< 신소재공학과 김상욱 교수 >
우리 대학 신소재공학과 김상욱 교수 연구팀이 부산대 안석균 교수 연구팀과 공동 연구를 통해 그래핀-액정 복합섬유를 이용한 새로운 인공 근육을 개발하는 데 성공했다고 5일 밝혔다. 이 인공 근육은 현재까지 과학계에 보고된 것 중에서 인간 근육과 가장 유사하면서도 최대 17배 강한 힘을 보이는 것으로 밝혀졌다.
동물의 근육은 신경 자극에 의해 그 형태가 변하면서 기계적인 운동을 일으키는 것으로 알려져 있다. 로봇이나 인공장기 등 다양한 분야에서 동물근육과 유사한 운동을 일으키기 위한 기술들이 개발돼왔으나, 지금까지는 주로 기계장치에 의존한 것들이 대부분이다.
최근에는 유연성을 가지는 신소재를 이용해 생명체의 근육같이 유연하면서도 기계적 운동을 일으킬 수 있는 인공 근육들이 연구되고 있다. 그러나 이들 대부분이 일으키는 운동의 범위가 동물 근육보다 제한되고 강한 운동을 일으키기 위해서는 마치 시계태엽을 감듯이 부가적인 에너지 저장과정을 거쳐야만 하는 문제점이 있다.
< 그림 1. 인공 근육 섬유 제작의 개략도와 내부 수축과 이완 시 내부구조 도식 >
김교수 연구팀이 개발한 신소재는 온도변화에 따라 동물 근육과 같이 크게 수축을 일으키는 액정물질에 고품질의 그래핀을 적용함으로써 레이저를 이용한 원격제어가 가능하며 인간 근육의 작업 수행능력(17배)과 출력밀도(6배)를 크게 능가하는 운동능력을 구현했다. 연구팀은 실제로 인공 근육을 이용해 1 킬로그램(kg) 짜리 아령을 들어올리는 데 성공하기도 했으며, 이를 이용한 인공 자벌레는 살아있는 자벌레보다 3배나 빠른 속도로 움직이는 기록을 달성하기도 했다.
< 그림 2. 인공 근육 섬유 방사 후 모습과 이를 기반으로 제작 가능한 다발의 모습 >
연구를 주도한 신소재 분야 석학인 KAIST 김상욱 교수는 "최근 세계적으로 활발히 개발되고 있는 인공 근육들은 비록 한두 가지 물성이 매우 뛰어난 경우는 있으나 실용적인 인공 근육으로 작동하는 데 필요한 다양한 물성들을 골고루 갖춘 경우는 없었다ˮ며 "이번 연구를 시발점으로 실용성 있는 인공 근육 소재가 로봇 산업 및 다양한 웨어러블 장치에 활용할 수 있으며 4차 산업 혁명에 따른 비대면 과학기술에서도 크게 이바지할 수 있을 것이다ˮ라고 말했다.
< 그림 3. 1kg 아령을 들어올리는 인공근육 섬유 다발, 실제 자벌레 움직임보다 빠른 이동속도를 보여주는 인공자벌레 >
신소재공학과 김인호 박사가 제1 저자로 참여한 이번 연구는 이러한 성과를 인정받아 저명한 영국의 과학 학술지 네이처 나노테크놀로지(Nature Nanotechnology)에 지난 10월 27일자로 출간됐었으며, 해당 학술지의 표지 논문으로 선정됐다. 또한 관련 기술에 대한 특허를 국내외에 출원하여 KAIST 교원창업 기업인 ㈜소재창조를 통해 상용화를 진행할 계획이다.
< 그림 4. 국제 학술지 표지 >
신소재공학과 강지형 교수, 기계공학과 유승화 교수, 부산대학교 고분자공학과 안석균 교수가 공동 연구로 참여한 이번 연구는 한국연구재단의 리더연구자지원사업인 다차원 나노조립제어 창의연구단과 기초연구 사업의 지원을 받아 수행됐다.
현재 그린 수소 생산의 한계를 극복할 새로운 수소 생산 시스템을 KAIST 연구진이 개발하여 수용성 전해질을 사용한 물분해 시스템을 활용해 화재의 위험을 차단하고 안정적인 수소 생산이 가능할 것으로 예상된다. 우리 대학 신소재공학과 강정구 교수 연구팀이 우수한 성능의 아연-공기전지* 기반의 자가발전형 수소 생산 시스템을 개발했다고 22일 밝혔다. *공기전지: 일차 전지 중 하나로 공기 중 산소를 흡수해 산화제로 사용하는 전지이며, 수명이 긴 것이 장점이지만 기전력이 낮은 것이 단점임. 수소(H2)는 고부가가치 물질 합성의 원료로 기존 화석연료(휘발유, 디젤 등) 대비 3배 이상 높은 에너지밀도(142MJ/kg)를 지녀 청정 연료로 주목받고 있다. 그러나 현재 수소 생산 방식 대부분 이산화탄소(CO2)를 배출하는 문제가 있다. 아울러 그린 수소 생산은 태양전지, 풍력 등 신재생에너지를 동력원으로 물을 분해해 수소의 생산이 가능하나, 신재생에너지 기반의 동력원은 온도,
2024-10-22퇴행성 질환을 유발하는 아밀로이드 섬유 단백질의 초기 불안정한 움직임과 같은 생명 현상을 분자 수준에서 실시간 관찰이 가능한 기술이 개발되었다. 이를 통해 알츠하이머나 파킨슨 병과 같은 퇴행성 질환의 발병 과정에 대한 실마리를 제공할 수 있을 것으로 기대된다. 우리 대학 신소재공학과 육종민 교수 연구팀이 한국기초과학지원연구원, 포항산업과학연구원, 성균관대학교 약학대학 연구팀과 함께 그래핀을 이용해 알츠하이머 질병을 유발한다고 알려진 아밀로이드 섬유 단백질의 실시간 거동을 관찰할 수 있는 새로운 단분자 관찰 기술(single-molecule technique)을 개발했다고 30일 밝혔다. 단분자 관찰 기술은 단일 분자 수준에서 발생하는 현상을 관찰할 수 있는 기법을 말한다. 생체 과정에서 수반되는 단백질 간의 상호작용, 접힘, 조립 과정 등을 이해하는 데 핵심적인 기술이다. 현재까지 단분자 관찰 기술로는 특정 분자를 식별하기 위한 형광 현미경을 이용해 관찰하거나, 단백질을
2024-01-30우리 대학 신소재공학과 김상욱 교수 연구팀이 2022년 개발한 헤라클레스 인공근육 기술이 세계 최대 화학/소재분야 학술기관인 국제화학연합(IUPAC, International Union of Pure and Applied Chemistry)에서 ‘2023년 10대 유망기술’로 선정되었다고 5일 밝혔다. (그림 1) IUPAC은 전 세계 화학/소재 관련 연구자들의 국제적인 협력과 정보교환을 위해 1919년에 설립된 세계 최대 조직기구로서, 2019년부터 매년 인류가 직면하고 있는 다원적 위기에 대한 해결책을 제시하는 10대 유망기술을 선정해 오고 있다. 인공 근육 기술이 이번에 10대 유망기술로 선정된 것은 사회의 지속가능성을 위한 과학기술적 중요성을 인정받은 것이다. 헤라클레스 인공 근육은 국내에서도 그 중요성을 인정받아 과학기술정보통신부와 나노기술연구협의회가 수여하는 2023년 10대 나노기술에도 선정됐다. (기술명: 그래핀 나노 복합소재를 통해
2024-01-05우리 일상에 스며든 소프트 로봇, 의료기기, 웨어러블 장치 등에 적용시킬때 초저전력으로 구동되며 무게 대비 34배의 큰 힘을 내는 이온성 고분자 인공근육을 이용한 유체 스위치가 개발됐다. 유체 스위치는 유체 흐름을 제어함으로써 특정 방향으로 유체가 흐르게 하여 다양한 움직임을 유발하도록 한다. 우리 대학 기계공학과 오일권 교수 연구팀이 초저전력에서 작동하며 협소한 공간에서 사용할 수 있는 소프트 유체 스위치를 개발했다고 4일 밝혔다. 인공근육은 인간의 근육을 모방한 것으로 전통적인 모터에 비해 유연하고 자연스러운 움직임을 제공해 소프트 로봇이나 의료기기, 웨어러블 장치 등에 사용되는 기본 소자 중 하나이다. 이러한 인공근육은 전기, 공기 압력, 온도 변화와 같은 외부 자극에 반응하여 움직임을 만들어 내는데, 인공근육을 활용하기 위해서는 이 움직임을 얼마나 정교하게 제어하는지가 중요하다. 또한 기존 모터를 기반으로 한 스위치는 딱딱하고 큰 부피로 인해 제한된 공간 내에서
2024-01-04우리 대학이 8일부터 이틀간 국회의원회관에서 ‘2023 혁신창업국가 대한민국 국제심포지엄’을 개최한다. 딥테크 창업기업들은 첨단과학기술을 기반으로 혁신적인 제품과 서비스를 개발하고 경제 성장과 일자리 창출에 핵심적인 역할을 맡고 있다. 또한, 고도의 기술력과 창의력으로 대한민국의 경제 생태계를 혁신적으로 변화시키는 원동력이 되기도 한다. 그러나 기술개발, 인력 확보, 규제, 시장 진입 및 경쟁, 자금 부족 등이 혁신창업기업이 겪는 제약은 여전히 산적해 있다. 이번 행사는 국제심포지엄과 함께 혁신창업기업을 선정해 시상하고 창업기업 체험 부스, 기업 소개, 창업 경진대회 등을 마련해 국내·외 혁신 창업의중요성에 대한 공감대를 형성하고 이를 활성화하는 방안을 모색하고자 마련됐다. 첫날 열리는 국제심포지엄에서는 기업주도형 벤처 캐피털인 어플라이드 벤처스(Applied Ventures)의 아난드 카만나바르(Anand Kamannavar) 글로벌 투
2023-11-08