-
생명화학공학과 양승만 교수팀 연구결과, 네이처誌 하이라이트로 소개
물방울 이용 나노트렌지스트 만든다”
생명화학공학과 양승만(梁承萬, 55) 교수팀에서 수행한 연구결과가 2월 2일자 네이처誌 하이라이트로 소개됐다.
네이처誌는 “News and Views”란에 네이처誌에 게재된 논문 가운데 2-3편과 그 밖에 국제적으로 저명한 학술지에 게재된 논문들 가운데 학술적 가치와 기술 혁신성이 높은 것들을 매주 1-2편 선정하여 논문 내용을 논평과 함께 특필하고 있다.
이번 네이처誌에 소개된 연구는 양승만 교수팀에서 “액적내부에서 혼성콜로이드입자의 자기조립(Self-organization of Bidisperse Colloids in Water Droplets)" 이라는 제목으로 화학분야 가장 권위 있는 학술지의 하나인 미국 화학회지 (Journal of the American Chemical Society: JACS)에 최근 게재됐다. 이 논문은 양승만 교수팀 조영상씨의 박사 학위 논문 일부로 수행된 것이다.
이 연구의 핵심 아이디어는 나노미터 수준의 작은 입자와 마이크로미터 크기의 큰 입자를 지름이 약 50마이크로미터 정도(머리카락 굵기의 약 절반 정도)의 물방울 속에 정해진 수만큼 가두고 물을 서서히 증발 시키면 입자들이 스스로 규칙적인 구조로 조립된다는 것이다. 즉 큰 입자와 작은 입자들이 자기조립을 하면서 작은 입자가 큰 입자 사이에 규칙적으로 쌓이게 된다. 네이처誌는 이 연구의 독창성과 발전가능성을 상세히 해설하고 있다.
네이처誌는 이 연구가 특별히 조명 받아야 하는 이유를 크게 두가지로 나누어 다음과 같이 설명하고 있다.
첫째, 이러한 자기조립 소재는 고밀도 정보처리를 위한 나노트랜지스터로 쓰일 수 있다는 점이다. 이는 반도체 나노입자와 절연체 마이크로입자로 구성된 자기조립 소재가 트랜지스터의 기능을 보유하기 때문이다.
둘째, 벽돌로 건축물을 쌓듯이 큰 입자로 구성된 자기조립 소재를 나노 벽돌로 이용, 3차원 구조물을 조립하면 소위 다이아몬드 격자구조의 광자결정(photonic crystal)을 만들 수 있다는 것이다. 이러한 다이아몬드 격자구조를 갖는 광자결정은 완전히 열려 있는 광밴드갭(photonic bandgap)을 보유하고 있다. 즉, 이 구조의 광자결정은 특정한 파장 영역대의 빛만을 입사각에 관계없이 완전히 반사시키는 기능을 보유하게 된다.
이 광자결정은 광자(빛)가 정보를 처리하는 미래에 오늘날의 반도체와 같은 역할을 할 것이므로 ‘빛의 반도체’라 불린다. 광자결정의 특수한 기능으로 인하여 나노레이저, 다중파장의 광정보를 처리할 수 있는 수퍼프리즘(superprism), 광도파로(waveguide) 등 차세대 광통신 소자와 현재의 컴퓨터 속도를 획기적으로 높일 수 있는 수십 테라급 초고속 정보처리능력을 갖춘 광자컴퓨터의 개발에 필요한 소재로 주목 받고 있으며 사이언스誌에서는 21세 가장 주목받는 핵심 기술 10개 중에 하나로 선정한 바 있다.
이밖에도 마이크로 입자의 표면을 형광체와 DNA로 도핑하면 개개의 입자들이 각각 다른 정보를 전달하는 나노 리포터(nano-reporter)로 작용할 수 있고, 이들을 조합라이브러리(combinatorial library) 형태를 구현하면 발현된 정보를 한꺼번에 생물학적 또는 광학적으로 인코딩하여 방대한 바이오정보를 신속하게 처리할 수 있다.
<복합 콜로이드를 이용하여 제조한 혼성 콜로이드분자>
2006.02.03
조회수 23863
-
신약개발 원천기술 사이언스지에 발표
자석 이용 신약 개발, 마술같은 기술 "MAGIC" 명명
살아있는 세포내에서 다양한 물질결합 실시간 측정
생명과학과 김태국(金泰國, 41) 교수팀이 (주)씨지케이(CGK, 대표이사 정연철)와 공동으로 개발한 새로운 신약개발 원천기술이 7월1일(금)자 사이언스 誌에 발표됐다.
“살아 있는 세포에서 분자 간 상호작용을 검출하는 자성 나노프로브 기술(A magnetic nanoprobe technology for detecting molecular interactions in live cells)“이라는 제목으로 발표된 이 연구결과는 마술과 같은 기술이라 하여 "MAGIC"으로 명명됐다.
물질의 한쪽 끝에 자성체를 붙여 세포에 넣어준 뒤 자석을 대면 결합된 다른 물질이 같이 끌려나온다는 평범한 원리를 세포내에 적용한 이 기술은 살아있는 세포 내에서 다양한 물질의 결합을 실시간으로 측정 가능해 곧바로 신약개발에 응용될 수 있다. 이미 병원에서도 면역억제제로 사용하고 있는 약물에 같은 실험을 수행하여 사람 세포 내에서 이 약물에 결합한다고 알려진 단백질이 매우 선택적으로 자석에 딸려오는 현상을 실시간으로 확인했다.
金 교수는 "MAGIC 기술은 기존에 생체 내에서의 역할이 명확히 밝혀지지 않은 다양한 약물의 표적 분자를 쉽게 찾을 수 있을 뿐만 아니라, 사람 세포내에서 계속 조절 변화되는 바이오프로그램을 실시간으로 모니터하고 유익하게 재프로그래밍도 할 수 있는 혁신적인 기술"이라며, "특히 신약개발이라는 망망대해에서 더 이상 그물을 치고 기다릴 필요가 없는 셈"이라며 이 기술의 의미를 함축적으로 설명했다.
함께 연구에 참여한 CGK 정연철 대표는 "MAGIC 기술은 그간 발표된 어떤 기술보다 신약개발을 혁신적으로 앞당길 수 있는 상업화에 가장 근접한 기술"이며, "이미 항암제를 포함한 두 종의 신약 후보물질을 찾은 상태이다. 내년까지는 동물 실험을 마칠 것"이라는 계획을 발표했다. 또한 "이미 미국의 회사로부터 이 기술의 사업화를 위한 조인트벤처 설립을 제안 받았으며, 내부적으로 검토중"이라고 밝혔다.
金 교수는 "최근 황우석 교수의 줄기세포 치료법와 더불어 신약 치료법의 원천기술을 국내에 확보하여 확고한 바이오기술의 토대를 확립했다는 것이 무엇보다 의미 있다" 며, "MAGIC 원천기술을 비롯해서 앞으로도 기초연구와 바이오산업을 보다 효과적으로 접목, 국내 산업의 성장동력을 마련하기 위해 열심히 노력 하겠다"는 각오를 밝혔다.
2005.07.01
조회수 20578
-
새로운 가상세포 모델링 언어 MFAML 개발
KAIST(총장 로버트 러플린)는 생명화학공학과 이상엽 교수(李相燁, 41, LG화학 석좌교수, 생물정보연구센터 소장)가 이끄는 생물정보연구센터 연구팀이 가상세포 모델의 새로운 국제표준어를 개발하는데 성공, 일반에 공개한다고 24일 밝혔다.
1. 개발 배경
현재까지 국내는 물론 전 세계 생명 과학 분야 기업이나 연구 기관들은 연구 결과로부터 얻어진 생물 정보 데이터를 각기 다른 독자적인 포맷으로 저장해 왔다. 또한 생명 과학 연구에 필요한 분석 도구들도 역시 각자의 언어와 환경을 기반으로 개발된 것이 현실이다.
단순한 서열 분석뿐만 아니라 세포내부 대사물질의 흐름 분석과 같은 복잡한 연구를 위해서는 다양한 형태의 데이터와 정보를 얻고, 이를 여러 가지 분석 도구를 통해 입력 데이터로 넣어서 처리하게 된다. 이때 필요한 데이터와 정보에 쉽게 접근하여 분석하기 위해서는 데이터 포맷의 표준화가 시급하다. 또한 기 개발된 다양한 시스템과 분석 도구들을 연구 목적에 맞게 적절히 결합하여 사용하기 위해서는 각 시스템과 분석 도구간의 상호 운용성 확보가 매우 중요하다.
2. 개발 현황
이처럼 전 세계적으로 다양한 생물 정보 데이터 처리를 위해 국제 표준화가 급속히 진행되는 시점에서 KAIST 이상엽 교수팀은 과학기술부 시스템생물학 연구개발 사업의 일환으로 가상세포 모델의 새로운 국제표준어인 MFAML 개발에 성공, 일반에 공개하게 된 것이다.
李 교수팀은 XML이 지니는 이식성, 재사용성, 확장성, 효율적인 데이터 교환 등의 이점을 활용하여 가상세포 모델을 구조적으로 표현할 수 있는 데이터 서식을 개발하였으며, 특히 가상세포의 다양한 유전학적 또는 환경적 실험조건과 분석결과를 표준화하여 누구나 쉽게 정보를 공유할 수 있고, 다른 분석 환경에서 손쉽게 이용 가능하도록 하였다.
KAIST 생물정보연구센터의 윤홍석 연구원은 “MFAML을 통해 전 세계에 퍼져있는 바이오 정보의 효율적인 활용이 기대되며 정보의 표준화를 통한 기술적, 경제적 이득을 얻을 수 있을 것이다. 또한, 함께 제공되는 라이브러리를 통해 손쉽게 이를 구현 가능하도록 하였다”고 설명했다.
3. 개발성과 및 향후계획
李 교수팀은 기존에 전세계에 공개한 가상세포 초기 모델 프로그램인 메타플럭스넷의 개발과 통합 데이터베이스 시스템인 바이오실리코 구축과 더불어 이번 개발성과를 통해 가상세포 개발에 한 발짝 더 나아가게 되었다. 李 교수는 “기존의 개발한 메타플럭스넷이나 바이오실리코의 경우는 각각의 개별 시스템으로 운용되어 왔으나 이번에 수행한 연구를 통해 각각의 시스템을 하나로 묶을 수 있는 기반을 가지게 되었다. 앞으로도 지속적인 연구와 업그레이드를 통해 다양한 가상세포 모델을 제공하도록 하며, 전 세계의 정보 교환의 기초 도구로 활용될 수 있도록 노력 하겠다”고 밝혔다.
현재 MFAML에 대한 관련 정보는 홈페이지(http://mbel.kaist.ac.kr/mfaml)에서 무료로 다운로드 받을 수 있다.
KAIST 생물정보연구센터의 이동엽 박사는 “조만간 다양한 가상 세포 시뮬레이션이 가능한 획기적인 통합 환경을 제공하게 될 것"이라고 말했다.
한편, 이 연구 성과는 생물정보학 분야 저명 학술지인 英國 옥스퍼드대학출판사가 발간하는 바이오인포메틱스(Bioinformatics)誌에 게재 승인되어 온라인상에 공개되었다. 본 MFAML 관련 개발된 표준화 기술은 대사공학과 연결시켜 현재 국내외 특허 출원중이다.
<용어 설명>
① XML(eXtensible Markup Language) : 주고받는 데이터의 포맷을 표준화해서 데이터 교환을 용이하게 하기 위해 생겨난 정보교환 기술로 인터넷 웹상의 데이터와 각종 문서에 대한 일관된 표준이다.
② MFAML(Metabolic Flux Analysis Markup Language) : 주고받는 데이터의 포맷을 표준화해서 데이터 교환을 용이하게 하기 위해 생겨난 정보교환 기술인 XML을 이용하여 생체 대사흐름을 쉽게 분석할 수 있도록 만들어진 일종의 가상세포모델 표준언어
2005.05.25
조회수 24057
-
뇌신경 보호유전자 세계 첫 발견
KAIST 생명과학과 김재섭 교수(43세)팀은 지나친 자극으로부터 신경세포를 보호하는 유전자를 세계 최초로 발견하고, 이 유전자를 열병을 뜻하는 파이렉시아(Pyrexia)라고 명명했다.
이 유전자는 채널 단백질을 만들며, 이 채널은 섭씨 39도 이상의 고온에 의해 작동된다. 특히 이제까지 온도에 의해 작동되는 채널 단백질들은 여러 종류 발견되었으나, 자극으로부터 신경을 보호하는 채널은 파이렉시아가 처음이다. 이 유전자는 신경세포가 고온에 대해 과민하게 흥분하여 스트레스성 반응을 보이고 이로 인해 기능이 손상되는 것을 방지한다.
또한 이 유전자의 기능이 약화되면 섭씨 40도 고온에서 수분 내에 신경기능이 마비되지만, 이 유전자의 기능이 강화되면 이러한 고온에서도 신경세포의 기능이 손상되지 않고 정상적으로 작동한다.
KAIST 김재섭 교수는 "파이렉시아 채널을 인위적으로 작동시키는 약(화합물)을 개발할 경우, 상습적 마약 복용 등으로 신경이 과도하게 자극되어 뇌기능이 손상되는 것을 방지할 수 있는 획기적인 길이 열릴 것이다"라고 말하면서 "이번 연구 결과는 독감을 비롯한 각종 열병에 의해 의식을 잃거나 뇌기능이 영구하게 손상되는 것도 방지할 수 있는 길을 열었다"며 그 의미를 밝혔다.
한편, 이 연구 결과는 미국에 국제특허 출원되었으며, 세계 최고의 유전학 및 인간질병 유전자 권위지인 네이처 제네틱스 (Nature Genetics) 3월호에 논문으로 계제될 예정이다. 또한 네이처 제네틱스는 이 발견의 중요성을 감안하여 이 논문을 1월 31일자로 인터넷 (http://www.nature.com/ng/)에 먼저 공개했다.
이 유전자는 KAIST 생명과학과와 제넥셀(주)가 공동으로 2003년에 완성한 세계 최초의 형질전환초파리 게놈검색시스템을 활용하여 발굴되었으며, KAIST 생명과학과와 제넥셀(주)는 "형질전환초파리 게놈검색시스템"을 활용하여 파이렉시아 이외에도 여러 종류의 인간질병 및 신경관련 유전자를 발굴하여 연구에 박차를 가하고 있다.
2005.01.31
조회수 23137