 분야에 활용할 수 있다.
결과적으로 고 교수팀이 개발한 기술을 활용하면 이산화탄소 배출량을 대폭 줄여 탄소배출권의 절약은 물론 고부가가치 생산물을 통해 추가적인 경제성을 확보할 수 있다는 게 큰 장점이다.
고 교수팀은 우선 미세다공성 고분자로 이뤄진 초투과성 분리막 기술을 통해 기존 공정 유닛보다 5~20배가량 작은 부피로 기존 공정 대비 50% 이상 뛰어난 물질전달 효율을 갖는 고체 탄산화 시스템을 구현하는 데 성공했다.
미세다공성 고분자는 회전할 수 없는 단단한 부분과 고분자 사슬이 뒤틀리는 지점이 반복적으로 나타나는 독특한 구조를 가지는데 기체 분자를 빠른 속도로 투과시킬 수 있어 가스 분리 분야에서 유망한 소재로 주목받고 있다.
연구팀은 이와 함께 미세다공성 고분자를 속이 빈 실과 같은 중공사막 형태로 가공해 모듈화할 수 있는 기술을 확보했다. 이렇게 제조된 초투과성 중공사막 모듈에 이산화탄소/질소 혼합 기체를 흘려보내면 이산화탄소만 선택적으로 빠르게 분리막을 가로질러 중공사막 외부의 알칼리 이온과 반응해 순간적으로 탄산염을 생성하는 원리를 연속식 모듈로 구현했다.
고 교수팀이 개발한 기술은 부피 대비 표면적이 기존 시스템보다 수 배 이상 높아 매우 높은 공간 효율성을 갖는 분리막 모듈의 특성을 이용해 장시간의 연속 공정이 가능한 게 특징이자 장점이다. 이 때문에 이산화탄소 전환 공정의 에너지 및 비용 대비 효율성을 높일 수 있어 고체 탄산염을 활용하는데 높은 경제성뿐만 아니라 이산화탄소 포집 및 전환(CCU) 기술 활성화에도 기여할 것으로 기대가 크다.
이번 연구를 주도한 고동연 교수는 "신기술을 적용해 이번에 새로 개발한 고체 탄산화 시스템은 온실가스 배출량이 많은 발전소나 제철소, 시멘트 제조업체 등 관련 산업계의 탄소배출권 구매량을 줄일 수 있고 동시에 자원 재순환을 통해 경쟁력을 증대시킬 수 있을 것으로 기대된다ˮ고 설명했다.
한편 이번 연구는 산업통상자원부 에너지국제공동연구사업의 지원을 받아 수행됐다.
2020.11.23
조회수 38161
-
언제 어디서든 사람을 살리는 상시 동작형 유해가스 감지 센서 개발
밀폐된 공간에서 유해가스를 감지해 안전사고를 사전에 방지할 수 있는 초 저전력 유해가스 감지 센서가 우리 연구진에 의해 개발됐다.
우리 대학 전기및전자공학부 윤준보 교수 연구팀은 독자 기술로 개발한 나노 소재 *'나노린'을 통해 상시 동작이 가능한 초 저전력 유해가스 감지 센서를 개발했다고 1일 밝혔다.
☞ 나노린(Nanolene): 완벽하게 정렬된 나노와이어 다발들이 공중에 떠 있는 구조를 지칭하는 용어. 나노와이어의 Nanoline과 그래핀과 같은 2차원 나노 재료의 접미사 –ene을 합성해 탄생한 단어다.
일산화탄소 등의 유해가스에 의한 안타까운 인명 사고는 과거로부터 현재까지 끊임없이 반복되고 있다. 이에 따라 유해가스를 실시간으로 감지하는 예방 기술에 대한 대중의 관심과 수요가 꾸준히 증가하는 추세인데 학계에서도 유해가스 감지 센서 개발을 위한 연구가 활발하다.
금속산화물을 기반으로 하는 가스 센서는 소형화에 유리하고, 생산 단가가 저렴해서 관련 산업에 활용이 가능한 가스 감지 기술로 주목받아 왔다. 가스 센서는 수백 도 씨(℃) 내외의 고온에서 동작하기 때문에 히터를 통한 열에너지 공급이 필수적이다.
이때 주변으로 방출되는 다량의 열과 히터의 높은 소비 전력 때문에 스마트폰과 같은 휴대용기기에 적용 가능한 실시간 가스 센서를 개발하기는 쉽지 않다. 윤준보 교수팀이 개발한 유해가스 감지 센서는 독자적인 나노 공정 기술을 통해 개발한 나노 소재 `나노린'을 활용해 초 저전력으로 언제, 어디서든 항상 사용이 가능한 게 큰 특징이다.
나노 소재는 독특한 전기적, 화학적 특성 때문에 미래 센서 기술의 핵심 구성 요소로 주목받고 있지만, 제조 방법상 크기를 제어하기가 쉽지 않고 원하는 위치에 정렬된 형태로 구현하는 것 또한 어렵다. 윤 교수 연구팀은 나노린을 통해 이런 문제점을 해결했다. 윤 교수팀이 개발한 이 기술은 기존의 나노 소재 제작 방법과는 다른, 일반적인 반도체 공정을 기반으로 제작하기 때문에 양산성이 뛰어나고(대량생산이 가능) 산업적 활용 가치 또한 매우 높다고 평가받고 있다.
연구팀은 우선 나노린을 초 저전력 나노 히터에 활용했다. 시험과정에서 나노 소재가 지닌 고유의 열 고립 효과를 통해 기존 마이크로히터의 물리적 한계를 뛰어넘는 초 저전력 고온 구동을 실현하는 데 성공했다. 이와 함께 나노 히터에 완벽하게 정렬된 형태의 금속산화물 나노와이어를 일체형으로 집적해 가스 센서로 응용했는데 스마트폰 내장에 적합한 수준의 낮은 소비 전력으로 일산화탄소 가스 검출에 성공했다.
과거 광부들은 유해가스로부터 생명을 지키기 위해 탄광에 들어갈 때마다 카나리아라는 새를 데리고 들어갔다. 카나리아는 메탄, 일산화탄소 가스에 매우 민감해 유해가스에 소량만 노출돼도 죽는다. 광부들은 카나리아의 노래가 들리면 안심하고 채굴했고 카나리아가 노래를 부르지 않을 땐 탄광에서 뛰쳐나와 스스로 생명을 지킬 수 있었다.
윤준보 교수는 "상시 동작형 가스 센서는 언제 어디서나 유해가스의 위험을 알려주는 '스마트폰 속 카나리아'로 활용이 기대된다ˮ고 연구결과를 소개했다.
제1 저자인 전기및전자공학부 최광욱 박사는 이를 휴대용기기에 내장하기 적합한 초 저전력 가스 센서 기술이라고 설명하면서 "이 기술이 가스 사고를 사전에 차단하고 인명 사고를 막는 데 활용되길 기대한다ˮ고 말했다.
KAIST UP 프로그램과 한국연구재단의 중견연구자 지원사업을 통해 수행된 이번 연구결과는 국제 학술지 '어드밴스드 펑셔널 머터리얼즈 (Advanced Functional Materials)' 8월 12일 字에 온라인으로 게재되는 한편 연구 내용의 우수성을 인정받아 오프라인 저널의 후면 표지논문으로 선정됐다. (논문명: Perfectly Aligned, Air-Suspended Nanowire Array Heater and Its Application in an Always-On Gas Sensor)
2020.09.01
조회수 30342
-
이산화탄소 처리로 산화 티타늄 신소재 판형 맥신 합성 성공
우리 대학 생명화학공학과 이재우 교수 연구팀은 나노 신소재 *맥신(MXene)과 이산화탄소와의 반응을 통해 산화 티타늄 나노입자가 고르게 분포된 판형 구조의 맥신을 합성하는데 성공했다고 25일 밝혔다.
☞ 맥신(MXene): 전자파를 흡수하고 차단하는 신개념 초경량 나노 신소재. 전자 부품간 전자파 간섭을 고성능으로 차단할 수 있어 전자통신 제품에 활용할 수 있다.
이 교수 연구팀은 수용액 상태에서 표면을 벗겨낸(박리된) 맥신과 이산화탄소와의 반응을 통해 산화 티타늄 나노입자가 맥신 표면에 고르게 분포된 판형 맥신을 합성했다. 연구팀이 개발한 산화 금속이 고르게 분포된 판형 맥신은 단일공정으로 매우 경제적일 뿐만 아니라 다양한 분야에 폭넓게 적용될 수 있을 것으로 기대된다.
생명화학공학과 이동규 박사과정생이 제1 저자로 참여한 이번 연구결과는 국제 학술지 `ACS 나노 (ACS Nano)' 7월 30일 字 온라인판에 게재됐다. (논문명 : CO2-Oxidized Ti3C2Tx-MXenes Components for Lithium-Sulfur Batteries: Suppressing the Shuttle Phenomenon through Physical and Chemical Adsorption).
맥신은 전기전도도가 높고 유연성이 뛰어나기 때문에 센서·에너지 저장/전환장치·전자기차 폐수처리 재료 등 다양한 분야에서 활용될 수 있는 신물질이면서 특히 그래핀이나 탄소나노튜브를 대체할 수 있는 차세대 물질로 주목받고 있다.
맥신을 리튬-황 전지의 양극 물질로 활용하기 위해서는 활물질인 황을 수용할 수 있는 공간을 제공해줘야 하고 또한 충‧방전 과정에서 생성된 리튬 폴리설파이드가 전해질에 녹아 음극 쪽으로 이동하여 발생하는 *셔틀 현상을 막을 수 있어야 한다.
☞ 셔틀 현상(Shuttle phenomenon): 방전 과정 중 리튬을 말단으로 가지는 황 체인인 중간물질(polysulfides)이 전해질에 녹아 양극과 음극 사이를 확산하면서 전지 내에서 소비되는 것으로서 결과적으로 양극 활물질 손실 및 사이클링 성능 저하를 초래한다.
맥신은 금속 *카바이드 형태로 *다공성이 거의 존재하지 않고 또 리튬 폴리설파이드와 상호작용이 적은 물질이기에 리튬-황 전지의 소재로 이용하기엔 적합하지 않다. 연구팀은 맥신이 포함된 수용액에 초음파를 주입하고, 맥신을 박리시켜 각 단일 맥신 층을 다량으로 제조한 후 충분한 공간을 확보하고 동시에 이산화탄소와 맥신 층을 반응시켜 표면에 리튬 폴리설파이드를 흡착할 수 있는 다량의 산화 티타늄 나노입자를 고르게 합성시켜 문제를 해결했다.
☞ 카바이드(carbide): 탄소와 그 밖의 하나의 원소로 이루어진 화합물.
☞ 다공성(porosity): 고체가 내부 또는 표면에 작은 빈틈을 많이 가지는 성질.
연구팀이 개발한 산화 금속이 고르게 분포된 판형 맥신 제작 기술은 맥신 전구체 종류에 상관없이 적용할 수 있다. 연구팀은 이와 함께 이 기술을 사용하면 길이 50~100 나노미터(nm), 지름 20 나노미터(nm)의 땅콩 모양의 나노입자들이 형성된 판형 맥신을 제조 가능함을 이번 연구를 통해 확인했다.
연구팀 관계자는 "산화 금속 판형 맥신 제조공정은 수용액처리 및 이산화탄소와의 반응으로 이뤄진 단순화된 공정이기 때문에 온도, 반응시간 조절로 다양한 판형 소자 제조 및 비용 절감이 가능하고 리튬-황 전지 성능을 강화하는데 기여할 것ˮ이라고 설명했다.
제1 저자인 이동규 박사과정 학생도 "이산화탄소와의 반응을 통해 제조된 산화 금속 판형 맥신은 리튬-황 전지의 양극뿐 아니라 분리막에 필름 형태로 성형해 셔틀 현상을 이중으로 방지할 수 있는 막을 제조할 수 있다ˮ면서 "균일한 금속산화물 나노입자가 형성된 판형 맥신은 전극 및 다양한 에너지 저장장치 소자에 사용될 것ˮ 이라고 소개했다.
한편 이번 연구는 한국연구재단의 Global Research Development Center Program과 Korea CCS R&D Center 기술개발사업의 지원을 받아 수행됐다.
2020.08.25
조회수 31928
-
상용화 안된 이산화탄소 활용 기술을 사전 분석하고 평가하는 툴 개발
우리 연구진이 독일 전문 연구진과 협력 연구를 통해 지구온난화의 주범 기체인 이산화탄소 활용 기술을 평가하는 방법을 국제 학술지에 발표했다. 이산화탄소 활용을 위한 신기술을 개발 중인 단계에서 연구의 효율성과 경제성을 사전에 파악할 수 있기 때문에 유망 신기술 발굴에 크게 도움을 줄것으로 기대된다.
우리 대학 이재형 생명화학공학과 교수 연구팀이 아직 상용화가 안되거나 개발단계에 있는 이산화탄소 활용 기술을 사전에 분석하고 평가하는 툴(Tool)을 개발했다고 22일 밝혔다. 이번 연구는 이재형 교수 연구실 노고산 박사가 제1 저자로 참여했으며 녹색·지속가능 기술 분야 국제 학술지인 ‘녹색 화학(Green Chemistry)’ 온라인에 지난달 21일 게재됐다. (논문명: Ealry-stage evaluation of emerging CO₂ utilization technologies at low technology readiness levels)
다양한 신흥(emerging) 녹색 기술을 연구하는 과정에서는 해당 기술이 과연 유망한 기술인지, 아닌지를 사전에 판단해 연구 인력과 예산을 집중하는 것은 매우 중요하다. 예를 들어, 해당 기술의 에너지 효율이 얼마나 높은지, 또는 향후 비용경쟁력을 확보할 수 있는지, 그리고 기술 도입이 환경에 얼마나 큰 영향을 미칠지를 사전에 분석할 수 있어야 한다. 하지만 연구개발 초기 단계에서는 관련 기술에 대한 정보력 부족으로 정확한 기술 분석이나 평가를 하기가 어렵다.
이재형 교수 연구팀이 개발한 이 툴은 상용화가 안 돼 있거나 개발단계에 있는 이산화탄소 활용 기술을 대상으로 구체적이고 세부적인 정보가 없이 일부 제한적인 정보만으로도 해당 기술의 에너지 효율과 기술 경제성, 온실가스 저감 잠재량 등을 파악할 수 있다는 게 장점이다.
이 교수팀은 특히, 이번 연구에서 기술 평가에 필요한 지표 계산이 가능하도록 해당 기술이 지니는 고유의 기술성숙도(Technology readiness level)와 다양한 이산화탄소 전환 특성 등 체계적이고 세분된 전략을 제시했다. 연구팀은 이와 함께 개발한 툴 검증을 위해 다양한 이산화탄소 활용 기술들을 대상으로 사례 연구를 수행했다고 밝혔다.
이번 연구는 이 교수팀과 독일 아헨공과대학교(RWTH Aachen University)에서 공정 설계와 최적화 분야 전문가로 꼽히는 알렉산더 밋소스(Alexander Mitsos) 교수, 이산화탄소 포집 및 활용 기술의 모든 과정을 평가(Life Cycle Assessment)하는 분야의 전문가인 안드레 바도우(André Bardow)교수, 그리고 분리막과 전기화학 분야 전문가인 마티아스 웨슬링(Matthias Wessling)교수 연구팀과 긴밀한 협력을 통해 이뤄졌다.
이재형 교수는 "이번 연구성과는 현재 전 세계에서 연구되고 있는 다양한 이산화탄소 활용 기술에 적용이 가능하다ˮ고 말했다. 이 교수는 이어 "아직 상용화가 안 돼 있거나 개발 중인 미성숙 기술을 대상으로 에너지 효율과 비용대비 경제성 등을 정확하게 평가할 수 있어 유망 신기술에 연구개발 인력과 비용을 집중할 수 있다”라고 강조했다.
한편, 이번 연구는 한국 이산화탄소 포집 및 처리 연구개발센터(KCRC)의 지원을 받아 수행됐다.
2020.06.22
조회수 18015
-
이산화탄소를 고부가가치 물질로 효율적 전환하는 새로운 실마리를 찾았다
우리 대학 연구진이 지구온난화의 주범 기체인 이산화탄소를 에틸렌이나 에탄올, 프로판올과 같이 산업적으로 고부가가치를 지닌 다탄소화합물로의 효율적 전환이 가능한 새로운 실마리를 찾아냈다.
이산화탄소 농도조절만을 통해 다탄소화합물 선택도를 크게 높인 이 기술이 실용화되면 `산업의 쌀'이라 불리는 에틸렌이나 살균, 소독용이나 바이오 연료로 사용되는 에탄올, 화장품과 치과용 로션이나 살균·살충제에 사용되는 프로판올 등을 생산하는 기존 석유화학산업의 지형에 큰 변화를 불러올 것으로 기대가 크다.
우리 대학 신소재공학과 오지훈 교수 연구팀은 이산화탄소 전기화학 환원 반응 시, 값싼 중성 전해물(전해질)에서도 다탄소화합물을 선택적으로 생성할 수 있는 공정을 개발했다.
KAIST에 따르면 오 교수 연구팀은 중성 전해물을 사용해 구리(Cu) 촉매 층 내부의 이산화탄소 농도를 조절한 결과, 기존 공정과 비교해 각각 이산화탄소 전환율은 5.9%에서 22.6%로, 다탄소화합물 선택도는 25.4%에서 약 62%까지 대폭 높아진 공정과 촉매 층 구조를 개발했다.
탄잉촨 박사 후 연구원과 이범려 석사과정이 제1 저자, 송학현 박사과정 학생이 제2 저자로 참여한 이번 연구 결과는 셀프레스(Cell press)에서 발간하는 에너지 분야 국제 학술지 `줄(Joule)' 5월호에서 편집자에게 높은 평가를 받은 특집논문(Featured article)으로 게재됐다.(논문명 : Modulating Local CO2 Concentration as a General Strategy for Enhancing C—C coupling in CO2 Electroreduction)
세계 각국은 지구온난화의 주요 원인인 이산화탄소를 적극적으로 줄이기 위해, 이를 고부가가치의 물질로 전환하는 연구가 최근 들어 활발하게 진행되고 있다. 이산화탄소를 전기화학적으로 환원 반응시키면, 수소, 일산화탄소, 메탄 등 다양한 물질이 동시에 생성되는데, 그중 2개 이상의 탄소로 구성된 다탄소화합물이 산업적으로 중요한 가치로 인해 주목을 받고 있다.
기존 연구는 탄소화합물의 선택도를 높이기 위해, 주로 알칼리성 전해물에 의존해 새로운 촉매 개발에 집중해왔다. 다만 알칼리성 전해물은 부식성과 반응성이 크기 때문에, 이를 적용한 기존 공정은 유지비용이 비싸고, 촉매 전극의 수명도 짧다는 단점이 있다.
오 교수 연구팀은 기존과 달리 역발상적 생각으로 연구를 시작했다. 구리 촉매 층 내부의 이산화탄소 농도를 오히려 감소시켰는데 성능이 떨어진다고 여겨왔던 중성 전해물에서도 기존에 보고된 연구 성과를 뛰어넘는 고성능을 보여줬다. 특히, 이번 연구에서는 중성 전해물을 사용했음에도 불구하고 사용된 전극은 놀랍게도 10시간이 넘도록 일정하게 높은 다탄소화합물의 선택도와 생성량을 유지한 것으로 나타났다.
연구팀은 또 이산화탄소의 물질이동 모사 모델의 결과를 활용해 구리 촉매 층의 구조와 이산화탄소 공급 농도, 유량을 제어한 결과, 촉매 층 내부의 이산화탄소 농도를 조절하는 데에도 성공했다. 그 결과, 내부의 농도가 최적일 때 다탄소화합물의 선택도가 높아짐을 확인할 수 있었다.
오 교수는 "연구팀이 발견한 촉매 층 내부의 이산화탄소 농도와 다탄소화합물의 선택도 간의 관계는 그동안 촉매 특성에 치우쳐있던 연구에 새로운 방향을 제시하고, 동시에 산업적 활용에서 공정 유지비용 절감은 물론 촉매 전극 수명 연장에 이바지할 것으로 기대된다ˮ 고 설명했다.
제1 저자인 탄잉촨 박사 후 연구원도 "촉매 특성을 바꾸지 않고, 단순히 이산화탄소 농도만 바꿔도 다탄소화합물의 선택도를 크게 개선할 수 있었다ˮ면서 "이번 연구에서 밝힌 이산화탄소의 새로운 전기화학적 전환 기술은 기존 석유화학산업에 새로운 변화를 가져오는 전환점이 될 것ˮ 이라고 말했다.
이번 연구는 한국연구재단 미래소재디스커버리사업의 지원을 받아 수행됐다.
2020.06.04
조회수 16899
-
계층형 다공성 2차원 탄소 나노시트 합성
생명화학공학과 이진우 교수팀이 서로 다른 크기의 기공을 동시에 갖는 계층형 다공성 2차원 탄소 나노시트를 합성하는 기술을 개발했다.연구팀의 합성기술은 다공성 2차원 탄소 소재의 기공 크기와 구조 및 두께 등의 물성을 정밀하게 제어할 수 있는 새로운 원천 기술로 2차전지, 촉매 분야에서 고용량 전극 소재로 활용될 것으로 기대된다.
김성섭 박사, 주미은 석사가 공동 1 저자로 참여한 이번 연구 결과는 화학 분야 국제 학술지 ‘미국화학회지(Journal of the American Chemical Society, JACS)’ 2월 13일 자 온라인판에 게재됐다. (논문명: Polymer Interfacial Self-Assembly Guided Two-Dimensional Engineering of Hierarchically Porous Carbon Nanosheets)
기존의 다공성 2차원 탄소 소재의 합성은 대부분 그래핀 소재에 기공을 형성하는 방식에 의존하지만, 이는 기공의 크기와 구조를 효율적으로 제어할 수 없다는 한계가 있다. 이를 해결하기 위해서 2차원 나노시트를 주형으로 이용해 블록공중합체의 자기조립 방식을 시도했으나 추가적인 주형의 합성이 필수적이기 때문에 합성 과정이 복잡하고 두께의 조절이 쉽지 않다는 문제가 발생한다.따라서 기공의 크기 등 나노 구조의 제어가 가능하면서도 손쉬운 합성을 할 수 있는 다공성 2차원 탄소 나노시트 합성법 개발의 필요성이 커지고 있다.
이 교수 연구팀은 블록공중합체, 단일중합체 고분자 혼합물의 상 거동을 이용해 마이크로 기공과 메조 기공, 그리고 8.5nm의 두께를 갖는 계층형 다공성 2차원 탄소 나노시트를 합성하는 데 성공했다. 서로 섞이지 않는 두 종류의 단일중합체의 계면 사이에서 블록공중합체와 무기 전구체가 자기조립을 통해서 다공성 구조를 형성하는 원리이다.이 합성 방법은 별도의 주형이 필요하지 않은 간단한 방법으로 기존의 복잡한 과정을 혁신적으로 줄여 생산력을 증대했다. 이를 이용해 연구팀은 계층형 다공성 탄소 나노시트를 차세대 전지인 칼륨이온전지(potassium-ion batteries)의 음극에 적용해 용량을 기존 흑연 소재의 8배 이상 높이는 결과를 얻었다.
연구팀의 합성기술은 블록공중합체의 분자량 및 고분자대비 질량을 조절해 손쉽게 나노구조(기공 크기, 구조, 두께)를 조절할 수 있어 맞춤형 나노소재로 활용할 수 있을 것으로 기대된다. 이진우 교수는 “기존 다공성 2차원 무기 소재 합성기술의 문제점을 고분자 블렌드 성질을 이용해 해결할 수 있음을 보여줬다”라며 “이는 고분자 물리학과 무기 소재 합성을 이어주는 중요한 연구가 되며 다양한 에너지 장치에 적용될 수 있을 것이다”라고 설명했다.
이번 연구는 과학기술정통부와 한국연구재단이 추진하는 C1가스리파이너리 사업, 수소에너지혁신기술개발사업, 기후변화대응기술개발사업 및 미래소재디스커버리사업의 지원을 통해 수행됐다.
2020.03.20
조회수 17835
-
원자 틈 이용해 이산화탄소의 연료 변환 성공
신소재공학과 강정구 교수 연구팀이 성균관대, UNIST, 부산대, 미국 버클리대학, 칼텍과의 공동 연구를 통해 구리 입자 내 원자의 틈을 제어하는 기술을 적용해 온실가스인 이산화탄소를 에틸렌 등의 고부가 연료로 변환할 수 있는 전기화학촉매 소재기술을 개발했다.
이는 이산화탄소로부터 에틸렌 생성비율을 최고 80%까지 높이는 기술로, 연구팀은 기존 나노입자기반 촉매의 한계를 뛰어넘기 위해 원자수준의 촉매제어 기술을 도입했다. 이번 연구결과는 기존 촉매소재 설계에서 제시되지 않은 ‘원자 틈’을 처음으로 촉매설계의 주요인자로 적용해 산업적 가치가 높은 에틸렌의 생산성을 획기적으로 높였다. 동시에 천연가스에서 손쉽게 얻을 수 있는 메탄의 생성을 실험적으로 완전히 억제했으며, 양자역학 계산 기술을 이용해 원자 틈의 촉매반응 활성 원리를 이론적으로 규명했다.
이번 연구 결과는 에너지 분야 국제 학술지 ‘어드밴스드 에너지 머티리얼즈 (Advanced Energy Materials)’ 3월 10일자에 표지논문으로 게재 됐다. (논문명: Atomic-Scale Spacing between Copper Facets for the Electrochemical Reduction of Carbon Dioxide)
전기화학적 촉매반응을 활용한 이산화탄소 변환 기술은 지구 온난화를 일으키는 이산화탄소를 저감하는 대표 기술 중의 하나로, 효율적인 이산화탄소 전환 촉매기술의 개발을 통해 대기 중의 이산화탄소 농도를 줄이면서 산업에 유용한 연료나 화합물을 생산하는 기술이다. 이산화탄소 전환을 위해 다양한 전이금속 기반의 전기화학 촉매가 개발되고 있으나, 에틸렌과 같은 탄화수소 계열의 연료를 생산할 수 있는 원소는 구리가 유일하다.
하지만 일반적으로 구리 촉매는 반응 속도 및 생성물의 선택성이 높지 않아 이산화탄소 저감의 실효성과 생성물의 경제성이 떨어졌다. 이를 해결하기 위해 구리촉매의 특성을 개선하려는 연구가 세계적으로 활발히 진행되고 있다.
연구팀은 산화된 구리의 환원반응을 전기화학적으로 미세하게 제어해 구리 결정면 사이에 1나노미터 미만의 좁은 틈을 생성했다. 이 원자 틈에서 이산화탄소 환원반응 중간생성물의 촉매표면 흡착에너지를 최적화해 촉매반응의 활성을 극대화했다. 동시에 탄소-탄소 결합을 유도해 에틸렌과 같은 고부가 화합물이 효율적으로 생산되는 것을 규명했다. 연구에서 제안한 신규 활성인자인 원자 틈 원리는 다양한 전기화학 촉매 연구 분야로 확장할 수 있다는 의의를 갖는다.
강정구 교수는 “구리 기반 촉매소재에 간단한 공정 처리기술을 도입해 온실가스인 이산화탄소를 전환함으로써 고부가 화합물인 에틸렌을 효율적으로 생산하는 소재기술이다”라며, “기후변화 및 온실가스 문제 대응을 위한 핵심 대안기술이 될 수 있을 것으로 전망한다”라고 말했다.
이번 연구는 강정구 교수, 성균관대학교 정형모 교수, UNIST 권영국 교수, 부산대 김광호 교수, 그리고 미국 버클리, 칼텍 연구팀과 공동연구를 통해서 이뤄졌으며, 과학기술정보통신부의 글로벌프론티어사업, 신진연구자지원사업 및 차세대탄소자원화사업단의 지원을 받아 수행됐다.
2020.03.16
조회수 20578
-
이산화탄소 환원 나노구조 촉매 개발
신소재공학과 전석우 교수와 오지훈 교수 연구팀이 이산화탄소의 전기화학 환원 반응 시 발생하는 물질이동의 한계를 극복해 값 비싼 금 촉매의 사용을 효과적으로 줄일 수 있는 3차원 나노구조 촉매를 개발했다.
연구팀은 두 가지 크기의 기공 네트워크를 지닌 계층 다공성 나노 구조를 이용해 이산화탄소에서 일산화탄소로의 전환율을 기존 나노 구조 촉매 대비 최대 3.96 배 높일 수 있는 촉매 디자인을 제시했다.
현가예 박사과정과 송준태 교수가 공동 1저자로 참여한 이번 연구는 국제 학술지 ‘미국 국립과학원회보(PNAS)’ 3월 4일 자 온라인판에 게재됐다. (논문명: Hierarchically Porous Au Nanostructures with Interconnected Channels for Efficient Mass Transport in Electrocatalytic CO2 Reduction)
최근 이산화탄소의 배출과 화석 연료 고갈이 심화됨에 따라 이산화탄소를 재활용해 유용한 화합물로 전기 화학적 전환하는 연구가 주목받고 있다. 이산화탄소 환원 반응은 유사한 산화환원 전위를 갖는 수소 생산 반응과 경쟁적으로 일어나는 문제점이 있어, 원하는 화합물로 선택도를 높이고 활성 부위를 극대화해 높은 전환율을 얻기 위한 금속 나노 구조 촉매 개발이 활발히 진행 중이다.
이산화탄소에서 일산화탄소로의 전환 반응 촉매 중 금은 가장 우수한 성능을 보이지만 값이 매우 비싸 실제 적용을 위해서는 나노 구조를 형성하는 등의 방법을 통해 적은 양의 금을 활용하는 것이 이상적이다.
하지만 기존 연구에서 보고된 나노 구조는 복잡하게 엉킨 촉매 구조로 인해 수계 반응을 통해 생성되는 일산화탄소 기포가 반응 도중 쉽게 구조를 막아 활성 부위를 차단하고, 전해질을 통한 반응물의 이동도 어렵게 해 촉매의 생산성을 떨어뜨린다.
연구팀은 문제 해결을 위해 정렬된 3차원 나노 구조 제작에 효과적인 근접장 나노패터닝(PnP, Proximity-field nanopatterning)과 전기 도금 기술을 이용해, 약 10나노미터 크기의 나노 기공과 200~300나노미터 크기의 매크로 기공이 주기적으로 연결된 채널을 포함하는 3차원 계층 다공성 금 나노 구조를 대면적으로 제작했다.
그 결과, 계층 나노 구조 촉매는 나노 기공을 통해 높은 일산화탄소 생산 선택도를 달성함과 동시에 주기적으로 배열된 매크로 기공 채널을 통해 효율적인 물질이동을 유도함으로써, 높은 질량당 전환율을 달성해 값 비싼 금의 사용을 효과적으로 줄일 수 있는 해결 방안을 제시했다.
또한, 3차원 나노 구조 금 촉매의 기공 크기와 분포가 조절 된 서로 다른 세 가지 나노 구조 촉매를 통해 기공 네트워크와 반응물, 생성물의 확산에 미치는 영향을 구조적 관점에서 조사했다.
이 기술은 이산화탄소 환원 촉매 연구 뿐 아니라 유사 전기화학 분야에서 발생하는 물질이동 문제를 해결하고 효율적인 촉매활용을 위한 폭넓은 응용이 가능할 것으로 기대된다.
이번 연구는 한국연구재단 원천기술개발사업의 미래소재디스커버리 사업과 나노소재원천기술개발사업, 그리고 이공분야기초개발사업의 지원을 통해 수행됐다.
2020.03.10
조회수 16136