-
대량의 고농도 일산화탄소를 고부가가치 바이오케미칼로 전환하는 기술 개발
우리 대학 생명과학과 조병관 교수 연구팀이 산업 부생가스 등으로 대량 발생하는 고농도의 일산화탄소를 고부가가치 바이오케미칼로 전환할 수 있는 생체촉매 기반 C1 바이오 리파이너리 기술*을 개발했다고 14일 밝혔다.
* 제철 공정과 같은 산업공정에서 발생하는 부생가스, 합성가스는 다량의 일산화탄소, 이산화탄소 등의 탄소 1개로 이루어진 C1 가스로 구성되어 있음. 이러한 C1 가스를 미생물과 같은 생체촉매를 활용하여 다양한 화학물질로 전환하는 공정을 C1 가스 바이오 리파이너리(bio-refinery) 기술이라고 함.
최근 탄소 포집 및 전환과 같은 기술들에 대한 산업계의 요구가 커지는 가운데, 미생물을 활용한 친환경 생체촉매 기술이 크게 성장하고 있다.
조병관 교수 연구팀은 아세토젠 미생물을 생체촉매로 활용한 C1 가스 바이오 리파이너리 기술을 개발했다. 이 미생물들은 혐기성 미생물들로 우드-융달 대사회로라는 매우 독특한 대사회로를 이용하여 C1 가스로부터 아세트산을 만드는 미생물로 알려져 있다.
이러한 아세토젠 미생물을 생체촉매로 활용해 산업 부생가스를 활용하는 기술에는 한 가지 문제가 있는데, 바로 독성가스인 일산화탄소의 농도다. 이 미생물은 60% 이상의 고농도 일산화탄소 조건에서는 생명 활동이 크게 저해를 받기 때문에, 생체촉매로써 사용할 수 없게 된다. 다양한 산업에서 발생하는 C1 가스는 공정 과정에 따라 10~70% 정도의 일산화탄소가 포함돼있는데, 특히 철강산업 공정에서 발생하는 고로가스(BFG)에는 약 60%가 넘는 일산화탄소가 포함돼 있다. 따라서, 미생물 기반 고효율 생체촉매 개발을 위해서는 일산화탄소에 대한 저항성을 높이는 것이 필수적으로 선행돼야 한다.
연구팀은 아세토젠 미생물 중 하나인 유박테리움 리모좀(Eubacterium limosum) 균주를 고농도 일산화탄소 조건에 지속적으로 노출해 일산화탄소에 대한 내성이 뛰어난 돌연변이체(ECO2)를 발굴했는데, 해당 돌연변이체는 일산화탄소가 약 60% 이상 포함된 합성가스 조건에서 야생형 미생물보다 약 6배 정도 빠른 성장 속도를 보였다. 이러한 성장 속도는 현재까지 보고된 아세토젠 미생물 중 고농도 일산화탄소 조건(CO 함량 60% 이상)에서 전 세계에서 가장 빠른 속도다.
연구팀은 위의 돌연변이 미생물의 유전체 서열분석을 통해 아세틸 조효소 A 합성 단백질(acetyl-CoA synthase)을 암호화하는 유전자(acsB) 내 돌연변이가 발생한 것을 규명하고, 인공지능 기반의 구조예측을 통해 이러한 변이가 일산화탄소 내성 및 고정률 향상을 유도했음을 밝혔다.
연구팀은 일산화탄소에 대한 내성이 향상된 ECO2 돌연변이 미생물에 2,3-부탄다이올(2,3-butanediol, 2,3-BDO)* 생합성 경로를 도입해 C1 가스를 C4 화학물질로 전환할 수 있는 미생물 기반 생체촉매 시스템을 개발했다. ECO2 기반의 생체촉매가 가스 발효과정을 통해 야생형 미생물 대비 약 6.5배 정도의 높은 2,3-BDO 생산성을 보여줌으로써, C1 가스를 효율적으로 C4 화학연료로 전환하는데 성공했다.
*2,3-부탄다이올(2,3-butanediol, 2,3-BDO): 농업용 자재, 식품첨가제, 의약품 첨가제, 고분자 첨가제 등 활용 범위가 광범위한 바이오케미칼
연구를 주도한 조병관 교수는 “산업공정 과정에서 발생하는 C1 가스는 일산화탄소, 이산화탄소 등의 혼합가스로, 이를 직접적으로 미생물이 이용하기 위해서는 일산화탄소에 대한 내성 및 전환율 향상이 필수적이다”라고 설명했으며, “다양한 합성생물학 기술들 활용하면 아세토젠 미생물 생체촉매의 활용도를 더욱 개선할 수 있으며, 이러한 고효율 C1 가스 전환 생체촉매 연구는 C1 가스 바이오 리파이너리의 핵심 원천기술로 다양한 산업현장에 적용할 수 있을 것”라고 밝혔다.
생명과학과 진상락(석박사통합과정), 강슬기(박사과정) 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 ‘화학 공학 저널(Chemical Engineering Journal, 영향력지수 14.66)’에 6월 22일 字 온라인판에 게재됐다. (논문명: Development of CO gas conversion system using high CO tolerance biocatalyst)
한편 이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 C1 가스 리파이너리 사업단의 지원을 받아 수행됐다.
2022.07.15
조회수 8350
-
질병 세포만 찾아 교정치료 가능한 유전자 가위 시스템 개발
우리 대학 의과학대학원 이지민 교수 연구팀이 한국과학기술연구원(KIST) 오승자 선임연구원, 강원대학교 이주용 교수와 공동 연구를 통해 질병 세포에서만 핵 내 유전자 교정을 수행할 수 있는 유전자 가위 시스템(CRISPR/Cas9)을 개발했다고 14일 밝혔다.
연구팀은 세포 내 마이크로RNA가 특정 서열을 인식해 절단한다는 특성을 활용해, 질병 세포에서 과발현되는 마이크로RNA에 의해 특이적으로 절단될 수 있는 링커를 연결한 유전자 가위 시스템을 설계했다. 이렇게 설계된 시스템은 질병 세포 특이적 마이크로RNA가 적은 정상세포에서는 세포질에 머물러 유전자 교정을 수행하지 않지만, 질병 세포에서는 링커가 절단되면서 유전자 가위가 세포핵으로 들어가 유전자 교정을 수행할 수 있다.
이러한 플랫폼은 유전자 가위를 질병 세포에서만 기능 할 수 있게 해 정상세포와 질병 세포가 혼합돼있는 실제 환자에게도 효과적인 유전자 교정 치료를 진행할 수 있을 것으로 기대된다.
KIST 신철희 박사와 우리 대학 의과학대학원 박수찬 연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `뉴클레익 엑시드 리서치(Nucleic Acids Research, IF 16.971)' 온라인판에 지난달 30일 자 출판됐다. (논문명 : Cytosolic microRNA-inducible nuclear translocation of Cas9 protein for disease-specific genome modification).
마이크로RNA는 유전자를 전사 후 조절하는 19~24 뉴클레오티드(DNA나 RNA의 기본 단위) 길이의 RNA다. 마이크로RNA는 DNA로부터 전사된 메신저 RNA에 아르고너트(Argonaute; Ago) 단백질을 통해 결합하며, 결합한 메신저 RNA를 절단한다. 마이크로RNA의 비정상적인 발현이 다양한 질병에서 보고되고 있으며, 질병의 치료를 위한 표적 바이오마커로 많이 연구되고 있다.
다양한 질병에서 마이크로RNA를 표적으로 하는 치료법들이 빠르게 연구되고 있지만, 치료 물질의 전달 및 투여량의 문제, 세포 독성 및 비정상적 면역 반응 활성화 등의 문제가 있다.
유전자 가위 시스템은 단일 가이드 RNA(single guide RNA)를 조합해 정교한 유전자 교정을 수행하는 매우 효과적인 도구다. 하지만, 이 시스템의 실제 활용에는 기술적 한계들이 존재한다. 가장 큰 문제는 안정성 문제로, 표적 유전자가 아닌 다른 유전자를 편집하는 오프-타겟 이펙트(off-target effect)다. 또한, 다양한 세포가 혼합된 환경에서는 유전자 교정을 수행하기 어렵다.
연구팀은 이러한 문제를 해결하기 위해 질병 세포 본연의 생태를 활용하는 접근법을 고안했다. 연구팀은 핵 위치 신호(Nuclear localization signal; NLS)가 부착된 기존 유전자 가위(Cas9)에 핵 외 수송신호(Nuclear export signal; NES)를 연결한 질병 세포 마이크로RNA의 메신저 RNA 표적 서열을 결합한 유전자 가위를 제작했고, 이를 유전자 가위 `셀프 체크인'으로 명명했다.
연구팀은 인간 질병 세포에서 과발현되는 마이크로RNA-21의 표적 서열과 실험용 쥐의 마이크로RNA-294의 표적 서열을 연결한 유전자 가위의 인간 질병 세포 내 유전자 교정 기능을 비교했고, 마이크로RNA-21 표적 서열 연결 유전자 가위만이 세포 내 마이크로RNA-21에 의해 절단돼 핵까지 전달되어 기능을 수행할 수 있음을 확인했다.
연구팀은 다양한 폐암 세포에서 마이크로RNA-21의 발현량과 발암 단백질 Ezh2가 양의 상관관계가 있다는 것을 증명했고, `셀프 체크인'을 적용해 마이크로RNA-21이 과발현된 폐암 세포에서 발암 유전자 Ezh2의 유전자 교정을 성공적으로 수행했다.
또한, 암세포는 항암 약물에 지속해서 노출되게 되면, 약물 저항성을 획득하게 되는데, 연구팀은 폐암 세포에서 마이크로RNA-21과 Ezh2의 발현이 항암 약물 시스플라틴을 투여하면 오히려 증가함을 확인했다. 유전자 가위 셀프 체크인 기술을 통한 Ezh2 유전자 교정과 항암제(시스플라틴)의 병행 사용은 폐암 세포의 성장을 더욱 효과적으로 억제할 수 있음을 마우스 실험을 통해서 밝혔다.
연구팀이 개발한 유전자 가위 셀프 체크인 기술은 질병 세포에서만 기능하기 때문에, 오프-타겟 이펙트를 최소화할 수 있다는 장점이 있으며, 세포 내 시스템을 활용한다는 점에서 안정성이 높다고 할 수 있다. 또한, 단일 가이드 RNA 및 메신저 RNA 표적 서열을 상황에 맞게 교체해 사용할 수 있어, 다양한 질병에 적용이 가능할 것으로 기대된다.
연구팀은 "유전자 가위 셀프 체크인 기술은 기존 유전자 가위 시스템의 문제를 개선해, 높은 특이성을 가지고 질병 세포에 대한 유전자를 세포 특이적으로 교정할 수 있다는 것을 확인할 수 있다ˮ 라며 "다양한 질병 연관 마이크로RNA에 대응해 기술을 적용할 수 있을 것이다ˮ 라고 전했다.
한편 이번 연구는 삼성미래기술육성사업, 한국연구재단 이공분야기초연구사업 및 한국과학기술연구원 지원을 받아 수행됐다.
2022.06.14
조회수 11707
-
기존 개념을 깬 새로운 면역 T 세포 발견
우리 대학 의과학대학원 신의철 교수 연구팀이 우리 대학 의과학대학원 박수형 교수, 연세대학교 의과대학 주동진, 박준용 교수팀과 공동 연구를 통해 선천면역과 적응면역의 특성을 모두 지니는 새로운 유형의 `NK 유사 T 세포'를 간에서 발견하고 그 작용 특성을 규명했다고 8일 밝혔다.
이번 연구는, 그동안 면역학의 영역에서 이분법적으로 나눠져 있던 선천면역과 적응면역의 경계에서 작동하는 새로운 면역세포를 발견하고 그 특성을 밝힘으로써 인체의 면역 반응을 새로운 시각에서 바라볼 수 있게 했다는 점에서 큰 의의가 있다.
의과학대학원 고준영 박사, 나민석 박사, 최승진 박사가 공동 제1 저자로 참여한 이번 연구 결과는 간장(肝腸)학 분야의 최고 국제 학술지 `간장학 저널(Journal of Hepatology)' 5월 26일 字 온라인판에 게재됐다 (논문명: Identification of a distinct NK-like hepatic T-cell population activated by NKG2C in a TCR-independent manner).
인체에 세균이나 바이러스 같은 병원성 미생물이 침입하면 먼저 선천면역이 작동한다. 선천면역은 신속하게 작동하는 장점이 있지만, 병원성 미생물의 종류를 구분하지 못하고 기억면역을 형성하지 못하는 단점이 있다. 한편 감염 후 4~5일 후부터는 적응면역이 서서히 작동한다. 적응면역은 느리게 활성화되는 대신 각각의 병원성 미생물을 구분하는 능력이 있고 회복 후에는 기억 면역 세포를 만들어 같은 미생물이 재침입하였을 때 재빠른 반응을 할 수 있다.
특히 바이러스 감염 시에는 바이러스에 감염된 세포를 제거하는 기능에 특화된 면역세포들이 중요한 역할을 하는데, 이들 중 NK 세포(자연살해 세포)는 선천면역, T 세포는 적응면역의 특성이 있는 대표적인 면역 세포다. 이 2가지 면역 세포는 바이러스에 감염된 세포를 인식하는 방식도 달라, T 세포는 바이러스 단백질 조각을 항원으로 감지하는 반면, NK 세포는 스트레스 분자 발현이 증가한 것을 통해 바이러스 감염 세포를 감지한다.
지금까지 면역학계에서는 이렇게 NK 세포와 T 세포를 명확히 구분되는 면역 세포로서 나누어 연구를 진행해 왔는데, 연구팀은 이번 연구를 통해 NK 세포와 T 세포의 특성을 모두 지니는 `NK 유사 T 세포'를 새롭게 발견한 것이다. 그리고 이러한 NK 유사 T 세포는 T 세포 수용체를 통해 바이러스 단백질 항원을 인식하는 대신에 NK 세포 수용체인 `NKG2C'를 통해 비정상 세포들을 감지하고 제거할 수 있다는 사실을 발견했다.
연구팀은 이번 연구에서 간에 존재하는 면역세포를 주로 분석했는데, 간은 면역학적으로 특이한 장기로 여겨지고 있다. 소장이나 대장으로부터 들어오는 혈액은 전신 순환계에 합류하기 전에 간을 먼저 지나게 된다. 이 과정에서 장으로부터 들어온 많은 외부 물질이나 병원성 미생물들은 간에서 걸러지게 되어, 간은 면역학적 1차 관문의 역할을 하게 된다. 한편 간은 면역학적 관용을 나타내는 장기로도 잘 알려져, 병원성 미생물에 대한 과도한 면역 반응을 조절하기도 한다. 연구팀은 이처럼 복잡하고 정교하게 조절되는 간의 면역학적 특성을 상세히 분석하기 위해 단일세포 전사체 분석이라는 최신 연구기법을 적용해 분석한 결과, 간 내에서 선천면역과 적응면역의 특성을 모두 지니는 NK 유사 T 세포를 발견했다. 그리고 B형간염 바이러스에 의한 만성 간 질환을 앓는 환자의 간에서는 이러한 NK 유사 T 세포의 수가 증가해 있는 것도 발견했다.
연구팀이 이번에 새롭게 발견한 NK 유사 T 세포가 바이러스 감염 등의 각종 질환에서 어떤 역할을 하는지는 아직 분명하지 않다. 현재 연구팀은 NK 유사 T 세포가 체내에서 감염뿐만 아니라 각종 원인에 의해 비정상적으로 변한 세포들을 선택적으로 제거해 체내 항상성을 유지하는 데 중요한 역할을 한다는 가설을 가지고 후속 연구를 활발히 진행하고 있다. 한편, 미국 스탠퍼드 의대의 마크 데이비스 교수 연구팀이 최근 NK 수용체를 발현하는 T 세포는 다른 면역세포의 기능을 억제한다는 논문을 사이언스지에 발표함에 따라, 연구팀은 이번에 발견한 NK 유사 T 세포가 체내 상황에 따라 면역억제 기능을 수행하는지에 대한 분석도 진행하고 있다.
이번 연구 결과는 연세의대 세브란스병원 외과 및 내과 연구팀과 KAIST 의과학대학원이 간의 면역학적 특성을 규명하기 위해 수행한 협동 연구의 성과로서, 중개 연구(translational research)를 통해 인간 면역학을 새롭게 이해하는 계기를 마련했다는 평가를 받는다.
의과학대학원 신의철 교수는 "최신 연구 방법인 단일세포 전사체 분석 기술을 이용해 복잡한 간장 내 면역세포들을 상세히 분석할 수 있었고, 그 결과로 새로운 유형의 면역 세포인 NK 유사 T 세포를 발견하게 된 중요한 연구ˮ라며 "앞으로 NK 유사 T 세포의 생리 및 병리적 기능을 밝히는 연구를 지속하겠다ˮ라고 말했다.
2022.06.08
조회수 7202
-
RNA 합성의 세 갈래 끝내기 제시
우리 대학 생명과학과 강창원 명예교수와 서울대학교 물리천문학부 홍성철 교수의 공동 연구팀이 우리 대학 생명과학과 서연수 교수, 우리 대학 화학과 강진영 교수 연구팀과 협업 연구를 통해 RNA 합성 종결인자의 작동원리에 관한 여러 오래된 논쟁을 한꺼번에 잠재울 수 있는 ‘세 갈래 끝내기’를 제시했다고 30일 밝혔다.
유전자가 발현되는 첫 단계는 유전자 DNA에 맞춰 RNA 중합효소가 RNA를 합성함으로써 유전정보가 DNA 거푸집에서 RNA 생산물로 복사되는 이른바 전사 과정이다. 이 전사가 어떻게 마무리되는지를 연구하면서, RNA 합성을 끝내게 하는 대장균 전사종결인자 단백질의 작동원리를 규명해, 지난 30년 가까이 여러 학설이 대립해 온 논란에 종지부를 찍을 전망이다.
전사 과정에서 중합효소에 거푸집 DNA와 생산물 RNA가 함께 붙어있는 전사 복합체로부터 RNA가 분리되는 종결 단계에 이르기 전에 종결인자가 RNA의 특정 위치에 있는 종결 신호에 먼저 붙은 후 앞서 있는 중합효소를 ‘쫓아가서’ 전사를 종결한다는 작동원리가 1977년에 처음 제시됐다.
이와 다르게, 종결인자가 중합효소에 미리 붙어있다가 RNA 종결 신호를 ‘기다려서’ 전사를 끝낸다는 원리가 1994년에 제안돼 그 후 지금까지 28년 동안 종결 준비 단계에 관해서 두 학설이 맞서 왔는데, 이번 연구에서 둘 다 실제 일어난다는 것이 확증됐다. 즉, 종결인자가 쫓아가기도 하고 기다리기도 하는데, 서로 배타적이지 않고 함께 공존한다는 점이 새롭다.
그 외에, 생산물 RNA가 분리되는 종결 방식에 관해서도 학설이 분분했다. 예를 들어, 종결인자가 전사 복합체에 있는 RNA를 잡아당겨 벗겨내는 방식으로 분리한다는 주장이 2002년에 나왔고, 이에 반해, 종결인자가 중합효소를 밀어냄으로써 RNA가 분리된다는 설이 2006년에 제안돼 대립했다.
또한, 전사 종결로 RNA가 분리된 후 결과적으로, DNA는 중합효소에 남아서 곧장 재사용돼 쉽게 전사를 다시 시작할 수 있기도 하고, 그렇지 않으면 RNA와 동시에 DNA마저 중합효소에서 떨어져서 전사 복합체가 일시에 무너져 재사용이 지체되기도 한다는 것이 강창원‧홍성철 공동 연구팀에 의해 근래 2020년에 밝혀지기도 했다.
이번 연구에서, 준비에 관한 2가지, 방식 2가지, 결과 2가지 학설이 모두 실제 확증됐다. 그렇다면 준비-방식-결과의 조합으로 총 2×2×2, 즉 8가지가 가능한데, 실제로는 일부가 밀접하게 연계돼서 3가지 조합만이 실행된다고 밝혀졌다. 그래서 ‘세 갈래 끝내기’라고 명명됐다. 더욱이, 각 갈래의 진행 속도가 서로 달라서 세 차례의 기회가 있는 셈이다.
첫 기회의 갈래에서, 쫓아가는 종결인자가 전사 복합체에서 RNA를 잡아당겨 떼어내고 DNA는 중합효소에 남겨두는 방식의 종결을 수행한다. 이것에 실패하면, 쫓아가는 종결인자가 중합효소를 밀어내서 DNA와 RNA 둘 다 떨어뜨리는 종결을 진행하는데, 이 경우가 가장 흔하다. 마지막에, 기다리는 종결인자가 중합효소를 밀쳐내서 모두 갈라놓는 종결을 단행한다.
기다리는 종결인자가 쫓아가는 종결인자보다 중합효소와 먼저 만나기 때문에 더 빠르게 더 일찍 작동하리라고 전문가들이 추정해왔는데, 실제로는 놀랍게도 기다리는 종결인자가 더 느려서 맨 마지막 기회를 얻는 것으로 드러났다. 이 세 갈래의 진행 순서는 서로 다른 염기서열의 여러 종결자 DNA에서 바뀌지 않는다는 것도 확인했다.
공동 연구팀은 이번 연구에서 거푸집 DNA와 생산물 RNA에 각기 다른 형광물질을 붙인 후 중합효소, DNA, RNA 셋이 결합한 전사 복합체가 어떻게 변하는지를 낱개로 실시간 관찰하는 생물리학적 연구기법을 창안하고, 기존에 제안됐던 여러 작동원리를 검증하는 실험을 여러 가지 수행했다.
특히, 종결인자가 어떻게 전사 종결을 유도하는지 보기 위해, 종결인자가 RNA 종결 신호에 먼저 붙은 후 중합효소를 쫓아가서 끝내는 것을 측정하거나, 그렇지 않고 종결인자가 중합효소에 미리 붙어있다가 종결 신호를 기다려서 끝내는 것을 측정하는 분별 계측법을 독창적으로 개발했다.
첨단 기술인 단일분자 실험을 전담한 서울대 물리천문학부 송은호 박사과정 학생이 제1 저자로 참여한 논문(제목: Rho-dependent transcription termination proceeds via three routes)이 저명 국제학술지 네이처 커뮤니케이션스(Nature Communications)에 올해 3월 29일 字 게재됐다. 서울대 엄희수 박사, 우리 대학 팔린다 무나싱하 박사, 우리 대학 황승하 대학원생도 참여하여 저자가 총 8명이다.
이번 공동 연구에 단일분자 형광 기술을 구사하는 물리학자, 유전자 발현이라는 기본적 생명현상을 탐구하는 생명과학자, 중합효소나 종결인자와 같은 단백질의 구조를 규명하는 화학자가 두루 참가했다. 다양한 분야의 전공자가 협업한 다학제 기초연구의 우수 사례이며, 한국연구재단 중견연구자지원사업, KAIST 고위험‧고성과 연구사업 등의 지원을 받았다.
송은호 제1 저자는 "어느 학설이 맞는지를 검증하기 위해, DNA의 한 곳에서 종결하는 종결자의 경우 작동이 단순명료하리라 짐작하고 첫 실험 대상으로 삼았는데, 뜻밖에 여러 작동원리가 모두 관찰됐고 세 갈래로 복잡했다”라며 “여러 곳에서 종결하는 다른 종결자 DNA의 경우 오히려 세 갈래가 다 보이지 않기도 해 첫 선택에 운이 따랐던 것 같다”고 말했다.
2022.03.30
조회수 8574
-
유전자 가위를 이용한 RNA 분해효소 검출 신기술 개발
우리 대학 생명화학공학과 박현규 교수 연구팀이 *크리스퍼 카스12a (CRISPR-Cas12a) 시스템의 *부수적 절단 활성을 활용해 RNA 분해효소를 민감하게 검출해내는 신기술을 개발했다고 14일 밝혔다.
☞ 크리스퍼 카스 시스템 (유전자 가위 기술)
- 크리스퍼 카스 시스템은 박테리아가 바이러스 감염으로부터 자신을 보호하기 위해 진화시킨 적응 면역 시스템이다. 이는 외래 유전자의 정보를 담고있는 가이드RNA와 직접 핵산을 절단하는 카스 단백질로 이루어져 있다. 2020년 제니퍼 다우드나 교수의 연구팀이 크리스퍼 카스9 유전자 가위 시스템을 개발한 공로로 노벨화학상을 수상해 널리 알려졌으며, 높은 표적 특이성과 빠른 역학 덕분에 최근에는 유전체 편집을 넘어 생체물질 검출 및 분자진단 분야에 광범위하게 적용되고 있다.
☞ 부수적 절단 활성
- 카스9 이외에도 Cas12, Cas13 등의 다양한 카스 단백질이 발굴되고 활용되고 있다. 카스12a는 표적 DNA 서열을 인식해 이를 절단하며, 이에 더해 주변의 비표적 단일 가닥 DNA를 무작위하게 절단하는 부수적 절단 활성을 가지고 있다. 이러한 성질은 분자진단 분야에서 활발하게 사용되고 있다.
우리 대학 생명화학공학과 김한솔 박사가 제1 저자로 참여한 이번 연구는 영국왕립화학회가 발행하는 국제 학술지 `케미컬 커뮤니케이션스 (Chemical Communications)'에 2022년도 16호 표지(Back cover) 논문으로 지난달 24일 선정됐다. (논문명: CRISPR/Cas12a collateral cleavage activity for an ultrasensitive assay of RNase H)
RNA 분해효소의 일종인 `리보핵산가수분해효소 H'는 후천성면역결핍증(에이즈)을 일으키는 바이러스인 인간 면역결핍 바이러스(HIV-1) 및 B형 간염 바이러스를 포함한 역전사 바이러스의 역전사효소에서 필수적인 영역으로, 역전사 바이러스의 증식에 관여한다. 따라서 리보핵산가수분해효소 H는 항바이러스제 개발의 중요한 표적으로 알려져 있다. 일반적으로 리보핵산가수분해효소 H의 활성을 검출하기 위해서는 전기영동 또는 고성능 액체크로마토그래피 등의 방식을 사용하고 있지만, 이와 같은 기술들은 낮은 특이도와 민감도, 복잡한 검출 과정, 긴 검출 시간 등의 단점이 있다.
연구팀은 이러한 현행 기술의 한계를 극복하기 위해, 크리스퍼 카스12a (CRISPR-Cas12a) 시스템을 활용해 검출의 민감도를 크게 향상하고 리보핵산가수분해효소 H를 현재 보고된 기술 중 가장 높은 민감도로(검출한계: 0.24 U/L) 1시간 이내에 검출하는 데 성공했다.
연구팀은 리보핵산가수분해효소 H의 기질로 짧은 DNA/RNA 키메라 복합체를 이용해 리보핵산가수분해효소 H의 활성 하에 활성제 DNA (Activator DNA, AD)가 방출되도록 설계했다. Cas12a/crRNA 복합체가 방출된 활성제 DNA를 인식할 시 Cas12a의 부수적 절단 활성을 가동해 주변의 리포터 DNA를 절단해 형광 신호가 발생하도록 설계함으로써, 표적 유전자 돌연변이를 고감도로 매우 정확하게 검출했다. 연구팀은 이 기술을 통해서 암세포의 리보핵산가수분해효소 H 활성도 성공적으로 검출할 수 있었다.
특히 리보핵산가수분해효소 H가 인간 면역결핍 바이러스 증식에 관여한다는 점을 고려할 때, 이번 연구 성과는 에이즈 치료제 개발에 기여할 수 있을 것으로도 기대된다.
박현규 교수는 “이번 기술은 크리스퍼 카스12a (CRISPR-Cas12a) 시스템의 부수적 절단 활성을 활용해 리보핵산가수분해효소 H를 고도로 민감하게 검출함으로써, 항바이러스제의 표적 발굴에 활용될 수 있다”라고 연구의 의의를 설명했다.
한편 이번 연구는 경찰청의 치안과학기술연구개발사업 및 한국연구재단의 중견연구자지원사업과 바이오·의료기술개발사업의 일환으로 수행됐다.
2022.03.14
조회수 9389
-
빛에 담긴 비대칭성을 증폭하는 카이랄 초분자 형성원리 규명
우리 대학 화학과 서명은 교수를 주축으로 한 연구팀이 분자 자기조립 시스템에 대한 연구를 통해 빛으로부터 *초분자 나선 방향이 결정되는 원리를 규명했다고 16일 밝혔다.
☞초분자(supermolecule): 분자 간 결합 또는 인력을 통해 둘 또는 그 이상의 작은 분자들이 모여 생성된 거대한 분자들의 집합을 말한다. 효소 등 기능성 생체 분자들도 초분자로 볼 수 있다.
단백질을 이루는 아미노산 분자는 오른손과 왼손처럼 모양은 같지만 서로 겹칠 수 없는 거울상이 존재할 수 있다. 그러나 지구상에서 탄생한 생명은 한 종류의 거울상 아미노산만을 선택해 단일한 *카이랄성을 띠게끔 진화했다. 아미노산에 담긴 카이랄 정보가 단백질로 전달되면 한쪽으로 꼬인 나선과 같이 분자를 넘어선 초분자 수준에서 증폭돼 나타나며, 이는 단일 카이랄성이 만들어지는 데 중요했을 것으로 여겨진다. 즉, 어떻게 카이랄성이 탄생하고 증폭됐는지는 자연이 단일 카이랄성을 지니게 된 이유와 연관 지을 수 있어, 생명의 기원과 깊게 관련된 문제다.
☞ 카이랄(Chiral): 수학, 화학, 물리학, 생물학 등 다양한 과학 분야에서 비대칭성을 가리키는 용어중 하나다. 이는 어떤 대상의 모양이 거울에 비춘 모양과 일치되지 않을 때 카이랄 성이 존재한다고 일컫는다. (Ex) 오른손 & 왼손)
태초에 같은 양씩 존재했을 거울상 분자 한 쌍 중에 한쪽의 비율이 높아질 수 있는 원인으로 시계 방향 혹은 반대로 회전하면서 나아가는 빛인 원편광이 흔히 거론되는데, 거울상 분자가 원편광을 흡수하는 정도가 서로 다르기 때문이다. 자연적으로 지구에 내리쬐는 원편광은 그 회전 방향이 무작위할 것이므로 분자와 원편광에 담긴 카이랄 정보가 서로 경쟁하는 가운데 어느 순간 한쪽 거울상이 과잉되면서 단일한 카이랄성이 출현했을 것으로 추론할 수 있으나, 분자와 원편광으로부터 카이랄 정보가 동시에 전달될 때 어떤 현상이 일어나는지는 거의 연구된 바 없었다.
우리 대학 서명은 교수 연구팀은 빛에 반응해 자기조립되는 프로펠러 모양의 분자를 찾고, 분자와 빛에 담긴 카이랄 정보가 전달돼 초분자 나선으로 나타날 때 각각 얼마나 효과적인지 연구했다. 먼저 원편광의 회전 방향과 분자 프로펠러 방향이 맞을 때 광화학 반응이 우세하게 일어나고, 이는 자기조립을 유도해 정해진 나선 방향으로 성장함을 밝혔다.
나아가 한쪽 거울상 분자가 과잉된 조건에서 원편광을 쬐어 나선 방향이 어느 쪽을 따라가는지 살핀 결과, 양자의 정보가 일치할 때 초분자 카이랄성이 증폭되고 반대일 때 상쇄되며, 심지어 빛으로 분자 카이랄 정보를 눌러 나선 방향을 반전할 수 있음을 정량적으로 보였다. 또한 일정 비율 이상의 거울상 분자가 축적되면 빛과 관계없이 단일한 나선 방향이 유지되는 것 역시 확인했다.
원편광을 선택적으로 걸러내는 소재는 현재 OLED, 3D 안경 등 디스플레이에 널리 쓰이고 있고, 원편광을 내는 재료 등은 차세대 디스플레이용 소재로 떠오르고 있다. 초분자 나선 구조는 개개의 분자에 비해 원편광을 훨씬 효과적으로 흡수하고 방출할 수 있다. 따라서 초분자 나선 구조를 한번 더 조립하여 분자-초분자-거시적 스케일에서 모두 카이랄성을 띠는 멀티스케일 카이랄 구조체를 구현한다면 카이랄성을 극도로 증폭할 수 있는 소재를 만들 수 있을 것으로 기대된다. 또한 약물로 쓰이는 화합물은 탈리도마이드처럼 반대 거울상 분자가 기형을 유발하는 등의 부작용을 일으킬 수 있는 만큼, 한쪽 카이랄성만을 가지게끔 합성하는 것이 필수적이다. 멀티스케일 카이랄 구조체는 이러한 비대칭 합성에서도 강력한 카이랄 환경을 제공하여 입체 선택성이 높은 촉매를 제조하거나, 거울상 분자를 효과적으로 검출할 수 있는 센서를 만드는 플랫폼이 될 수 있다.
연구진은 "이번 연구를 통해 빛에 담긴 비대칭성이 어떻게 분자 및 초분자 수준으로 전달되고 증폭될 수 있는지를 이해할 수 있었을 뿐 아니라, 분자에 담긴 정보와 별개로 초분자 카이랄성을 제어할 수 있는 가능성을 보였다는 데 큰 의의가 있다ˮ며, "이번 연구를 발판으로 카이랄 광학 소재, 비대칭 촉매 등 미래 먹거리가 될 수 있는 멀티스케일 카이랄 신소재 개발로 연구를 확장하겠다ˮ고 소감을 밝혔다.
우리 대학 화학과 강준수 석박사통합과정 학생이 제1 저자로 연구를 주도하고, 화학과 김우연 교수, 임미희 교수, 윤동기 교수 연구팀이 협업한 이번 연구 결과는 미국화학회가 발행하는 국제 학술지 `미국화학회지(Journal of the American Chemical Society)'에 2월 4일 字로 온라인 게재됐다. (논문명 : Circularly Polarized Light Can Override and Amplify Asymmetry in Supramolecular Helices)
이번 연구는 한국연구재단(NRF)에서 선정한 선도연구센터인 카이스트 화학과 멀티스케일 카이랄 구조체 연구센터의 지원을 받아 주로 진행됐다.
2022.02.16
조회수 10634
-
단일세포 RNA 시퀀싱을 통한 꽃향기 합성 유전자 발굴
우리 대학 생명과학과 김상규 교수 연구팀이 꽃향기 합성 유전자를 발굴하기 위해 꽃잎 단일세포 RNA 시퀀싱 기술을 개발하고 벤질아세톤(benzylacetone) 꽃향기 합성 경로를 밝혔다.
벤질아세톤은 코요테담배(Nicotiana attenuata) 꽃에서 합성되고 밤에 분비가 되는 향기 물질이다. 이 향기물질은 밤에 활동하는 박각시나방을 유인한다. 그리고 꽃은 꿀을 제공하고 그 대가로 나방은 화분pollen을 멀리 날라준다. 또한 벤질아세톤은 코요테담배 꽃을 먹는 해충을 쫓아내는 기능을 하고 있다. 생태적으로 재미있는 기능을 하고 있는 물질이지만 생합성 경로에 대해서는 완전히 알려진 상태가 아니었다.
일반적으로 식물이 만들어내는 대사물질의 생합성 유전자를 밝히기 위해 사용하는 방법의 단점을 극복하기 위해서 꽃잎 단일세포에서 발현되는 유전자의 연관도를 이용하여 물질대사 경로를 밝힐 수 있다는 것을 이번 연구를 통해서 증명하였다. 특히 유전정보가 제한적으로 알려져 있고 다양한 생태형 ecotype을 가진 식물 집단이 없어도 비모델 식물에서 물질합성 경로에 있는 효소와 그 효소의 발현을 조절하는 전사인자 등도 찾을 수 있는 가능성을 제시하였다.
단일세포 RNA 시퀀싱의 장점을 활용하여 향기합성 유전자가 만들어지는 세포를 구별하고 꽃잎에서 향기가 합성되는 위치도 밝힐 수 있었다.
우리 대학 생명과학과 강문영 석박사통합과정 학생이 제1 저자로 참여한 이번 연구 결과는 'New Phytologist' 학술지에 게재됐다. (관련 논문명: Single-cell RNA-sequencing of Nicotiana attenuata corolla cells reveals the biosynthetic pathway of a floral scent)
한편 이번 연구는 삼성미래기술육성사업과 포스코사이언스펠로십 지원을 받아 수행됐다.
2022.02.14
조회수 6180
-
페로브스카이트 LED 소재의 발광 효율 극대화 메커니즘 규명
우리 대학 화학과 김형준 교수 연구팀이 한밭대학교 홍기하 교수 연구팀과 공동 연구를 통해 페로브스카이트 LED 나노 소재에서 일어나는 발광 효율의 향상 원인을 이론적으로 규명하는 데 성공했다고 12일 밝혔다.
할로겐 페로브스카이트 화합물은 태양 빛을 이용해 높은 효율로 전기를 생산할 수 있어 차세대 태양전지에 사용 가능한 소재로 주목받고 있는 물질이다. 한편, LED는 태양전지와는 반대로 전기를 이용해서 빛을 방출하는 장치로서 디스플레이에 널리 사용되고 있다. 놀랍게도 페로브스카이트는 빛을 전기로 변환시키는 효율뿐 아니라 전기를 빛으로 변환시키는 발광 효율 또한 높은 것으로 알려져 차세대 LED 소재로서도 각광받고 있다.
본래 `페로브스카이트'는 러시아 과학자 페로브스키의 이름을 딴 광물 결정 구조의 이름이다. 연구팀은 이러한 페로브스카이트 결정 구조가 내부의 뒤틀림 정도에 따라 다양한 상(phase)을 가질 수 있음에 주목했다. LED 소재로 널리 사용되는 CsPbBr3라는 페로브스카이트 소재는 결정 구조 내부에 뒤틀림이 존재하는데, 이를 작은 나노 구조로 만들게 되면 이러한 뒤틀림이 최소화된 상이 형성된다. 연구팀은 비단열 양자 동역학 시뮬레이션을 이용해 이러한 결정 구조의 뒤틀림 제어가 발광 효율을 높이기 위한 주요 소재 성질 제어 전략임을 밝혔다.
연구진은 "이번 연구를 통해 페로브스카이트의 소재 결정 구조적 특성과 빛을 발생하는 광 동역학적 특성 사이의 복잡한 상관관계를 규명할 수 있었다ˮ고 말했으며 "추후 이러한 이론 기초 연구를 더욱 확장해 페로브스카이트 결정상 제어를 통한 발광 효율 극대화 전략을 도출해내어 페로브스카이트 기반의 고효율 LED 개발에 기여할 수 있을 것ˮ이라고 말했다.
우리 대학 하윤후 박사과정 학생이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `미국화학회지 (Journal of the American Chemical Society)' 에 지난해 12월 27일 字 온라인 게재됐다. (논문명: Enhanced Light Emission through Symmetry Engineering of Halide Perovskites).
한편 이번 연구는 한국연구재단(NRF)의 중견연구사업과 선도연구센터 지원 사업, 나노소재기술개발사업으로 진행됐다.
2022.01.12
조회수 9114
-
RNA 바이러스 초고감도 검출 기술 개발
우리 대학 생명화학공학과 박현규 교수 연구팀이 핵산의 절단 및 중합 연쇄반응 시스템을 활용해 RNA 바이러스의 표적 RNA를 초고감도로 검출하는 새로운 등온 핵산 증폭(NESBA, Nicking and Extension chain reaction System-Based Amplification) 기술을 개발했다고 15일 밝혔다.
생명화학공학과 주용 박사과정, 김효용 박사가 공동 제1 저자로 참여한 이번 연구는 영국 왕립화학회가 발행하는 국제학술지 `나노스케일 (Nanoscale)'에 2021년도 24호 표지(Front cover) 논문으로 지난달 16일 선정됐다. (논문명: Ultrasensitive version of nucleic acid sequence-based amplification (NASBA) utilizing nicking and extension chain reaction system)
현재 전 세계적으로 팬데믹 (Pandemic)을 일으키고 있는 코로나19 바이러스와 같은 RNA 바이러스를 검출하기 위한 표준 진단 방법은 역전사 중합효소 연쇄반응(qRT-PCR)이다. 이러한 표준 분자진단 방법은 면역진단 방법과 비교해 진단의 정확도는 매우 우수하지만 정교한 온도 조절 장치가 필요하고 진단에 드는 시간이 길어 장비의 소형화에 제약이 있으며 전문 진단 설비가 갖추어진 대형 병원 또는 전문 임상검사실에서만 제한적으로 사용된다는 단점이 있다.
연구팀은 이러한 현행 기술의 한계를 극복하기 위해 핵산의 절단 및 중합 연쇄반응 시스템에 의해 구동되는 초고감도의 신개념 등온 핵산 증폭 기술을 개발했으며, 이를 통해 별도의 온도 변환 과정 없이 동일 온도에서 표적 바이러스의 RNA를 초고감도로(검출 한계: 1 아토 몰 (aM)) 매우 신속하게(20분 이내) 검출하는 데 성공했다.
연구팀은 기존 나스바(NASBA, Nucleic Acid Sequence-Based Amplification) 등온 증폭 기술에 절단효소 인식 염기서열이 수식된 프라이머를 도입함으로써, 절단효소 및 DNA 중합효소 활성을 기반으로 T7 프로모터를 포함하는 이중가닥 DNA를 지수함수적으로 증폭할 수 있었고, 최종적으로 표적 RNA를 기존의 NASBA 기술에 비해 100배 이상 향상된 민감도로 검출할 수 있었다.
연구팀은 이 기술을 통해서, 호흡기 세포 융합 바이러스(RSV)의 유전 RNA(genomic RNA)를 별도의 전처리 없이 매우 신속하고 고감도로 검출함으로써, 기술의 실용성을 증명함과 동시에 현장 검사(POCT) 기술로서의 높은 활용 가능성을 입증했다.
박현규 교수는 "이번 신개념 등온 핵산 증폭 기술은 현재 대유행하고 있는 코로나19 바이러스와 같은 RNA 바이러스들을 신속하게 조기 진단 할 수 있는 분자진단 시스템에 활용될 가능성이 매우 큰 기술ˮ이라고 이번 연구의 의의를 설명했으며, 현재 코로나19의 임상 샘플 테스트에서도 매우 좋은 결과를 얻었다고 언급했다.
한편 이번 연구는 한국연구재단의 글로벌 프런티어사업과 경남제약(주)의 연구비 지원으로 수행됐다.
2021.07.15
조회수 11183
-
신경세포의 흥분성 증가로 인한 뇌 질환 기제 규명
관련 유튜브 영상 링크 : https://www.youtube.com/watch?v=dwV_Xs7tHEY&t=13s
우리 연구진이 뇌 신경세포의 흥분과 억제 불균형을 일으키는 새로운 기전을 규명했다. 이는 발작과 같은 다양한 뇌 신경질환의 원인과 연결되며, 뇌 질환 치료에 활용이 기대된다.
우리 대학 생명과학과 정원석 교수와 박정주 박사과정 연구팀이 억제성 시냅스가 *미세아교세포에 의해 제거되는 분자 기전을 처음으로 밝히고, 이 현상이 과도하게 일어날 때 신경세포의 흥분성 증가로 발작과 같은 뇌 질환이 일어날 수 있음을 증명해 국제학술지 `엠보저널(EMBO Journal)'에 공개했다고 2일 밝혔다.
☞ 미세아교세포(microgila): 뇌에서 면역기능을 담당하는 신경세포의 일종이다. 뇌와 척추 전역에 분포돼 있으며, 정상적인 뇌 기능을 수행하도록 핵심적인 역할을 한다.
*시냅스는 뇌 발달 및 학습 시에 생성과 제거가 반복되는 변화를 겪는다. 정원석 교수 연구팀은 이전 연구를 통해 비신경세포인 별아교세포와 미세아교세포가 신경세포의 불필요한 시냅스를 잡아먹어 제거할 수 있음을 밝힌 바 있다. 하지만, 이 과정에서 어떤 물질이 특정 시냅스를 표지해 교세포들로 하여금 제거하도록 유도하는지는 알려지지 않았다.
☞ 시냅스(synapse): 뉴런(신경세포) 간 또는 뉴런과 다른 세포 사이의 접합 관계나 접합 부위를 말한다. 뉴런이 모여 있는 곳, 즉 뇌와 척수에 집중되어 있다.
연구팀은 포스파티딜세린 (phosphatidylserine)이라는 세포막에 존재하는 인지질 중의 하나가 죽어가는 세포 표면에 선택적으로 표지돼 면역세포에 의해 세포를 잡아먹도록 유도한다는 사실에 착안했다. 죽어가는 세포가 제거되는 분자 기전이 시냅스만이 선택적으로 제거되는 현상에도 응용될 수 있을 것이라 예상한 것이다.
이 가정을 증명하기 위해 연구팀은 포스파티딜세린을 신경세포 표면에 인위적으로 노출한 후, 특정 시냅스가 교세포에 의해 잡아먹힐 수 있는지 연구했다.
먼저 연구팀은 포스파티딜세린을 항상 세포 표면으로부터 안으로 지속적으로 불러들여 정상 세포막에서 이들을 노출되지 않도록 막고 있는 플립파아제(Flippase)라는 단백질의 기능을 신경세포에서만 억제할 수 있는 실험용 쥐 모델을 제작했다.
그 결과 놀랍게도 신경세포의 세포체 주변의 표면에서만 선택적으로 포스파티딜세린이 표지됨을 발견했고 이로 인해 세포막이나 흥분성 시냅스의 손상 없이 억제성 시냅스만이 선택적으로 감소함을 발견했다. 그뿐만 아니라 해당 쥐 모델은 청각을 담당하는 뇌 지역에서 흥분-억제 균형이 깨져서 소리로 인해 촉발되는 특이한 발작 증세를 일으킴을 확인했다.
더 나아가 연구팀은 미세아교세포를 인위적으로 제거하거나 미세아교세포에 존재하는 특정 포식 수용체를 제거했을 때, 신경세포의 표면에 포스파티딜세린이 표지되었을지라도 과도한 억제성 시냅스 감소와 발작 증세가 방지될 수 있음을 발견했다.
이로써 신경세포체 주변 세포막에 포스파티딜세린이 표지되는 것이 미세아교세포가 포식 수용체를 통해 억제성 시냅스만을 선택적으로 먹는 기전으로 쓰일 수 있음을 최초로 규명한 것이다.
연구팀의 이 같은 발견은 흥분성 및 억제성 시냅스가 서로 다른 기전을 통해 미세아교세포에 의해 제거될 수 있음을 처음으로 제시한 것이며, 미세아교세포에 의한 과도한 억제성 시냅스 제거 기전이 뇌 신경세포의 흥분-억제 불균형 발생의 새로운 원인이 될 수 있음을 증명한 것이다.
연구팀 관계자는 "비정상적인 억제성 시냅스 수 변화는 발작, 자폐 스펙트럼 장애, 조현병, 치매 등과 같은 다양한 뇌 질환의 유병률과 연관성이 높다ˮ며 "뇌에서의 흥분-억제 균형이 깨져서 일어나는 다양한 뇌 신경질환에서 미세아교세포가 억제성 시냅스를 먹는 현상을 조절하는 것이 이들 질환을 치료하는 새로운 전략이 될 것이다ˮ고 말했다.
우리 대학 생명과학과 박정주 박사과정이 제1 저자로 참여하고, 정원석 교수가 교신저자로 참여한 이번 연구는 국제학술지 `엠보저널(EMBO Journal)'에 지난 5월 20일 字 공개됐다. (논문명: Microglial MERTK eliminates phosphatidylserine-displaying inhibitory post-synapses)
한편, 이번 연구는 삼성미래기술육성재단의 도움을 받아 진행됐다.
2021.06.03
조회수 57604
-
남택진 교수팀, 레드닷 어워드 2021 대상 수상
우리 대학 남택진 산업디자인학과 교수팀이 세계 최대 규모의 디자인 공모전인 독일 ʻ레드닷 디자인 어워드(Red Dot Design Award) 2021ʼ 제품디자인 부문에서 대상(best of the best award)을 받았다. 수상작은 남 교수팀이 개발한 ʻ코로나 중증 환자 치료용 이동형 감염병동(mobile clinic module, MCM)ʼ이다. 올해 공모전에는 60여 개국에서 총 7천8백여 개의 작품이 출품돼 제품 디자인·커뮤니케이션 디자인·콘셉트 디자인 등 3개 분야에서 경쟁을 펼쳤다. 주최 측은 "수상작들이 자동차·로봇·의료 기술·포장에 이르기까지 디자인을 통해 현대 사회가 가진 문제를 해결하고 인류의 생활 수준을 향상하는 데 중요한 역할을 했다ˮ라고 밝혔다. 특히, 남 교수팀의 이동형 감염병동은 "제품 디자인이 감염병 확산을 방지하는 일에 얼마나 가치 있게 기여할 수 있는지를 보여줬다ˮ라고 평가했다.
이동형 감염병동의 쾌거는 이뿐만이 아니다. 레드닷 디자인 어워드(Red Dot Design Award)와 함께 세계 최고 권위의 디자인 공모전으로 손꼽히는 iF 디자인 어워드(International Forum Design Award) 2021에서도 제품·실내건축·사용자인터페이스·사용자경험 등 총 4개 분야에서 본상을 수상했다.
이로써, 남 교수팀의 이동형 음압병동은 국제 권위의 디자인 공모전을 연이어 석권하며 기능성·경제성·효용성뿐만 아니라 독창적 디자인과 심미성까지 갖춘 의료 시설로서 가치를 인정받게 됐다.
이동형 음압병동은 고급 의료 설비를 갖춘 음압 격리 시설로 신속하게 변형하거나 개조해 사용할 수 있도록 디자인됐다. 음압 프레임·에어 텐트·기능 패널 등의 각 모듈을 조합해 단시간 내에 음압 병동이나 선별진료소 등을 구축할 수 있다. 또한, 소규모의 장비와 인력으로도 관리·이송·설치가 가능해 기존의 조립식 병동 대비 경제적·시간적 효율을 높인 것이 가장 큰 특징이다. 남택진 교수팀은 작년 7월부터 KAIST 코로나 대응 과학기술 뉴딜사업(단장 배충식)의 일환으로 이동형 음압병동을 개발했다. 조스리 스튜디오·20Plus 등과 협력해 디자인을 진행했고 신성이엔지가 제작을 담당했다. 배상민(산업디자인학과)·이태식(산업및시스템 공학과)·김형수(기계공학과) 교수 등이 자문했으며, 석현정(산업디자인학과), 박해원·김성수(기계공학과), 한동수(전산학과) 교수 등이 감염병원 서비스 주제로 연구에 참여했다. 현재 한국 원자력의학원·제주도 백신 접종센터에 시제품이 설치돼 코로나 환자 및 백신 접종자들을 대상으로 시범 운영 중이다. 향후, 건양대 병원 등으로 적용 범위를 확대해나갈 예정이다. 디자인 총괄한 남택진 교수는 "현실 세계의 문제를 발견하고 해결하여 책임지는 디자이너가 더 많아지기를 바란다ˮ라고 수상 소감을 전했다. 이어, 남 교수는 "MCM의 생산 효율성과 안정된 운영을 위해 엔지니어링 디자인 측면을 개선하는 연구를 진행 중이며, 빠른 시일 내에 상용화와 수출이 이뤄질 수 있도록 박차를 가할 예정이다ˮ라고 전했다. KAIST 코로나 대응 과학기술 뉴딜사업단은 KAIST의 과학기술 역량을 기반으로 감염 예방·보호·진단·치료 등 감염병의 전 주기에 대응하는 치료 분야에서 산·학·연·병이 협력해 방역 요소기술 개발과 과학기술 기반의 방역 시스템을 구축하는 연구를 수행하고 있다.
2021.04.19
조회수 43823
-
미생물 이용한 천연 붉은 색소 생산 기술 최초개발
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 `식용으로 널리 쓰이는 붉은색 천연색소인 카르민산을 생산하는 미생물 균주 개발'에 성공했다고 9일 밝혔다.
이번 연구결과는 국제 학술지인 `미국화학회지(Journal of the American Chemical Society)'에 4월 2일 字 온라인 게재됐다.
※ 논문명 : Production of carminic acid by metabolically engineered Escherichia coli
※ 저자 정보 : 이상엽(한국과학기술원, 교신저자), 양동수(한국과학기술원, 제1저자), 장우대(한국과학기술원, 제2저자), 포함 총 3명
카르민산은 붉은색 천연색소로 딸기우유, 사탕 등의 식품과 매니큐어, 립스틱 등 화장품 분야에서 널리 활용되고 있다. 카르민산은 연지벌레 추출을 통해 얻어지는데, 연지벌레는 한정된 지역(페루, 카나리아 제도 등지)에서만 재배할 수 있으며, 연지벌레로부터 카르민산을 추출하기 위해서는 복잡하고 비효율적인 다단계 반응을 거쳐야 한다.
또한, 카르민산은 대부분 연지벌레에서 기인한 단백질 오염물질을 포함하고 있는데 이는 알레르기 반응을 유발할 수도 있으며, 많은 사람이 벌레 기반 물질을 섭취하는 것을 꺼리고 있다. 이러한 이유로 몇몇 프랜차이즈 업체는 카르민산 사용을 중단하고 대체 식용색소를 활용하고 있다.
이에 따라 연지벌레를 사용하지 않는 카르민산 생산 방법 개발의 필요성이 제기됐으나, 카르민산 생합성 경로의 일부가 아직 밝혀지지 않았으며 곰팡이를 제외한 다른 미생물에서 카르민산 생산이 보고된 바가 없었다.
이에 이상엽 특훈교수 연구팀은 포도당으로부터 카르민산을 생산할 수 있는 대장균 균주 개발 연구를 수행했다.
연구팀은 우선 타입 II 폴리케타이드 생합성 효소를 최적화해 카르민산의 전구체(전 단계의 물질)를 생산하는 대장균 균주를 구축했다. 하지만 남은 두 단계의 반응을 수행하기 위한 효소가 아직 발굴되지 않았거나 대장균 내에서 작동하지 않는 문제가 있었다. 이러한 문제를 해결하기 위해 연구팀은 생화학 반응 분석을 통해 카르민산 생산을 위한 효소 후보군을 선정했다. 그 후 세포 배양 실험을 통해 성공적으로 작동하는 효소들을 선정했다.
이렇게 선정된 효소 두 종에 대해 컴퓨터 기반 상동 모형 및 도킹 시뮬레이션을 수행 후 활성이 증대된 돌연변이 효소를 예측했다. 그 후 이에 기반을 둔 효소 개량을 수행함으로써 증대된 활성을 지니는 효소를 개발하는 데 성공했다.
이번 연구를 통해 폐목재, 잡초 등 지구상에서 가장 풍부한 바이오매스의 주원료인 포도당을 단일 탄소원으로 사용해 카르민산을 생산하는 대장균 균주를 최초로 개발했다고 연구팀 관계자는 설명했다.
연구팀이 개발한 대사공학 및 가상 시뮬레이션 기반 효소 개량 전략은 생산경로가 규명되지 않은 다른 천연물의 생산에도 유용하게 쓰일 것으로 기대된다. 연구팀은 이번 연구에서 개발한 C-글리코실 전이효소를 적용해 카르민산 뿐만 아니라 알로에로부터 생산 가능했던 미백제인 알로에신 생산에도 세계 최초로 성공함으로써 이를 증명했다.
이상엽 특훈교수는 “연지벌레를 사용하지 않는 카르민산 생산 프로세스를 세계 최초로 개발했으며, 이번 연구는 특히 천연물 생산의 고질적인 문제인 효소 발굴과 개량에 대한 효과적인 해결책을 제시했다는 점에 의의가 있다”며 “이번 기술을 활용해 의학적 또는 영양학적으로 중요한 다양한 천연물을 고효율로 생산할 수 있을 것”이라고 밝혔다.
한편 이번 연구는 과기정통부가 지원하는 기후변화대응기술개발사업의 '바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제'의 지원을 받아 수행됐다.
2021.04.09
조회수 72406