-
7배 이상 높은 발광 3차원 퀀텀닷 나노구조체 개발
3차원 광학 나노구조체는 빛의 진폭, 위상, 편광 상태를 정밀하게 조작할 수 있어 포토닉스 분야에서 큰 관심을 받고 있다. 한국 연구진이 기존 기술로는 구현이 어려웠던 3차원 퀀텀닷 나노구조체를 정교하게 쌓아 올리는 적층 방식으로 구현하는 데 성공했다.
우리 대학 신소재공학과 정연식 교수, 전기및전자공학부 장민석 교수, 동국대학교 최민재 교수 공동 연구팀이 초미세 전사 프린팅 기반으로 3차원 퀀텀닷 구조 제작 기술을 개발했다고 27일 밝혔다.
연구팀이 개발한 이 기술은 대부분의 나노입자에 적용될 수 있어 범용성이 뛰어나고 우수한 패턴 품질을 제공할 수 있다. 또한, 프린팅 방식으로 대면적화가 가능해 고성능 소자 양산에 활용할 수 있는 장점을 가진다.
특히 편광 빛에 대한 선택적 반응을 보이는 구조적 비대칭성을 가진 대면적 카이랄 구조체를 구현해 기존 최고 기록인 19도* 대비 향상된 약 21도의 세계 최고 수준 **원편광 이색성(Circular dichroism) 성능을 달성했다.
*참조: https://www.nature.com/articles/ncomms14180/figures/2
**원편광 이색성(Circular dichroism): 광학 활성이 있는 물질이 왼쪽과 오른쪽의 편광을 다르게 흡수해 나타나는 현상. 주로 단백질 등 유기화합물들의 구조체를 분석하는 용도로 활용됨. 높은 원편광이색성(단위: 도) 세기를 갖는 물질을 활용할수록 보다 정밀하고 빠른 검출이 가능해짐. 이론적으로 구현할 수 있는 최댓값은 45도임.
따라서 이 기술은 카이랄 특성을 가진 바이오 물질들을 검출할 수 있는 플랫폼으로 활용될 수 있으며, 높은 반응성 덕분에 더 정밀하고 빠른 약물 스크리닝이 가능할 것으로 기대된다.
또한, 장민석 교수팀이 설계한 그물 형태의 퀀텀닷 나노 패턴을 해당 기술을 활용하여 실험적으로 구현한 결과, 일반 퀀텀닷 필름 대비, 약 7배 이상 높은 발광 효율을 달성해 향후 고성능 퀀텀닷 디스플레이 소자에의 응용 가능성을 보였다.
연구를 주도한 정연식 교수는 “이번 연구는 퀀텀닷뿐만 아니라 다양한 고성능 콜로이드 소재를 3차원 나노 구조화함으로써, 차세대 광학 메타물질 및 고감도 바이오센서 분야 등에서 새로운 장을 열 것으로 기대된다 아울러 광학 설계 및 분석 연구와 초미세 나노공정 기술이 융합해 이룬 성공 사례의 하나로도 볼 수 있다”라고 말했다.
신소재공학과 김건영 박사와 전기및전자공학부 김신호 박사가 공동 제1 저자로 연구를 주도한 이번 연구는 국제 학술지 네이처 커뮤니케이션즈(Nature Communications)에 8월 14일 게재됐다.
(논문명: Chiral 3D structures through multi-dimensional transfer printing of multilayer quantum dot patterns)
한편 이번 연구는 과학기술정보통신부와 한국연구재단이 지원하는 나노 및 소재기술개발사업, 교육부가 추진하는 이공분야 학술연구사업, 산업통상자원부에서 추진하는 전자부품산업기술개발사업의 지원을 받아 수행됐다.
2024.09.28
조회수 1376
-
이제 전자제품도 완전히 생분해될 수 있다
전자폐기물이 발생하지 않는 안전한 전자제품을 구현할 수 있을까?
국제공동연구진은 갑오징어에서 추출한 미래 전자 소재로 주목받는 세피아 멜라닌으로 만든 친환경 필름이 85일 만에 약 97% 생분해됨을 밝혀 지속가능한 친환경 전자제품의 새로운 가능성을 열어 화제다.
우리 대학 건설및환경공학과 명재욱 교수 연구팀이 몬트리올 공과대학 클라라 산타토(Clara Santato) 교수 연구팀과 국제 공동연구를 통해 완전히 생분해되는 세피아 멜라닌 기반 전기 활성 필름을 개발했다고 25일 밝혔다.
해마다 전자제품에 대한 수요가 급격하게 증가함에 따라 매년 약 6천만 톤에 이르는 전자폐기물이 발생하고 있다. 전자폐기물은 자연에서 쉽게 분해되지 않고 납(Pb), 카드뮴(Cd)과 같은 중금속이나 폴리염화비닐(PCB) 등 유해 화학물질을 자연에 유출해 생태계를 오염시킬 수 있다.
한편 생분해성 *유기전자소재는 기존 전자제품에 대한 패러다임을 전환할 수 있는 새로운 소재로 떠오르고 있다. 특히 갑오징어에서 추출할 수 있는 세피아 멜라닌은 생분해성, 저독성으로 지속가능한 미래 전자 소재로 주목받고 있다.
*유기전자소재(organic electronic material): 멜라닌, 타닌, 이모딘, 리그닌, 도파민 등 화학 구조상 전자공액계(electron conjugation)를 특징으로 하는 물질들을 뜻한다.
연구팀은 완전한 분해가 가능한 전기 활성 필름을 구현하기 위해 천연 바이오 소재인 세피아 멜라닌-셸락 잉크 복합체를 플렉소그래피 인쇄 기술을 활용해 은 전극 패턴의 종이 위에 인쇄했다.
인쇄된 필름이 이산화탄소(CO2)로 전환되는 정도(광물화도)를 기반으로 퇴비화 조건에서 생분해 거동을 분석한 결과, 85일 만에 약 97% 생분해됨을 연구팀은 확인했다. 인쇄 필름은 육안으로 봤을 때 20일 이내에 완전히 분해됐으며, 주사전자 현미경 분석을 통해 박테리아가 인쇄 필름의 생분해에 관여하여 퇴비 미생물 군집이 표면에 형성됨을 관찰했다.
한편, 인쇄 필름의 생분해 산물이 생태독성을 띠는지 조사하기 위해 두 가지 식물 쥐보리(Lolium multiflorum)와 메리골드(Tagetes erecta)를 대상으로 발아 실험을 진행한 결과, 인쇄 필름과 그 개별 구성 성분(세피아 멜라닌, 셸락, 셀룰로오스 등)은 식물에 대한 독성이 미미한 것으로 나타났다.
전기적 특성을 분석한 결과 세피아 멜라닌-셸락 인쇄 필름은 10-4 S/cm의 전기전도도를 나타냈다. 해당 전기전도도는 일반 금속이나 고성능 전자 재료에 비해 낮지만, 생분해성 및 친환경 특성 덕분에 환경 센서, 생체 디바이스, 일회용 전자제품 등 특정 응용 분야에서 경쟁력 있는 대안이 될 수 있다.
이번 국제 공동 연구를 이끈 건설및환경공학과 명재욱 교수는 “세피아 멜라닌, 셸락과 같은 널리 쓰이지 않는 바이오 기반 물질을 활용해 완전히 생분해되는 전기활성 필름을 구현한 최초 사례이며, 후속 연구를 통해 지속가능한 전자 디바이스 구현을 위한 여러 대안을 제시할 계획”이라고 밝혔다.
건설및환경공학과 최신형 박사과정과 몬트리올 공과대학 앤써니 카뮈(Anthony Camus) 박사과정이 공동 제1 저자로 참여한 이번 연구는 지난 8월 29일 국제 학술지 Communications Materials에 출판됐다.
※ 논문명: Electrical response and biodegradation of Sepia melanin-shellac films printed on paper
(저자 정보 : Anthony Camus*, 최신형*(공동 제1 저자*), Camille Bour-Cardinal1(몬트리올 공과대), Joaquin Isasmendi(몬트리올 공과대학), 조용준(KAIST), 김영주(KAIST), Cristian Vlad Irimia(요한케플러대), Cigdem Yumusak(요한케플러대), Mihai Irimia-Vladu(요한케플러대), Denis Rho(캐나다국립연구위원회)**, 명재욱(KAIST)**, Clara Santato(몬트리올 공과대)** (공동 교신저자**), 총 12명)
한편, 이번 연구는 KAIST 공과대학 석·박사 모험연구 및 창의도전사업(C2연구), 한국연구재단 과학기술국제화사업-한국 이공계 대학원생 캐나다 연수 프로그램 사업 등의 지원으로 수행됐다.
2024.09.28
조회수 1335
-
지금 당신의 마음 건강은 어떠한가요?
최근 빠른 고령화 및 출산율 감소 등으로 1인 가구가 급속하게 증가하면서, 1인 가구의 정신건강 문제에 대한 관심도 함께 높아지고 있다. 서울시가 실시한 1인 가구 실태조사에 따르면, 1인 가구의 60% 이상이 외로움을 느끼고 있으며, 특히 사회적 고립과 함께 외로움을 겪는 비율이 상당히 높은 것으로 나타났다.
우리 대학 전산학부 이의진 교수 연구팀이 1인 가구의 정신건강 관리를 위해, 사용자 스스로가 자신의 심리 상태를 기록할 수 있도록 지원하는 상황 인식 기반 멀티모달 스마트 스피커 시스템을 개발했다고 24일 밝혔다.
연구팀은 사용자의 주변 상황을 실시간으로 파악해 최적의 시점에 정신건강 관련 질문하도록 이 시스템을 설계했고 기존의 무작위 설문보다 높은 응답률을 달성하는 것을 확인했다.
기존 스마트 스피커를 활용한 정신건강 자가 추적 연구에서 무작위 설문을 할 경우 사용자의 스트레스, 짜증 등 부정적인 감정이 유발시켜 설문 응답에 편향이 발생할 수 있어 각별한 주의가 필요했다.
이러한 문제 해결을 위해 이의진 교수 연구팀은 스마트 스피커에 멀티 모달 센서를 장착해, 사용자의 주변 상황의 변화를 감지해 스피커가 말 걸기 좋은 시점이 검출되면 정신건강 자가 추적 설문을 능동적으로 요청하는 상황 인식 기반 자가 추적 기술을 개발했다.
스피커는 실내 움직임, 조명, 소음, 이산화탄소 등 다양한 센서 데이터를 종합적으로 분석해 사용자의 존재 및 활동을 감지한 뒤, 사용자가 응답하기 적합한 시점에 자가 추적 설문을 능동적으로 요청함으로써, 설문 응답의 효율성을 극대화했다.
또한, 설문 입력 방식의 경우 최근 출시된 스마트 스피커는 명령뿐만 아니라 터치스크린도 지원하므로 사용자들이 음성 또는 터치 입력 방식을 자유롭게 선택할 수 있도록 해 상호작용의 폭을 넓혔다. 이를 통해 사용자는 상황에 맞는 최적의 인터페이스를 선택해 자가 추적을 쉽게 수행할 수 있도록 했다.
개발된 스피커의 사용자 경험을 평가하기 위해서 연구팀은 1인 가구 20세대에 자가 추적 스마트 스피커를 설치해, 한 달 동안 실증 연구를 수행해서 총 2,201개의 정신건강 설문 응답 데이터셋을 구축했다.
데이터셋 분석을 통해 설문 응답 시간, 활동 맥락에 따른 설문 응답 패턴 및 어떤 상황에서 음성 입력(VUI) 또는 터치 입력(GUI)이 더 선호되는지 파악했다.
특히, 스마트 스피커가 말로 사용자에게 요청을 하다 보니 스피커 근처에서 사용자의 활동을 감지하는 것이 정신건강 설문 응답률에 큰 영향을 미쳤다. 음성 입력의 편의성에도 불구하고 전반적으로 참가자들은 음성 입력보다는 빠른 응답이 가능한 터치 입력을 선호했다.
데이터 분석 결과, 사용자의 주변 상황을 실시간으로 파악해 최적의 시점에 정신건강 관련 질문을 할 경우 응답률이 더 높으며, 어떤 상황에서 음성 또는 터치 인터페이스를 선호하는지도 파악했다.
연구를 주도한 이의진 교수는 “이번에 개발한 스마트 스피커를 앞으로 수용전념치료 기법을 활용한 인간상담사와 같은 기능의 정신건강 관리 지원 스마트 스피커로 발전시키고자 한다. 나아가 실내에서 수집된 일상생활 데이터를 AI 모델로 학습해 사용자 정신건강 상태에 따라 라이프 스타일 패턴을 예측하는 시스템도 개발하여 향후 정신질환 조기 발견과 효율적인 관리를 가능케 할 인공지능 에이전트의 혁신을 이끌 것으로 기대된다” 라고 말했다.
한편 이 연구는 LG전자-KAIST 디지털 헬스케어 연구센터의 지원을 받아 수행됐고 인간 컴퓨터 상호작용(HCI) 분야 국제 최우수 국제학술대회인 미국컴퓨터협회(ACM) 소속 ‘Conference on Human Factors in Computing Systems (CHI)’에서 지난 2024년 5월에 발표됐다.
논문명: Exploring Context-Aware Mental Health Self-Tracking Using Multimodal Smart Speakers in Home Environments
2024.09.24
조회수 1364
-
25% 늘려도 그대로인 스트레처블 디스플레이 개발
스트레처블 디스플레이는 공간 활용성, 디자인 자유도, 신체와 유사한 유연성 등의 장점으로 인해 차세대 디스플레이로 각광받고 있다. 한국 연구진이 25%까지 늘릴 수 있으며, 이미지 왜곡 없이 선명한 화질을 유지하고 15% 비율로 5,000회 늘렸다 펴도 성능이 안정적으로 유지되는 무변형(음의 푸아송비*) 스트레처블 디스플레이를 국내 최초로 개발해 화제다.
*음의 푸아송 비 (Poisson’s ratio of -1): 가로 세로가 같은 비율로 늘어나는 비율로 음(-)의 값으로 표현. 일반적인 물질에서와 같이 가로로 늘릴 때 세로로 수축하는 것을 양(+)의 값으로 표현한다.
우리 대학 신소재공학과 배병수 교수(웨어러블 플랫폼 소재 기술센터장) 연구팀이 한국기계연구원(원장 류석현)과 공동연구를 통해, 신축 시 이미지 왜곡을 억제하는 전방향 신축성을 갖는 스트레처블 디스플레이용 기판 소재를 개발했다고 20일 밝혔다.
현재 스트레처블 디스플레이 기술은 대부분 신축성이 뛰어난 엘라스토머* 소재를 기반으로 제작되고 있지만 해당 소재들은 양의 푸아송비를 가져 디스플레이를 늘릴 때 이미지의 왜곡이 불가피하다.
*엘라스토머 (elastomer) : 고무와 같은 탄성을 가지는 고분자 소재
이를 해결하기 위해 옥세틱* 메타 구조의 도입이 각광받고 있다. 옥세틱 구조는 일반적인 재료와 달리, 한 방향으로 늘려도 전 방향으로 함께 늘어나는 ‘음의 푸아송비’를 갖는 독특한 구조다. 그러나 전통적인 옥세틱 구조는 패턴으로 형성된 빈 공간이 많아서 안정성과 공간 활용도가 떨어져 기판에서는 활용이 매우 제한적이다.
*옥세틱 구조 (Auxetic structure): 음(-)의 푸아송비를 나타내는 특수한 기하학적 구조
배병수 교수 연구팀은 먼저 이미지 왜곡의 문제를 해결하기 위해 음의 푸아송 비를 갖는 옥세틱메타 구조의 최대 난제인 다공성의 표면을 이음매 없이 매끈하게 하면서도 –1의 푸아송비(가장 이상적인 음의 푸아송비) 한계치를 구현하는 기술을 개발했다.
두 번째 탄성률*의 문제를 해결하기 위해 옥세틱 구조를 이루는 부분에 머리카락 두께의 4분의 1 수준인 25마이크로미터 직경의 유리 섬유 다발로 만든 직물을 엘라스토머 소재 내에 삽입했다. 여기에 동일한 엘라스토머 소재로 빈 공간을 채워넣어 빈 공간이 없는 편평하고 안정적인 일체형 필름을 제작했다.
*탄성률: 재료에 힘을 가했을 때 변형되는 정도를 나타내는 비율. 탄성률이 높으면 변형이 잘 일어나지 않는 재료임을 의미한다.
연구팀은 옥세틱 구조와 빈 공간의 엘라스토머 소재 간의 탄성률 차이가 음의 푸아송비에 직접적인 영향을 주는 것을 이론적으로 규명했으며, 23만 배 이상의 탄성률 차이를 구현해 이론적 한계값인 –1의 푸아송비를 나타내는 필름을 최초로 개발했다.
연구를 주도한 배병수 교수는 “스트레처블 디스플레이에 옥세틱 구조를 활용한 이미지 왜곡 방지는 핵심적인 기술임에도 불구하고 표면에 빈 공간이 많아 기판으로 활용하는 데에는 어려움을 겪고 있었다”며, “이번 연구 결과를 통해서 표면 전체를 활용한 왜곡 없는 고해상도 스트레처블 디스플레이 응용을 통해 상용화를 크게 앞당길 것으로 기대하고 있다”고 말했다.
신소재공학과 이융 박사와 한국기계연구원 장봉균 박사가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈 (Nature Communications)’ 에 8월 20일 출판됐다. (논문명: A seamless auxetic substrate with a negative Poisson's ratio of –1)
이번 연구는 한국연구재단의 선도연구센터 웨어러블 플랫폼소재 기술센터와 한국기계연구원, LG디스플레이의 지원을 받아 수행됐다.
2024.09.20
조회수 2381
-
3차원 신개념 스트레쳐블 OLED 개발
우리 연구진이 골프공의 표면처럼 반복적으로 파여 있는 구조를 도입해 실제 닿는 유효 면적을 줄임으로써 면과 면 사이의 점착력을 현저히 줄인다는 아이디어로, 잡아당겨도 성능을 유지하는 신개념 스트레처블 디스플레이를 개발해 화제다.
우리 대학 전기및전자공학부 유승협 교수 연구팀이 동아대 문한얼 교수, 한국전자통신연구원(ETRI) 실감소자 연구본부와의 협력을 통해 세계 최고 수준의 높은 초기 발광 면적비와 고신축성을 동시에 갖는 유기발광다이오드(organic light-emitting diode, OLED) 디스플레이를 구현하는 데 성공했다고 10일 밝혔다.
기존의 신축형 디스플레이에서는 성능과 신축성을 동시에 확보하기 위해, 발광하는 부분은 단단한 고립구조(rigid island)에 위치해 신축 시에도 기계적 변형 없이 우수한 성능을 보이도록 하고, 이들을 연결하는 커넥터 부분은 말굽 모양 등의 구부러진 형태로 구성해 신축에 따라 용이하게 변형할 수 있게 한다. 통상적으로 이들 구조는 이차원 평면상에 한정되는데, 이 경우 구부러진 연결 커넥터에 필요한 공간 확보를 위해 전체 면적대비 발광 면적의 비율을 불가피하게 희생해야 하는 한계점이 있다.
공동 연구팀은 2차원 평면에 국한하지 않고 구부림 연결 커넥터가 힌지(경첩)형 회전과 인장을 동시에 활용할 수 있는 3차원 높이 교차 구조를 제안, 잡아당기지 않은 초기 상태에서 85%의 발광 면적비와 40%의 최대 시스템 신축률을 동시에 갖는 OLED 디스플레이 기술을 달성했다.
이와 동등한 수준의 신축형 디스플레이를 2차원에 한정된 구부림 연결 커넥터를 통해 구현할 경우, 약 500% 인장이 가능한 연결 커넥터가 있어야 가능할 정도의 우수한 결과다. 연구팀은 또한, 반복적인 동작과 곡면 변형에서도 안정적으로 성능을 유지하는 결과를 확인했다.
처음 시도되는 개념이다 보니 연구 개발이 처음부터 순조롭지는 않았다. 특히, 초박막 OLED가 신축 변화 시 높이를 변화할 때 극복해야 할 OLED 기판과 신축성 플랫폼 사이의 점착력이 생각보다 커, 팝업돼야 할 초박막 OLED가 설계대로 부양되지 못하고 무질서하게 바닥에 붙는 난관에 부딪혔다.
고민을 거듭하던 유승협 교수와 김수본 박사는, 마치 골프공의 표면처럼 반복적으로 파여 있는 구조를 도입해 실제 닿는 유효 면적을 줄임으로써 면과 면 사이의 점착력을 현저히 줄이는 아이디어를 제시, 실험적으로 구현했고 이를 적용해 설계한 대로 완벽하게 동작하는 신축형 디스플레이를 구현하는 데 성공했다.
유승협 교수는 “높은 발광 면적비 및 우수한 신축률을 동시에 가능하게 하는 신축 유기발광 다이오드 기술의 확보는 신축형 디스플레이 기술의 난제를 해결하는 중요한 열쇠”라고 밝히며, "아이디어 입안에서부터 이의 성공적 구현을 위한 기계적 설계, 산업적 호환성이 큰 소재 및 소자구조의 활용, 반복성이 우수한 안정적 공정 수립에 이르기까지 김수본 박사(개발 당시 박사과정 학생, 24년 2월 박사 졸업)의 체계적이고 집념 어린 연구 수행, 그리고 ETRI와 동아대와의 협력이 큰 역할을 했다”고 말했다.
유승협 교수 연구실의 김수본 박사가 제1 저자로 수행한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 2024년 9월 6일 자 게재됐다.
(논문명: 3D height-alternant island arrays for stretchable OLEDs with high active area ratio and maximum strain, Nature Comm. 15, 7802 (2024). 논문링크: https://www.nature.com/articles/s41467-024-52046-6).
한편 이번 연구는 한국연구재단 선도연구센터 사업(인체부착형 빛 치료 공학연구센터) 및 중견연구자사업, 그리고 한국전자통신연구원 연구운영비지원사업(ICT 소재·부품·장비 자립 및 도전 기술 개발)의 지원을 받아 수행됐다.
2024.09.10
조회수 1619
-
미생물 이용한 플라스틱 환경오염 문제 해결 다가가
여러 친환경 고분자 중에서도 폴리하이드록시알카노에이트(이하 PHA)는 생분해성과 생체 적합성이 뛰어나 토양이나 해양 환경에서도 생분해되며, 식품 포장재나 의료용품 등에 사용되고 있다. 하지만 지금까지 생산된 천연 PHA(natural PHA)는 내구성, 열적 안정성 등 다양한 물성을 충족시키기 어렵고, 생산 농도가 낮아 상업적으로 활용하는 데 한계가 있었다. 우리 대학 연구진이 플라스틱으로 인한 환경오염 문제 해결에 중요한 기술을 개발해 화제다.
우리 대학 생명화학공학과 이영준 박사와 강민주 석사과정생을 포함한 이상엽 특훈교수 연구팀이 시스템 대사공학을 이용해 `방향족 폴리에스터*를 고효율로 생산하는 미생물 균주 개발'에 성공했다고 26일 밝혔다.
*방향족 폴리에스터: 방향족 화합물(벤젠과 같은 특별한 형태의 탄소 고리 구조)을 포함하고 에스터 결합을 가지고 있는 고분자
이번 연구에서는 대사공학을 이용해 대장균 내 방향족 단량체인 페닐 젖산(phenyllactate, PhLA) 생합성 회로의 대사 흐름을 강화하고 대사 회로를 조작해 세포 내부에 축적된 고분자의 분율을 높였으며, 컴퓨터 시뮬레이션을 이용해 PHA 합성 효소의 구조를 예측하고 구조와 기능의 상관관계를 바탕으로 효소를 개량했다.
연구팀은 이후 발효 최적화를 통해 세계 최고 농도(12.3±0.1 g/L)로 폴리(PhLA)를 고효율로 생산하고 30L 규모의 유가식 발효로 성공적으로 폴리에스터를 생산해 산업화 수준 생산의 가능성도 보였다. 생산된 방향족 폴리에스터들은 추후 약물 전달체로서의 가능성과 더불어 향상된 열적 물성, 상업화되고 개선된 기계적 물성을 보여주었다.
연구팀은 비천연 PHA 생산에서 외래 파신(phasin) 단백질*이 경제성, 효율성과 직결되는 세포 내 고분자 축적분율 증가에 중요한 역할을 한다는 것을 입증하고 PHA 합성 효소를 합리적 효소 설계 방법으로 개량했다. 효소의 삼차원 입체 구조를 호몰로지 모델링(비슷한 단백질의 구조를 바탕으로 새로운 단백질의 삼차원 입체 구조를 예측하는 방법)을 통해 예측하고, 이를 분자 도킹 시뮬레이션(단량체가 효소에 잘 결합할 수 있는지 예측하는 시뮬레이션)과 분자 동역학 시뮬레이션(분자들이 시간에 따라 어떻게 움직이고 상호작용하는지 예측하는 시뮬레이션)을 이용해 단량체의 중합 효율이 향상된 변이 효소로 개량했다.
*외래 파신 단백질: 파신은 PHA 생산과 관련된 단백질로 작은 입자(granule) 형태의 PHA 표면에서 세포질 환경과 상호작용하며 고분자 축적, granule 수 및 크기 조절 등에 관여한다. 본 연구에서는 다양한 천연 PHA 생산 미생물로부터 유래된 파신 단백질 암호화 유전자를 선별해 도입하였다.
이번 논문의 공동 제1 저자인 이영준 박사는 “친환경적인 원료와 방법으로 미생물 기반의 방향족 폴리에스터를 세계 최고 농도로 생산했다는 점에 의의가 있다”며 “이 기술이 플라스틱으로 인한 환경 오염 문제 해결에 중요한 역할을 할 것으로 기대된다”고 밝혔다. 또한 이상엽 특훈교수는 “시스템 대사공학을 이용해 유용한 고분자를 고효율로 생산하기 위해 다양한 전략을 제시한 이번 연구가 기후 변화 문제와 특히 최근 플라스틱 문제의 해결에 크게 기여할 수 있을 것”이라고 밝혔다.
해당 연구 결과는 국제 학술지인 셀(Cell) 誌가 발행하는 `생물공학 동향(Trends in Biotechnology)'에 8월 21일에 게재됐다.
※ 논문명 : Microbial production of an aromatic homopolyester
※ 저자 정보 : 이영준(한국과학기술원, 공동 제1 저자), 강민주 (한국과학기술원, 공동 제1 저자), 장우대(한국과학기술원, 제2 저자), 최소영(한국과학기술원, 제3 저자), 양정은(한국과학기술원, 제4 저자), 이상엽(한국과학기술원, 교신저자) 포함 총 6명
한편 이번 연구는 과기정통부가 지원하는 석유 대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제 (과제 책임자 KAIST 이상엽 특훈교수)와 ‘미생물 세포공장 기반 신규 방향족 바이오플라스틱의 원스텝-원팟 생산 원천기술 개발 과제 (과제 책임자 이화여대 박시재 교수)’의 지원을 받아 수행됐다.
2024.08.26
조회수 2965
-
기계공학과 유홍기 교수 연구팀, 빛으로 동맥경화반 동시 진단 및 치료 기술 개발
관상동맥 내 고위험 동맥경화반은 파열과 협착을 유발하여 빠르게 혈관을 막을 수 있어 진단과 동시에 즉각적인 치료가 필요하다.
우리 대학 기계공학과 유홍기 교수 연구팀은 고려대학교구로병원 심혈관센터 김진원 교수팀, 중앙대학교 시스템생명공학과 박경순 교수팀과의 공동연구를 통해, 빛을 이용하여 동맥경화반 진단과 치료를 동시에 할 수 있는 새로운 원천 기술을 개발하였다.
이 기술은 유홍기 교수 연구팀이 개발한 광단층-분자영상 결합 카테터 기반 정밀 영상 시스템과 광치료 카테터를 이용해 빛을 조사하여 고위험 병변을 정확히 진단하고 치료하는 방법이다.
동맥경화반 내 대식세포의 특정 수용체를 표적하는 전달체와 광활성체를 결합한 테라노스틱 제제를 혈관에 투여한 후 혈관내 카테터를 이용해 위험 부위를 찾아내고 그 부위에 빛을 조사하였다. 그 결과, 고위험 동맥경화반을 실시간 정밀 영상으로 진단하였고 동시에 성공적으로 치료할 수 있었다.
치료 후 효과를 정밀 영상 시스템을 통해 생체 내에서 추적 검증했으며, 광활성에 의한 자가소화를 유도해 사멸 세포를 탐식 및 제거, 콜레스테롤 유출로 염증을 해소하고 콜라겐 조직 증가를 유도해 병변이 치료 및 안정화 됨을 밝혔다.
연구진은 “이번 연구를 통해 기존 방법의 한계였던 고위험 동맥경화반의 정밀 진단을 가능케 하였고, 동시에 광치료 시스템을 이용해 빛을 전달하여 고위험 동맥경화반을 치료하고 안정화하는 데 성공했다는 점에서 큰 의의가 있다.”라고 밝혔다. 또한 “기존 동맥경화반 치료법인 스텐트 치료가 가지는 이물질 잔존 위험을 극복할 수 있으며, 심혈관 진단 및 치료 분야에서 새로운 가능성을 제시했다.”고 했다. 연구진은 “이번 연구 결과를 바탕으로, 추후 임상 적용을 위한 시제품 개발을 적극적으로 추진할 계획”이라고 덧붙였다.
이번 연구 결과는 기계공학과 김연훈 박사과정생이 공동 제1저자로, 유홍기 교수가 공동교신저자로 참여하였으며, 국제학술지 Circulation Research (5-year IF: 20.3) 에 게재되었다.
한편 이번 연구는 한국연구재단이 주관하는 원천기술개발사업의 지원을 받아 수행됐다.
2024.08.23
조회수 1898
-
100배 정밀한 신개념 빛 측정 센서 개발
자율주행에서 물체의 모양과 위치를 정확히 추적할 수 있는 기술이 필요하다. 또한, 생물학적 세포, 박막, 미세구조 및 기타 유사한 물질들을 화학 염색 없이도 상세하고 높은 대비로 관찰할 수 있는 기술은 의료 및 산업 현장에서 중요하다. 하지만 기존 기술들은 간섭계를 사용하기 때문에 크고 복잡한 장비가 필요하고 주변 환경에 민감해 실제 현장에서의 활용이 제한됐다. 우리 연구진이 이러한 한계를 극복하고 다양한 응용 분야에서 활용할 수 있는 신개념 빛 측정 기술을 개발해서 화제다.
우리 대학 바이오및뇌공학과 장무석 교수 연구팀이 세계 최초로 메타표면*으로 성능이 대폭 향상된 파면 센서를 이용해 복잡한 물체의 단일 측정 위상 이미징 기술을 개발했다고 20일 밝혔다.
*메타표면: 나노미터에서 마이크로미터 스케일의 기하학적 구조를 가지는 나노 구조체들로 이뤄진 평면으로, 각 나노 구조체의 모양에 따라 매우 미세한 규모에서 전자기파의 전파 경로, 위상, 편광, 진폭 등을 제어할 수 있음
파면은 파동이 동일한 위상을 가지고 있는 지점들을 연결한 면이다. 바다에서 보이는 파도는 일상생활에서 볼 수 있는 파면의 한 예다. 파도가 장애물을 만나거나 환경이 달라지면 모양이 바뀌듯, 빛의 파면도 물체를 통과하거나 반사될 때 물체의 모양에 따라 변한다. 따라서 물체를 통과하거나 반사된 빛의 파면을 분석하면, 물체에 의해 변화되는 빛의 위상 정보를 얻을 수 있다.
샥-하트만 파면 센서(Shack-Hartmann wavefront sensor)는 렌즈 배열과 카메라가 결합된 구조로, 각 렌즈에 입사하는 파면의 경사도에 따라 달라지는 초점의 위치를 분석해 입사된 빛의 파면을 복구한다. 샥-하트만 파면 센서는 간단한 구조와 높은 견고성으로 천문학 및 광학 시스템 평가 등 산업 현장에서 널리 사용되고 있다. 하지만, 기존 샥-하트만 파면 센서는 마이크로 렌즈 크기 때문에 공간해상도가 1 mm2 당 100개 수준으로 제한되어 복잡한 물체의 위상 이미징이 불가능했다.
연구팀은 나노 공정 기술을 통해 제작된 메타표면을 이용해 이 문제를 해결했다. 이번 연구에서 메타표면 기술로 제작된 메타 렌즈를 활용해 시판되고 있는 샥-하트만 파면 센서보다 약 100배 높은 공간해상도를 가지는 메타 샥-하트만 파면 센서를 개발했다. 개발된 메타 샥-하트만 파면 센서는 높은 공간해상도를 이용해 기존 샥-하트만 파면 센서로는 측정이 불가능했던 복잡한 구조체의 위상 이미지를 얻는 데 성공했다.
또한 연구팀은 메타 샥-하트만 파면 센서를 통해 3차원 위치를 추적했다. 이 과정에서, 메타 샥-하트만 파면 센서가 거의 모든 가시광 영역에서 작동하며, 기존 샥-하트만 파면 센서보다 약 10배 큰 시야각을 가지는 것을 확인했다. 이 기술을 활용하면 넓은 영역에서 물체의 3차원 위치의 추적이 가능하다.
연구를 주도한 고기현 박사는 “메타 샥-하트만 파면 센서는 기존 기술보다 견고하고 작은 크기를 가지는 장비로서 초기 질병 진단, 제조 공정의 결함 검출과 자율 주행 등 다양한 분야에 적용될 수 있을 것으로 기대된다”고 밝혔다. 또한 "메타 샥-하트만 파면 센서는 기존 기술의 한계를 극복하고, 위상 이미징 기술의 새로운 기준을 세웠다”며, “이번 연구에서는 메타 샥-하트만 파면 센서의 개념 검증에 집중했고, 향후 메타표면의 우수한 빛 조작 능력을 활용해 초소형·다기능 메타 파면 센서를 개발하는 데 주력할 것이다”라고 밝혔다.
우리 대학 바이오및뇌공학과 고기현 박사가 제1 저자, 장무석 교수가 교신저자로 참여한 이번 연구는 국제 학술지 `라이트:사이언스&어플리케이션즈(Light:Science&Applications)'에 지난 8월 12일 字 출판됐다.
(논문명: Meta Shack-Hartmann wavefront sensor with large sampling density and large angular field of view: Phase imaging of complex objects)
한편 이번 연구는 과학기술정보통신부 한국연구재단이 주관하는 바이오·의료기술개발사업, STEAM연구사업, 선도연구센터지원사업(ERC), 우수신진연구자사업, 교육부가 주관하는 박사후국내연수사업, 삼성미래기술육성사업, 삼성설비연산학과제의 지원을 받아 수행됐다.
2024.08.20
조회수 2229
-
지방간 치료제 개발에 최적화된 동물모델 개발
대사이상 지방간 질환은 전 세계 인구의 30%, 비만하지 않은 인구의 19%가 앓고 있으며, 지방간에서 시작해 간암까지 진행되는 심각한 만성질환이다. 현재 FDA에서 승인된 치료제인 레스메티롬(Resmetirom)이 있지만, 치료받은 환자의 70% 이상에서 충분한 효과를 보지 못해 새로운 치료제 개발이 시급하다. 한국 연구진이 지방간염 치료제 개발에 중요한 전환점이 될 사람의 대사이상 지방간 질환을 잘 모사하는 새로운 동물모델을 개발해 주목받고 있다.
우리 대학 의과학대학원 김하일 교수 연구팀과 연세대학교 의과대학 박준용 교수 연구팀, 한미약품 R&D센터(최인영 R&D센터장/전무이사) 및 ㈜제이디바이오사이언스(대표 안진희)와 공동연구를 통해 새로운 대사이상 지방간 질환 동물모델을 개발했다고 19일 밝혔다.
대사이상 지방간 질환의 유병률은 20~30%에 이르고, 지방간염 질환은 전 세계 성인 인구의 5% 이상이 보유하고 있을 정도로 높은 유병률을 보임에도 불구하고 현재까지 제품화된 치료제가 전혀 없다.
대사이상 지방간 질환은 지방간에서 시작해 지방간염, 섬유화, 간경화, 간암으로 진행되는 만성질환이며, 심혈관질환 및 간 관련 합병증 등에 의해 사망률이 증가하므로 발병 초기에 적절한 치료가 필요하다.
하지만 아직까지 사람의 질환을 모사할 수 있는 적절한 동물모델이 없어 병인 기전의 규명과 치료제의 개발에 어려움이 있다. 특히 기존의 동물모델들은 당뇨와 비만과 같은 대사이상이 간경화와 간암의 발병에 유발하는지를 반영하지 못한다는 문제점이 있었다.
김하일 교수 연구팀은 베타세포의 기능이 부족한 아시아인에서 비만과 당뇨병을 동반한 대사이상 지방간 질환의 유병률이 더 높다는 점에 착안했다. 마우스에 약물을 통해 베타세포를 파괴해 당뇨를 유발한 다음 고지방식이를 먹여서 비만과 당뇨를 동반한 지방간 질환이 빠르게 진행하는 동물모델을 개발했다.
이 마우스 모델은 1년 동안 점진적으로 지방간, 지방간염, 간 *섬유화 및 간암이 나타나는데, 해당 마우스의 간의 유전체를 분석한 결과 그 특징이 비만과 제2형 당뇨병을 동반한 대사이상 지방간 질환 환자들과 매우 유사한 것으로 나타났다. 특히 이 모델에서 발생하는 간암은 대사이상 지방간 질환 환자에서 발생하는 간암과 조직학적, 분자생물학적 특성이 유사한 것을 연구팀은 확인했다.
* 섬유화: 간의 일부가 굳는 현상으로, 지방간염 개선의 주요 지표로 쓰임
연구팀은 개발한 동물모델을 사용해, 최근 비만치료효과로 각광을 받고 있는 GLP-1 유사체의 효과를 시험했다. GLP-1 유사체의 투여가 이 마우스 모델에서 지방간, 간염과 간 섬유화의 진행을 억제하는 효과를 확인해, 마우스 모델이 신약 개발을 위한 전임상 모델로 유용하게 활용될 수 있음을 연구팀은 보였다. 또한 GLP-1 유사체의 투여가 간암의 발생을 억제함을 최초로 규명해, 대사이상 지방간 질환의 주요 사망 요인인 간암의 발병 억제를 위한 GLP-1 유사체의 활용 방안을 제시했다.
의과학대학원 김하일 교수는 “현재 대사이상 지방간 질환 동물모델은 대사이상 지방간 질환의 넓은 스펙트럼과 당뇨, 비만과 같은 대사질환을 잘 반영하지 못하는 문제점이 있으나, 우리 연구팀이 개발한 마우스 모델은 만성 대사질환의 특징을 잘 모사해, 대사이상 지방간 질환 동물모델로서 관련 연구에 중요한 전환점을 제시할 수 있을 것이다”고 강조했다.
우리 대학 의과학대학원 정병관 박사, 최원일 교수, 화순전남대학교병원 최원석 교수가 공동 제1 저자로 참여한 이번 연구 논문은 국제 학술지인 ‘네이처 커뮤니케이션즈(Nature Communications)’ 에 2024년 8월 2일 게재됐다.
(논문명: A male mouse model for metabolic dysfunction-associated steatotic liver disease and hepatocellular carcinoma)
한편 이번 연구는 과학기술정보통신부, 보건복지부, 교육부, 및 ㈜제이디바이오사이언스(JD Bioscience Inc.)에서 지원을 받아 수행됐다.
2024.08.19
조회수 1836
-
미국 국방부가 주목한 C-러스트 기술 선도하다
컴퓨터 시스템을 작동시키기 위해서는 소프트웨어를 작성해야 하는데 그때 필요한 언어가 바로 프로그래밍 언어이다. 실행속도도 빠르고 유지보수도 쉬운 언어가 C언어인데 메모리 할당 및 관리 등에 치명적인 문제점을 가지고 있다. 이런 문제를 해결하기 위해 개발된 프로그래밍 언어는 러스트이다. 미국 백악관이나 국방성에서 메모리 문제를 막기 위해 러스트같이 안전한 언어 사용을 촉구하고 있는데 우리 대학 연구진이 C-러스트 코드 번역 기술을 이미 선제적으로 개발하고 선도하고 있어 화제다.
우리 대학 전산학부 류석영 교수 연구팀(프로그래밍 언어 연구실)이 C언어의 유니언(union)*을 러스트의 태그드 유니언(tagged union)으로 변환하는 기술을 세계 최초로 개발했다고 13일 밝혔다.
*유니언: 여러 종류의 데이터를 같은 공간에 보관해 메모리 효율을 높이는 C언어의 핵심 기능이다. 그러나 보관된 데이터가 어떤 종류인지 구분하지 않아 메모리 문제를 일으킬 수 있다.
**태그드 유니언: 같은 공간에 보관할 수 있는 여러 종류의 데이터 중 어떤 종류의 데이터를 보관하는지 태그를 붙여서 구분하여, 메모리 문제를 일으키지 않는다.
연구팀은 C언어의 유니언에 특화된 새로운 프로그램 분석 기법을 고안해 러스트의 태그드 유니언으로 자동 번역하는 데 성공했다.
올해 2월 백악관에서도 C언어의 사용을 중단하라고 촉구한 바가 있고(https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf) 미국 국방고등연구계획국(이하 DARPA)에서 C언어로 작성된 코드를 러스트(Rust)로 자동 번역하는 기술을 개발하는 연구 과제를 발표했다.(https://www.darpa.mil/program/translating-all-c-to-rust) DARPA는 미국 국방성의 연구·개발을 담당하는 기관이며 인터넷의 원형인 아파넷(ARPANET)을 개발하는 등 혁신적이고 영향력 있는 연구를 지원해 왔다. DARPA는 이 과제를 제안하며 C의 메모리 문제를 막기 위해 러스트같이 안전한 언어를 사용해야 한다고 밝혔다.
러스트는 2015년부터 개발된 프로그래밍 언어다. 운영 체제, 웹 브라우저 개발 등에 쓰이며, 2022년에는 리눅스(Linux) 개발에도 공식 사용되기 시작했다.(https://www.infoq.com/news/2022/12/linux-6-1-rust/) C와 달리 프로그램 실행 전에 메모리 문제를 탐지하고 예방할 수 있는 것이 특징이다.
류 교수 연구진은 2023년 5월과 2024년 6월에 각각 C의 뮤텍스(mutex)*와 출력 파라미터(output parameter)**를 러스트로 변환하는 기술을 세계 최초로 개발해, 최우수 국제 학술대회인 국제소프트웨어엔지니어링학회(ICSE)와 프로그래밍언어설계구현학회(PLDI)에 발표한 바 있다.
*뮤텍스: 프로그램 동기화에 필요한 기능
**출력 파라미터: 계산 결과 전달에 사용되는 기능
C언어와 러스트의 큰 간극으로 인해 세계적으로도 C-러스트 코드 번역 기술을 성공적으로 개발한 연구팀은 극소수다. 그마저도 포인터(pointer)*를 변환하는 데 머물고 있다. 그러나 류석영 교수 연구팀은 C의 여러 핵심 기능을 변환하는 기법을 연달아 제시해 C-러스트 코드 번역 기술을 선도하고 있다.
*포인터: 데이터 저장 위치를 표현하는 기능
류석영 교수는 “안전한 소프트웨어 제작을 목표로 연구하면서 C-러스트 코드 번역의 중요성을 일찍이 파악하고 각종 프로그래밍 언어 기법들을 코드 번역에 적극적으로 도입하여 나온 결과”라면서, “완전한 자동 번역을 위해 아직 풀어야 할 난제가 많으니 후속 연구에 정진하여 계속 분야를 선도하겠다”고 말했다.
전산학부 홍재민 석박사통합과정 학생이 제1 저자로 참여한 이번 연구 결과는 최우수 국제 학술대회인 국제자동소프트웨어엔지니어링학회(ASE)에 채택됐다(논문명: To Tag, or Not to Tag: Translating C's Unions to Rust's Tagged Unions).
한편 이번 연구는 한국연구재단 선도연구센터 및 중견연구자지원사업, 정보통신기획평가원(IITP), 삼성전자의 지원을 받아 수행됐다.
2024.08.13
조회수 3111
-
피부 모니터링부터 뇌심부 해석까지 쉽게 가능
실시간으로 심박수를 측정할 수 있는 스마트 워치, 심장 박동수를 조절하는 페이스메이커 등 생체신호를 지속적으로 측정해 다양한 병을 진단하거나 치료할 수 있는 전자소자인 생체전자소자에 관한 연구가 활발히 진행되고 있다. KAIST 연구진이 생체조직 접촉 시 손상을 최소화하고 3D 마이크로니들 구조로 조직표면부터 심부까지 측정할 수 있는 전도성 하이드로젤 소재를 개발해 화제다.
우리 대학 신소재공학과 스티브 박 교수, 바이오및뇌공학과 박성준 교수 공동연구팀이 3D 프린팅을 통해 다양한 형태의 생체전자소자를 쉽고 빠르게 제작할 수 있는 전도성 고분자 기반 전극 물질을 개발했다고 7일 밝혔다.
이번 연구를 통해 기존 2D 전극 패터닝 기술로 접근하기 어려웠던 한계점을 극복해, 원하는 위치 및 심부 영역의 뇌 신경세포를 자극 및 측정할 수 있어, 뇌의 심부 영역에서 뇌의 활성화 원리를 정확하게 해석할 수 있을 것으로 기대된다. 또한 3D 프린팅을 통해 이 기술은 피부에 부착하는 헬스케어 모니터링 소자부터 생체 삽입형 소자에 이르기까지 광범위하게 활용할 수 있을 것으로 기대된다.
기존 생체전자소자에 사용됐던 금속 물질은 단단한 물성으로 인해 연약한 생체조직에 상처를 입힐 수 있다는 문제점이 있었다. 또한, 이 문제를 보완하기 위해 개발됐던 전도성 하이드로젤 소재는 낮은 전기전도성을 가지고, 생체적합성을 개선하기 위해 소자 제작 후 24시간 이상의 독성 제거 공정을 진행해야 한다는 문제점이 있었다. 또한, 2D 구조의 전극 패터닝만 가능하다는 한계점 때문에 다양한 형태의 소자를 제작하기 어려웠다.
박 교수 연구팀은 전도성 고분자를 나노미터 크기의 콜로이드 형태로 가공해 유화 작용을 유도함으로써 잉크의 유변학적 특징*을 개선하고, 생체적합성에 악영향을 미치는 독성 물질을 원심분리 공정을 통해 제거함으로써 3D 프린팅이 가능하면서 후처리 공정이 필요 없는 고전도성 하이드로젤 잉크를 개발했다.
*유변학적 특성: 잉크의 유동성과 그에 따른 변형, 그 응답인 응력 등의 특성을 말하며 특성이 높을수록 잉크의 압출 직후 인쇄된 형태를 유지할 수 있으며, 낮으면 압출 직후 인쇄된 형태를 유지하기 어렵다.
이 재료는 선행연구 대비 약 1.5배(286 S/cm)의 전기전도도를 가지며, 고해상도 패터닝(~50μm), 전방위 3D 전극 패터닝이 가능하다는 장점을 가진다. 또한 생체조직과 비슷한 물성(영 계수 750kPa)를 가져, 생체조직과의 접촉 시 손상을 최소화할 수 있다.
연구팀은 개발한 신소재 전극을 기반으로 심전도 측정(ECG) 및 근전도 측정(EMG) 측정 타투, 뇌 피질전도도(ECoG) 측정소자, 3D 뇌 탐침 측정 소자를 개발해 기능성을 검증했다. 또한 높은 전하 저장 능력을 활용, 낮은 전압(60mV)으로 쥐의 좌골 신경을 자극하는 소자를 개발해 생체 자극 소자로서의 성능을 확인했다. 더불어 복잡한 3D 회로를 필요한 적용 분야에 맞추어 제작할 수 있고 3D 마이크로니들 구조로 전극을 패터닝해 조직 표면에 있는 생체신호뿐만 아니라 조직 심부에 있는 뉴럴 인터페이스의 제작이 가능해졌다.
연구를 주도한 스티브 박 교수는 "기존 3D 프린팅 기술을 이용해 제작되는 전자소자의 경우 전도성 및 생체적합성을 개선하기 위해 장시간 및 복잡한 형태의 후처리가 필요해 래피드 프로토타이핑(Rapid prototyping)을 장점으로 가져갈 수 있는 3D 프린팅 기술의 모든 장점을 이용할 수 없었다”며, “이번 연구에서는 이러한 단점을 해결해 향후 환자 맞춤형 바이오 전자소자 및 다양한 3D 회로 응용 분야에 활용될 수 있을 것으로 기대된다ˮ라고 말했다.
신소재공학과 오병국 박사과정과 백승혁 석사, 바이오및뇌공학과 남금석 석박사통합과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)'에 7월 11일 게재됐다. (논문명 : 3D printable and biocompatible PEDOT:PSS-ionic liquid colloids with high conductivity for rapid on-demand fabrication of 3D bioelectronics)
이번 연구는 한국연구재단 나노 및 소재기술개발사업, 중견 사업 및 ETRI의 지원을 받아 수행됐다.
2024.08.07
조회수 2417
-
틈새로 빠져나가는 소음까지 잡는다
소리는 작은 구멍이나 틈새만으로도 잘 빠져나가는 특징이 있다. 이러한 틈새를 통해 빠져나오는 소리는 보다 넓은 공간까지 잘 전파되며, 틈새를 전혀 막지 않으면서 외부 소리가 안에서 들리지 않게 하거나 내부 소리가 바깥에서 들리지 않도록 하는 것은 음향학적으로도 매우 도전적인 문제다.
우리 연구진이 다양한 산업 현장의 소음 문제 해결에 새로운 솔루션이 될 뿐 아니라 최근 가속화되고 있는 미래 기술인 항공 택시, 드론과 같은 도심 항공 모빌리티 등에서 발생하는 소음을 효과적으로 저감할 수 있는 획기적 기술을 개발했다.
우리 대학 기계공학과 전원주 교수 연구팀이 구조물의 틈새나 개구부를 통한 열 교환과 공기의 흐름은 자유롭게 허용하면서도 소음은 효과적으로 차단하기 위해, 음향 임피던스를 원하는 복소수 값으로 조절할 수 있는 신개념 음향 메타물질인 ‘복소 임피던스 타일’을 개발했다고 6일 밝혔다.
음향 임피던스란 소리가 전파되는 매질(예: 공기, 물)이 가진 고유의 음향학적 특성으로, 일반적으로 매질의 밀도와 음속의 곱셈으로 표현되기 때문에 그 값이 실수이며 매질이 정해지면 원하는 값으로 자유롭게 조절하는 것이 불가능하다.
하지만, 연구팀이 개발한 복소 임피던스 타일은 소리가 경계면에 부딪혀서 반사될 때 반사되는 소리의 크기뿐만 아니라 방향까지도 조절하는 것이 가능해지게 한다. 이는 구조물 벽면에서 소리를 흡수만 하는 기존 기술과는 달리, 소리의 크기와 방향을 적절하게 조절해 소리가 틈새로 거의 빠져나가지 않고 구조물 내에서 가둬진 채 줄어들도록 한다.
연구팀은 복소 임피던스 타일을 적용해 밖으로 빠져나가는 소리를 90% 이상 저감할 수 있음을 정밀한 전산 시뮬레이션을 통해 예측한 후, 제작과 실험을 통해 소음 저감 성능을 검증하는 데 성공했다. 심지어, 구조물 내벽에서 소리를 100% 완벽하게 흡수하는 경우보다도 복소 임피던스 타일을 사용했을 때 밖으로 빠져나가는 소리를 훨씬 더 큰 폭으로 저감할 수 있음을 확인했다.
전원주 교수는 “복소 임피던스 타일은 개구부나 틈새를 전혀 막지 않으면서도 소리는 밖으로 빠져나가지 못하게 할 수 있으며, 얇은 두께를 갖기 때문에 상대적으로 협소한 공간을 갖는 시스템에도 적용이 가능하다는 특징이 있다. 특히, 재료가 아닌 구조의 형상적인 특징을 이용하기 때문에 습도나 온도 변화에 따른 유지 보수가 쉬울뿐더러 제작도 용이하다는 장점을 가지고 있어 전자제품(헤어드라이기, 청소기 등)부터 향후 미래 교통수단으로 각광받는 도심 항공 모빌리티까지 다양한 시스템의 소음 저감에 새로운 솔루션으로 활용이 가능하다”고 말했다.
해당 연구 결과는 기계공학과 박사과정 양은진 학생과 김지완 학생이 공동 제1 저자로 참여했으며, 기계공학 분야의 국제 학술지인 `메카니컬 시스템 앤 시그널 프로세싱(Mechanical Systems and Signal Processing) (IF: 7.9, JCR 5/180(2.5%))'에 지난 3월 1일 게재됐다. (논문명: Complex-valued impedance tiles to reduce noise emanating through openings in mechanical systems)
한편, 이번 연구는 한국연구재단의 중견연구자지원사업과 KAIST 도약연구사업의 지원을 받아 수행됐다.
2024.08.06
조회수 2210