-
박재우.유승협교수 산화티타늄 투명박막트랜지스터 독자기술 세계최초 개발
- 미국, 일본, 유럽에 특허출원, 관련 국제학회 발표예정
2002년에 개봉된 스티븐 스필버그 감독의 "마이너리티 리포트”(톰 크루즈 주연) 장면들 중에 보았던 투명디스플레이 구현이 꿈이 아니라 현실로 다가오고 있다.
‘꿈의 디스플레이’라 불리는 투명디스플레이, 에이엠올레드(AMOLED, 능동형 유기발광 다이오드) 디스플레이 및 플렉서블 디스플레이 등의 구동회로용으로 사용되는 투명박막트랜지스터(Transparent Thin Film Transistor) 기술이 국내 연구진에 의해 개발됐다.
전기전자공학과 박재우(朴在佑, 44) 교수와 유승협교수는 ㈜테크노세미켐, 삼성전자LCD총괄과 공동연구를 통해 미국, 일본 등이 원천특허를 보유하고 있는 산화아연(ZnO)기반 투명박막트랜지스터 기술에서 벗어나, 세계최초로 산화티타늄(TiO2)물질을 이용한 투명박막트랜지스터의 원천기술을 확보하는데 성공했다.
朴 교수팀은 미국, 일본 등과 기술특허분쟁이 일어나지 않을 뿐만 아니라 기존특허로 잡혀진 산화아연(ZnO) 물질에 포함된 In(인듐) 또는 Ga(갈륨)과 같은 희소성 금속을 사용하지 않고 지구상에 풍부한 금속자원을 이용한다는 원칙과 기존 반도체/디스플레이 산업용 대형 양산 장비로 검증 받은 화학기상증착(CVD, Chemical Vapor Deposition)법을 이용하여 낮은 온도에서 TiO2박막의 성막이 가능하게 함으로써 차세대 디스플레이의 대형화 가능성뿐만 아니라, 소다라임글래스(Soda-lime Glass)와 같은 저가 글라스기판 및 플렉서블 기판위에도 성막할 수 있는 원천 기술을 확보하는데 성공했다. 朴 교수팀은 미국, 일본이 보유한 원천기술이 스퍼터링 방식을 주로 사용하고 있으나 스퍼터링의 연속작업에 따른 물질 조성의 변화로 트랜지스터 특성의 재현성, 신뢰성에 문제점을 가지고 있다는 것에 착안, 재현성과 대형화가 검증된 CVD법을 이용하여 투명박막 트랜지스터 기술을 개발하게 되었다.
향후 2~3년을 목표로 지속적인 공동연구개발을 통해 신뢰성 검증 및 대형 CVD장비에서의 양산가능한 기술이 확보되면, 국내 디스플레이 산업체에서 생산하는 AMOLED 및 AMLCD 디스플레이 양산에도 곧바로 적용될 수 있도록 기술 이전 계획도 갖고 있다.
연구팀 관계자는 “이번 새로운 물질 기반 투명박막트랜지스터의 기술 개발 성공은 기존 외국기업의 기술 사용에 따른 로열티 지급으로부터 벗어날 수 있는 기술 독립선언이며, 앞으로도 세계디스플레이산업을 선도하는 종주국의 면모를 이어갈 수 있는 디딤돌 역할을 할 것으로 본다” 고 말했다.
이번 기술 개발과 관련하여 TiO2박막트랜지스터의 원천특허는 KAIST 소유로 돼 있는데, 2007년 3월 국내특허를 출원하여 오는 10~11월 중에 등록될 예정이다. 지난 3월에는 지식경제부 해외특허 지원프로그램으로 채택되어 미국, 일본, 유럽에 관련기술 특허 등이 출원 중에 있다. 지난 7월 이 기술과 관련한 기술적 내용의 일부는 미국 IEEE 전자소자誌(IEEE Electron Device Letters)에 발표되었고, 오는 12월 5일, 일본 니가타에서 열리는 국제디스플레이학회(IDW 2008, International Display Workshop 2008)에서도 발표될 예정이다.
신물질 TiO2기반 투명박막트랜지스터 기술개발팀 연구책임자인 朴 교수는 미국 미시간대학교 전자공학과에서 박사학위를 받았으며, 한국, 미국, 일본 등 여러 나라의 산업체에서 근무한 경력을 갖고 있다.
<보충설명>
■ 기술의 배경
현재 국내 대기업(삼성 LCD, SDI, LG디스플레이등) 과 일본업체(소니, 마츠시타, 샤프)들 중심으로 가까운 미래 다가올 AMOLED 및 미래 투명디스플레이의 구동회로용 TFT(Thin Film Transistor) 기술개발에 대한 관심이 뜨겁다. 불행히도 기존 a-Si이나 Poly-Si기술의 한계(신뢰성, 면적제한문제)로 향후 디스플레이 backplane용 TFT는 산화물반도체로 구현되어야 한다는 사실은 이미 산학연에서 공감하고 있으나, 지금까지 산화물반도체TFT는 주로 ZnO계열 중심으로 3원계(ZTO) 또는 4원계(IGZO)를 이용하여 개발되었고 관련 해외특허도 3,000건이상 출원되었거나 등록되어 있다. 또한 In이나 Ga을 포함한 ZnO TFT의 성능은 우수하나 희소성금속으로 높은 국제시장가격과 급작스런 수요 증가시 shortage의 불안감을 항상 가지고 있어 새로운 대체 산화물을 이용한 TFT개발이 필요한 시점이다.
■ 기술의 특징
TiO2(산화티타늄) 물질은 ZnO(산화아연)와 Optical Energy bandgap이 거의 같고(3.4eV) 전자이동도도 ZnO 못지 않게 높으며, 무엇보다도 성막시 재료비가 저렴하다는 장점을 가지고 있다. 최근 KAIST 전기전자과 박재우 교수팀과 ㈜테크노세미켐, 삼성LCD총괄이 공동연구를 통해 세계 최초로 TiO2 박막을 active channel(활성층)로 채택하여 투명 산화물 TFT를 구현하는 데 성공했다. 연구팀은 TiO2박막을 향후 디스플레이 산업에서 양산화와 대형화를 고려하여 기존 반도체/디스플레이 산업용 양산장비로 널리 알려진 CVD(Chemical Vapor Deposition: 화학기상증착)법으로 낮은 온도(250C)에서 성막하여 박막형 트랜지스터를 구현하는데 성공했다. 낮은 온도에서 CVD장치로 투명박막트랜지스터를 구현할 수 있다는 의미는 디스플레이의 대형화(현재 10, 11세대 규격 디스플레이기술 개발 중)가 가능하며, Soda-lime glass와 같은 저렴한 기판을 사용할 수 있기 때문에 재료비 절감효과를 가져올 수 있으며, 향후 투명 및 플렉시블 전자/디스플레이 응용에도 가능하다는 것이다.
2008.08.06
조회수 24726
-
김봉수교수, 은나노선 합성법 개발
단결정 銀 나노선 합성법 최초 개발
- 질병진단센서, 바이오센서, 차세대 자성소자 등 광범위한 활용- 화학분야 최고 권위지인 미국화학회지에 지난 18일자 속보로 게재
KAIST(총장 서남표) 화학과 김봉수(金峯秀, 48) 교수 연구팀은 촉매를 전혀 사용하지 않는 새로운 합성법 개발로 ‘단결정 은 나노선 합성’에 최초로 성공했다. 이 연구 결과는 화학분야 최고 권위지인 미국화학회지(Journal of the American Chemical Society)에 지난 18일(수) 속보로 게재됐다.
은(Ag)은 높은 항균효과를 지니며, 전자 및 광학 재료로도 중요하게 사용된다. 은을 완벽한 단결정 나노선으로 만들면 탄소가 다이아몬드로 변하듯 물질의 특성이 변하면서 가치가 크게 높아진다. 보통의 물질은 촉매 등을 사용하면 단결정 나노선 합성이 가능한데 은과 같은 금속의 경우에는 적절한 촉매를 찾아내지 못해서 합성이 불가능했다.
金 교수는 촉매를 사용하지 않고 산화은을 출발물질로 적절한 응결조건을 맞추어줌으로써 은 입자들이 가장 에너지가 낮은 상태를 스스로 찾아가서 저절로 은 나노선이 생긴다는 사실을 발견했다. 이 기술을 이용하면 금속 및 금속화합물 대부분을 단결정 나노선으로 만들 수 있다. 특히 자성물질 나노선 및 열전소자 나노선 개발로 차세대 자성 소자 및 신에너지 핵심 물질을 개발할 수 있는 가능성이 열렸다. 합성된 은 나노섬유는 소독이 필요 없는 의료용 제품 개발, 바이오센서 및 자성메모리 제작 등에 중요한 소재가 될 수 있다.
은에 분자가 흡착되면 빛을 쪼였을 때 산란되는 빛의 세기가 1조배 이상 커진다. 이를 “표면증강 라만 효과”라 하며, 단 하나의 분자만 존재하더라도 검출이 가능하다. 이 효과는 은이 나노입자 크기로 작아지면 더욱 높아지므로 이를 이용한 질병 진단기 개발 연구가 활발하게 진행되고 있다. 특히, 은 나노선은 진단 능력이 보다 뛰어나 질병진단센서로 개발 전망이 높다.
이 연구는 과학기술부「21세기 프론티어연구개발사업」나노소재기술개발사업단에서 지원했으며, 연구 결과는 현재 세계 각국에 특허 출원중이다.
<붙임1. 용어해설>
■ 단결정 은 나노선나노선은 직경이 수 나노미터에서 수백 나노미터 사이에 있는 아주 가늘고 긴 선을 말한다. 단결정은 물질을 이루고 있는 모든 구성원소가 규칙적으로 배열되어 있는 순수하고 독특한 구조인데 다이아몬드 같은 것이 대표적 예다. 은과 같은 금속의 경우에는 적절한 촉매를 찾아내지 못해서 합성이 불가능한데, 이번에 촉매를 사용하지 않고 은이 스스로 단결정 나노선을 이루는 새로운 합성법을 개발했다.
■ 은 나노섬유의 의료분야 응용
은 나노섬유를 이용하여 상처를 보호하기 위해 사용하는 의료용 붕대 등을 제작하면 병균 등의 침투를 근본적으로 방지할 수 있으므로 강력한 의료용 소재가 될 것으로 전망된다.
■ 미국 화학회지(Journal of the American Chemical Society)미국화학회(American Chemical Society)에서 발행하는 대표 학회지로서 가장 역사가 오래되고 권위가 높은 학술지이다. 여기서 특히 긴급하며 중요성이 높은 연구결과는 속보(Communication)로 신속하게 발표된다.
<붙임2. 관련 사진 및 설명>
1. 연구팀이 합성에 성공한 단결정 은 나노선의 전자현미경 사진
2. 하나하나의 원자까지 보여주며 완벽한 은 단결정임을 증명하는 초고전압 전자현미경 사진
2007.07.23
조회수 24128
-
생명화학공학과 양승만 교수팀 연구결과, 네이처誌 하이라이트로 소개
물방울 이용 나노트렌지스트 만든다”
생명화학공학과 양승만(梁承萬, 55) 교수팀에서 수행한 연구결과가 2월 2일자 네이처誌 하이라이트로 소개됐다.
네이처誌는 “News and Views”란에 네이처誌에 게재된 논문 가운데 2-3편과 그 밖에 국제적으로 저명한 학술지에 게재된 논문들 가운데 학술적 가치와 기술 혁신성이 높은 것들을 매주 1-2편 선정하여 논문 내용을 논평과 함께 특필하고 있다.
이번 네이처誌에 소개된 연구는 양승만 교수팀에서 “액적내부에서 혼성콜로이드입자의 자기조립(Self-organization of Bidisperse Colloids in Water Droplets)" 이라는 제목으로 화학분야 가장 권위 있는 학술지의 하나인 미국 화학회지 (Journal of the American Chemical Society: JACS)에 최근 게재됐다. 이 논문은 양승만 교수팀 조영상씨의 박사 학위 논문 일부로 수행된 것이다.
이 연구의 핵심 아이디어는 나노미터 수준의 작은 입자와 마이크로미터 크기의 큰 입자를 지름이 약 50마이크로미터 정도(머리카락 굵기의 약 절반 정도)의 물방울 속에 정해진 수만큼 가두고 물을 서서히 증발 시키면 입자들이 스스로 규칙적인 구조로 조립된다는 것이다. 즉 큰 입자와 작은 입자들이 자기조립을 하면서 작은 입자가 큰 입자 사이에 규칙적으로 쌓이게 된다. 네이처誌는 이 연구의 독창성과 발전가능성을 상세히 해설하고 있다.
네이처誌는 이 연구가 특별히 조명 받아야 하는 이유를 크게 두가지로 나누어 다음과 같이 설명하고 있다.
첫째, 이러한 자기조립 소재는 고밀도 정보처리를 위한 나노트랜지스터로 쓰일 수 있다는 점이다. 이는 반도체 나노입자와 절연체 마이크로입자로 구성된 자기조립 소재가 트랜지스터의 기능을 보유하기 때문이다.
둘째, 벽돌로 건축물을 쌓듯이 큰 입자로 구성된 자기조립 소재를 나노 벽돌로 이용, 3차원 구조물을 조립하면 소위 다이아몬드 격자구조의 광자결정(photonic crystal)을 만들 수 있다는 것이다. 이러한 다이아몬드 격자구조를 갖는 광자결정은 완전히 열려 있는 광밴드갭(photonic bandgap)을 보유하고 있다. 즉, 이 구조의 광자결정은 특정한 파장 영역대의 빛만을 입사각에 관계없이 완전히 반사시키는 기능을 보유하게 된다.
이 광자결정은 광자(빛)가 정보를 처리하는 미래에 오늘날의 반도체와 같은 역할을 할 것이므로 ‘빛의 반도체’라 불린다. 광자결정의 특수한 기능으로 인하여 나노레이저, 다중파장의 광정보를 처리할 수 있는 수퍼프리즘(superprism), 광도파로(waveguide) 등 차세대 광통신 소자와 현재의 컴퓨터 속도를 획기적으로 높일 수 있는 수십 테라급 초고속 정보처리능력을 갖춘 광자컴퓨터의 개발에 필요한 소재로 주목 받고 있으며 사이언스誌에서는 21세 가장 주목받는 핵심 기술 10개 중에 하나로 선정한 바 있다.
이밖에도 마이크로 입자의 표면을 형광체와 DNA로 도핑하면 개개의 입자들이 각각 다른 정보를 전달하는 나노 리포터(nano-reporter)로 작용할 수 있고, 이들을 조합라이브러리(combinatorial library) 형태를 구현하면 발현된 정보를 한꺼번에 생물학적 또는 광학적으로 인코딩하여 방대한 바이오정보를 신속하게 처리할 수 있다.
<복합 콜로이드를 이용하여 제조한 혼성 콜로이드분자>
2006.02.03
조회수 21641