-
핵산중합효소의 비정상적인 활성 유도 규명
- 금속이온의 고감도 검출 및 새로운 유전자 분석기술로 적용 가능- 화학분야 세계적 학술지 ‘앙게반테 케미誌’12월호 표지논문 선정
우리학교 생명화학공학과 박현규 교수가 핵산중합효소의 비정상적인 활성을 금속이온을 통해 조절하고 이를 이용해 바이오 컴퓨터를 포함하는 미래 바이오 전자 분야의 핵심기술인 로직 게이트를 구현하는 기술을 개발했다고 23일 밝혔다.
DNA를 새롭게 생성해 증폭시키는 효소인 핵산중합효소는 증폭 대상인 목적 DNA와 프라이머(primer)의 염기쌍이 서로 상보적인 짝(A와 T, C와 G)을 이룰 경우에만 가능하다고 알려져 왔었다.
박 교수는 이러한 기존의 개념을 뛰어넘어 특정 금속이 있을 경우에는 상보적인 염기쌍이 아닌 T-T 및 C-C 염기쌍으로부터도 핵산중합효소의 활성을 유도해 핵산을 증폭할 수 있다는 사실을 규명해냈다.
이는 수은 및 은 이온과의 결합을 통해 안정화 된 비 상보적인 T-T와 C-C 염기쌍을 상보적인 염기쌍으로 인식하는 핵산중합효소의 착각 현상에 기인한 것으로, 박 교수는 이를 ‘중합효소 활성 착오(Illusionary polymerase activity)’로 묘사했다.
연구팀은 이 현상을 기반으로 바이오 컴퓨터 등 초고성능 메모리를 가능하게 하는 미래 바이오전자 구현을 위한 핵심기술인 로직게이트를 구현했다.
박현규 교수는 “이번 연구는 기존에 연구되어온 금속 이온과 핵산의 상호작용연구에서 한 걸음 더 나아가 이를 효소활성 유도와 연관시킨 최초의 시도로써, 금속이온의 초고감도 검출 및 새로운 단일염기다형성(single nucleotide polymorphism) 유전자 분석 기술로 적용될 수 있다”고 말했다.
특히, “기존 핵산 기반 기술들과 비교해 비용이 저렴하고 간단한 시스템 디자인을 통해 정확한 로직 게이트 구현이 가능함으로써 분자 수준의 전자소자 연구에 큰 진보를 가져왔다”고 덧붙였다.
한편, 이번 연구는 한국연구재단(이사장 박찬모)이 시행하는 ‘중견연구자지원사업(도약연구)’의 지원을 받아 수행됐으며, 연구의 중요성을 인정받아 화학 분야의 세계적인 학술지인 ‘앙게반테 케미(Angewandte Chemie International Edition)’ 12월호(12월 10일자) 표지논문으로 선정됐다.
2010.12.23
조회수 14465
-
초고체 존재에 대한 새로운 증거 밝혀
- 사이언스 익스프레스 게재, “고체 헬륨이 실제 초고체임을 규명하여 새로운 물질의 존재 증명”-
기체‧액체‧고체를 뛰어넘는 초고체(supersolid) 현상을 처음으로 밝혀낸 KAIST 김은성 교수가 최근 초고체 존재에 대한 논란을 해소하는 새로운 증거를 밝혀내 초고체가 실존한다는 사실을 규명하였다.
김은성 교수(39세, 교신저자)와 최형순 박사(30세, 제1저자)의 주도 하에, 일본 이화학연구소(理化學硏究所, RIKEN) 연구팀이 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 직무대행 김병국)의 리더연구자지원사업(창의연구)의 지원을 받아 수행되었다.
연구결과는 세계 최고 권위의 과학 전문지인 ‘사이언스(Science)’에 게재 승인을 받고, 특히 연구의 중요성을 인정받아 사이언스의 온라인 판인 ‘사이언스 익스프레스(Science Express)’ 11월 19일자에 게재되었다.
김은성 교수는 2004년 고체 헬륨을 극저온(영하 273도)으로 냉각시키면, 고체임에도 불구하고 그 일부가 별다른 저항 없이 자유롭게 흐르는 독특한 물질 상태(초고체)로 존재한다는 사실을 비틀림 진동자(torsion pendulum)를 이용하여 세계 최초로 규명한 초고체 연구의 선구자이다.
그러나 지난 6월 김 교수가 비틀림 진동자를 통해 관측한 현상을 초고체 현상이 아닌, 온도에 따른 고체 헬륨의 고전적․일반적 물성 변화에 기인한 것이라는 주장이 새롭게 제기됨에 따라, 초고체가 과연 존재하는지 여부가 학계의 초미의 관심사로 떠올랐다.
김은성 교수와 최형순 박사 연구팀은 매우 빠른 속도로 고체 헬륨을 회전시켜 초고체 상태가 파괴되는 현상을 직접 관측함으로써 초고체가 실제로 존재한다는 사실을 밝혀냈다.
초고체가 담겨 있는 용기를 회전시킬 때 초고체는 별다른 저항을 받지 않고 자유롭게 흐르기 때문에 용기를 따라 돌지 않는다. 그러나 매우 빠른 속도로 용기를 회전시키면, 초고체 내부에 양자 소용돌이가 발생하고, 이것은 초고체 현상을 유지하는데 필요한 요소를 제거하여 초고체 현상을 파괴할 것으로 예측된다. 이에 반해 고전적 고체는 회전속도에 민감하게 반응하지 않는다.
특히 이번 연구는 국내연구진의 주도하에 이루어졌고 그 결과가 세계 최고 권위지에 발표된 이례적인 값진 연구 성과로서, 우리나라 기초연구의 우수성을 전 세계에 널리 알렸다는 점에서 그 의미가 매우 크다.
이번 연구는 김은성 교수와 최형순 박사가 지난 2008년부터 땀과 노력으로 꾸준히 일궈온 성과로서, 지금까지 사이언스와 같은 세계 최고 학술지에는 저명한 외국학자와의 공동연구가 아닌, 국내연구팀이 주도적(단독 제1저자, 단독 교신저자)으로 논문을 발표한 사례는 드물다.
김은성 교수는 “이번 연구는 카이스트 연구팀의 초고체 연구에 대한 창의적인 아이디어와 일본 연구팀의 첨단 회전식 희석냉각장치를 접목시켜 시너지 효과를 거둔 결과이다. 특히 군 대체 복무기간을 연장하면서까지 전체 실험을 직접 수행한 최형순 박사가 없었다면 이번 연구는 이루어질 수 없었다”고 밝혔다. 또한 이번 연구는 “단순히 초고체 존재에 대한 논란에 종지부를 찍었다는 점뿐만 아니라, 고체 헬륨이 실제 초고체임을 규명하여 새로운 물질의 존재를 확인함으로써 순수과학에 대한 이해의 폭을 넓혔다는데 큰 의미가 있다”고 연구의의를 밝혔다.
2010.11.19
조회수 16943
-
열팽창이 작은 플라스틱 필름 기판 개발
-‘어드밴스드 머티리얼스’표지논문 선정,“자유자재로 휘어지는 디스플레이와 태양전지 상용화 앞당겨”-
자유자재로 휘거나 구부릴 수 있는(flexible) 디스플레이와 태양전지 제작에 필요한 열팽창이 작은(13ppm/oC 이하) 투명한 유리섬유직물* 강화 플라스틱 필름 기판이 국내 연구진에 의해 개발되었다. * 유리섬유직물(glass cloth) : 실처럼 만든 유리섬유를 사용하여 옷감처럼 직조한 유리섬유 강화재로, 강력하고 열팽창이 적어 조선, 건축, 자동차 및 전자산업 등 폭넓게 사용됨
우리학교 배병수 교수가 주도한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 직무대행 김병국)이 추진하는 선도연구센터(ERC)의 지원을 받아 수행되었고, 연구결과는 재료분야 최고 권위의 학술지인 ‘어드밴스드 머티리얼스(Advanced Materials)’ 표지논문(10월 25일)에 선정되는 영예를 얻었다.
배 교수 연구팀은 유리섬유직물과 굴절률이 똑같은 하이브리드 소재 수지를 독자적으로 제작한 후, 이를 유리섬유직물에 함침시켜 열팽창이 작은 투명한 플라스틱 필름 기판을 개발하였다.
차세대 꿈의 디스플레이로 불리는 자유자재로 휘거나 구부릴 수 있는 디스플레이나 미래 생활형 태양전지를 개발하기 위해서, 지금까지 전 세계 연구자들은 투명한 플라스틱 필름 기판을 사용하였다.
그러나 플라스틱 필름은 유리에 비해 온도가 올라가면서 열팽창이 점점 커져 기판 위에 디스플레이나 태양전지를 제작하기 어려워, 열팽창이 작은 투명한 플라스틱 필름 기판 개발이 절실히 요구되었다.
플라스틱의 열팽창을 낮추는 가장 쉬운 방법은 유리섬유직물을 보강하는 것인데, 이것은 플라스틱 안에 유리직물이 들어가므로 불투명해진다.
배 교수팀은 이를 해결하기 위해서, 유리섬유직물과 굴절률이 똑같은 특수한 하이브리드소재 수지를 직접 제작하여, 이를 유리섬유직물에 함침시켜 투명한 플라스틱 필름 기판을 개발하였다. 유리섬유직물과 함침된 하이브리드재료의 굴절률이 정확히 일치하면, 육안으로 전혀 차이를 느낄 수 없어 투명하게 되는 원리를 이용한 것이다.
배 교수팀이 개발한 투명 플라스틱 필름 기판은 유리섬유직물로 보강되었기 때문에 유리의 열팽창계수(9ppm/oC)에 가까운 낮은 열팽창계수(13ppm/oC)를 갖고, 내열성이 우수한 하이브리드소재를 이용하여 높은 온도(250oC 이상)에서도 디스플레이와 태양전지 등의 소자를 제작할 수 있는 장점이 있다.
배 교수팀의 투명 플라스틱 필름 기판은 휘어지는(flexible) 디스플레이와 태양전지의 기판 소재는 물론, 플라스틱의 특성(큰 열팽창과 낮은 내열성)으로 다양하게 사용되지 못하던 응용분야에 다각적으로 활용될 수 있을 것으로 전망된다.
연구팀은 이번에 개발한 투명 플라스틱 필름 기판을 이용하여 LCD나 아몰레드(AMOLED)에 사용되는 휘어지는(flexible) 산화물 박막 트랜지스터 (TFT)와 박막 태양전지를 직접 제작하여 응용 가능성을 높였다.
배병수 교수는 “이번에 개발한 투명 유리섬유직물 강화 플라스틱 기판은 성능도 우수하지만 가격도 저렴하면서 손쉽게 제작할 수 있어, 유리 기판을 대체하여 휘어지는 디스플레이나 태양전지의 상용화를 앞당길 수 있는 핵심기술이다. 앞으로 국내외 산업체, 연구소, 대학들과의 긴밀한 협력으로 다양한 소자들을 제작하여, 기술의 우수성을 검증 받고 활용성을 더욱 확대할 계획이다”라고 밝혔다.
2010.10.25
조회수 17591
-
OLEV, 전자파 안전성 검증받아
- 온라인전기자동차 전자파 측정치, 국제기준보다 훨씬 낮아 -
KAIST(총장 서남표)는 올 해 6월과 9월 두 차례에 걸쳐 온라인전기자동차(OLEV)의 전자파를 측정한 결과 모두 안전성을 검증받았다고 19일 밝혔다.
지난 6월 전자파인체유해성 확인을 위해 한국표준과학연구원에서 서울대공원에 설치된 온라인전기열차를 대상으로 전자파를 측정했으며, 그 결과 0.05~61mG로 국내 기준인 62.5mG(밀리가우스)이내에 들었다.
한국표준과학연구원은 IEC 62233 ‘가전기기 및 유사기기에 대한 자속밀도 측정을 위한 시험조건 규정’에 따라 온라인전기자동차 측면 및 중앙에서부터 일정 거리(30cm)와 높이(5cm~150cm)를 달리하면서 총 22곳의 전자파를 측정했다.
또한, 온라인전기자동차의전자파에 대한 안정성 문제를 제기해왔던 교육과학기술위원회 소속 박영아 의원이 교육과학기술부를 통해 온라인전기자동차의 전자파 재측정을 요구해 지난 13일 또 한 번의 측정이 이뤄졌다. 이번 측정은 박영아 의원실 지정기관인 (주)EMF Safety에서 진행했고 지난 6월과 동일한 열차를 사용했다.
이번 전자파 측정결과도 0~24.1mG로 국내 기준을 만족했으며, 측정 현장에는 측정의 신뢰도를 보장하기위해 박영아 의원실을 비롯한 몇몇 외부 참관인도 이 자리에 함께했다.
참고로, 이 측정결과는 미국 국제전기전자기술자협회(IEEE)가 정하고 있는 전자파 인체보호기준(1,100mG)보다는 훨씬 안전한 수준이다.
현재 온라인전기자동차에 대한 구체적인 전자파 측정방법이 법으로 명시되어 있지 않아 이번 측정에는 박영아 의원이 요청한 대로 IEC 62110 ‘전력설비에 대한 자기장 측정방법’을 따라 온라인전기자동차 측면 및 중앙에서부터 거리 20cm에서 높이(50cm~150cm)를 달리하면서 총 15곳의 전자파를 측정했다.
한편, KAIST 온라인전기자동차는 차량 하부에 장착된 고효율 집전장치를 통해 주행 및 정차 중 도로에 설치된 급전라인으로부터 비접촉 자기유도 방식으로 전력을 공급받아 충전 걱정 없이 운행하는 신개념의 전기자동차 개발 사업이다.
붙임 : 측정 기준 및 방법, 참고사항
<측정기준 및 방법>
○‘전자파 인체보호 기준(방송통신위원회 고시 제2008-37호)’에 명시되어 있는
일반인에 대한 전자파 강도 기준에 근거
(3kHz 이상~150kHz 미만, 자속밀도 6.25μT=62.5mG)
- 온라인전기자동차의 경우, 20kHz 사용으로 자속밀도 기준은 62.5mG임
○IEC* 62233, 가전기기 및 유사기기에 대한 자속밀도 측정을 위한 시험조건규정
○IEC 62110, 전력설비에 대한 자기장 측정 방법
* IEC(International Electrotechnical Commission) : 국제전기표준회의
<참고사항>
국내에서 현재 따르고 있는 3kHz이상~150kHz미만에서 자속밀도를 제정한 국제비전리방사보호위원회(Intenational Commission on Non-Ionizing Radiation Protection, ICNIRP)는 62.5mG를 기준으로 하고 있으며, 미국 국제전기전자기술자협회(Institute of Electrical and Electronics Engineers, IEEE)는 동일한 주파수에서 1,100mG를 기준으로 삼고 있음.
2010.09.24
조회수 15539
-
가상 암세포 실험을 통한 암 전이 핵심회로 규명
- 생체시스템 모델링 및 바이오시뮬레이션 연구의 새로운 가능성을 제시 -
우리학교는 바이오 및 뇌 공학과 조광현교수 연구팀이 IT와 BT의 융합연구인 시스템생물학 연구에 기반을 둔 ‘가상 암세포’ 실험을 통해 암 전이를 유발하는 핵심 분자회로를 규명했다고 14일 밝혔다.
이번 연구를 통해 알킵(RKIP)이 매개가 되는 암 전이 조절과정과 핵심회로가 규명됐다. 이로써 향후 이를 표적으로 하는 항암제 개발 등 IT를 이용한 생명과학 응용연구의 중요한 발판을 마련하게 됐다.
특히, 융합연구를 통해 생체시스템 모델링 및 바이오시뮬레이션 연구의 새로운 가능성을 제시하게 됐다.
상피세포가 중간엽세포로 변화하는 과정은 종양세포의 전이단계에서 일어나는 매우 중요한 과정이다. 이 과정의 주요 특징 가운데 하나는 세포 간 결합을 조절하는 단백질인 이카드헤린(E-cadherin)의 양이 급격히 줄어드는 것이다.
이카드헤린의 발현량은 어크(ERK)와 윈트(Wnt)가 포함된 다양한 신호전달경로에 의해 조절되는 것으로 알려져 있다. 하지만, 이들 신호전달경로는 다중결합 피드백회로에 의해 서로 복잡하게 얽혀 있어 실험적인 방법으로는 이들의 동역학 특성과 숨겨진 조절 메커니즘을 분석하는 것이 매우 어려운 것으로 여겨져 왔다.
조광현 교수 연구팀은 이에 대한 수학모형을 개발하고 대규모 컴퓨터시뮬레이션 분석을 통해 이들 결합 피드백회로의 복잡한 상호작용으로 인해 일어날 수 있는 다양한 생명현상을 규명했다.
또한, 어크에 의한 알킵(RKIP) 인산화와 스네일(Snail)에 의한 알킵 전사억제 과정으로 구성된 결합 양성피드백 회로가 임계점 이상의 자극세기에서만 이카드헤린이 급격하게 발현되도록 조절함으로써 외부 노이즈에 강건한 스위칭 동작을 유발한다는 것을 규명했다.
아울러 알킵이 스네일과 슬러그(Slug)의 발현을 억제함으로써 이카드헤린의 발현이 증가되고, 이 때문에 전이과정이 억제될 수 있음을 보였다.
지금까지 전이를 일으키는 종양세포에서 알킵의 발현이 현저하게 감소되었다는 많은 임상적 보고가 있었지만, 그 근본적인 메커니즘은 알려져 있지 않았다.
한편, 이번 연구는 교육과학기술부가 지원하는 한국연구재단의 도약연구사업과 기초연구실육성사업으로 수행됐으며, 연구결과는 순수 컴퓨터시뮬레이션 결과임에도 이례적으로 동물 또는 임상실험의 결과가 주로 게재되는 암 전문 학술지 ‘캔서 리서치(Cancer Research)’지 9월 1일자에 게재됐다.
<그림설명>암 전이과정을 조절하는 세포내 분자들 간의 다중결합 피드백 회로의 동역학 특성 및 조절메커니즘의 분석결과. 이 그림은 암 전이 조절회로에 대한 개념도와 시뮬레이션 분석에 사용된 방법 및 결과를 설명한 것이다.
A. 암 전이과정을 조절하는 세포내 주요 신호전달 네트워크의 예시.
B. 전자공학적 논리회로 분석기법을 이용해 암전이 조절회로를 정량적으로 모사하고 핵심 메커니즘을 분석하는 과정.C. 대규모 컴퓨터시뮬레이션 분석을 통해 알킵에 의해 매개되는 결합양성 피드백 회로가 노이즈가 주어지더라도 강건하게 이카드헤린의 스위칭 동작을 유발함을 보이는 예시.
<용어설명>
◯중간엽세포: 발생단계의 중배엽에서 기원된 결합조직세포로서 여러 다른 결합조직세포로 분화할 수 있는 능력이 있는 세포.
◯EMT: 상피세포가 중간엽세포로 변화하는 과정(Epithelial Mesenchymal Transition).
◯어크(ERK): 세포의 유사분열 신호를 전달하는 단백질의 한 종류.
◯윈트(Wnt): 세포의 유사분열 신호를 전달하는 단백질의 한 종류. 특히 배아의 발생단계에서 중요한 역할을 함.
◯이카드헤린(E-cadherin): 세포 접합에 중요한 역할을 하는 단백질의 한 종류.
◯알킵(RKIP): 유사분열 신호를 조절하는 단백질의 한 종류. 특히, 암의 전이과정에서 중요한 역할을 하는 것으로 알려져 있음.
◯스네일(Snail): 이카드헤린의 발현을 억제함으로써 암 전이 과정을 촉진시키는 역할을 하는 단백질.
◯분자회로: 세포내 유전자, 단백질 등의 분자간 상호작용을 나타낸 회로
◯상피세포: 동물의 몸 표면이나 내장기관의 내부 표면을 덮고 있는 세포
◯전이단계: 암이 다른 부위로 퍼지는 단계
◯다중결합 피드백회로: 피드백회로가 2개 이상 중첩된 구조
2010.09.14
조회수 17633
-
10nm대의 초미세 나노패터닝 新기술 개발
- 나노 레터스 誌 발표, 대면적 10nm대 나노패턴의 실용화 가능성 열어 -
복잡하고 다양한 10nm대의 고분해능 나노패턴을 대면적에 효율적으로 제작할 수 있는 기술이 국내연구진에 의해 개발되었다.
KAIST 정희태 교수가 주도한 이번 연구결과는 나노분야 세계적인 학술지인 ‘나노 레터스(Nano Letters)’에 온라인으로 최근 (8. 17) 게재되었다.
이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 박찬모)이 시행하는 ‘세계수준의 연구중심대학(WCU) 육성사업’과 ‘중견연구자지원사업 도약연구’의 지원을 받아 수행되었다.
정희태 교수 연구팀은 차세대 반도체, 디스플레이 및 나노전자 소자개발에 핵심기술인 10nm대의 고분해능 패턴을 원하는 모양과 크기로 쉽게 대면적에 제작할 수 있는 기술을 개발하였다.
연구팀은 전압차를 이용하여 아르곤(Ar) 입자를 가속시켜, 원하는 목적층에 물리적 충격을 줌으로써 목적층의 물질을 제거하는 이온충격(ion-bombardment) 공정 중에서 나타나는 2차 스퍼터링 (secondary sputtering)이라는 현상을 적용하였다.
이 현상은 이온충격(ion-bombardment)으로 물리적 식각을 할 때 목적층의 물질이 다양한 각분포로 이탈하여 마스크 패턴의 옆면에 흡착하는 현상을 이용한 것으로서, 선 모양, 컵 모양, 가운데가 비어있는 실린더(Hole-cylinder) 모양, 삼각 터널(triangle tunnel) 등 다양한 모양을 가지며, 최대 종횡비(high-aspect-ratio) 20까지 높이를 간단하게 제어할 수 있다.
이렇게 제작된 패턴은 웨이퍼, 유리기판, 쿼츠(Quartz), 금속판 뿐만 아니라 PET필름과 같은 플렉서블 기판에서도 공정이 가능하기 때문에 범용적으로 사용되어 질 수 있다.
연구팀은 투명한 쿼츠셀 위에 금 선 패턴을 제작하여 ITO기판을 대체할 수 있을 만큼 높은 성능을 갖는 투명전극을 제작하여 태양전지에 응용함으로써 다양한 광학/전기적 나노소자에 응용할 수 있음을 보였다.
동 연구는 기존의 리소그라피기술로 제작된 패턴의 해상도를 능가하는 10nm급 패턴을 제작할 수 있는 신기술로 거의 모든 금속(금, 은, 알루미륨, 크롬)과 무기물(ZnO, ITO, SiO2)에 적용가능하며, 기존의 패터닝 방법과 비교하여 낮은 공정비용과 간단한 실험공정으로 고해상도 패턴을 대면적에 균일하게 제작할 수 있다는 장점이 있다.
정희태 교수는 “10nm급의 고해상도 미세패턴 제작기술은 미래산업 전반에 걸쳐 매우 중요한 기술군으로, 그동안 나노분야에서 극복해야 할 핵심과제였습니다. 본 연구는 이러한 문제점을 비교적 간단한 방법으로 극복하고 향후 태양광 발전, 반도체 및 바이오소자의 효율증대에 적용가능한 기술”이라고 연구의의를 설명하였다.
2010.09.08
조회수 17186
-
암 성장과 전이를 억제하는 혈관신생차단제 개발
-캔서 셀誌 표지논문 선정, “부작용 적고 효과 탁월한 신개념 항암치료제 개발 가능성 열어”-
국내 연구진이 암 성장과 전이에 필수적인 혈관신생*에 관여하는 새로운 인자를 발견하고 이를 효과적으로 차단하는 제재를 개발하여, 신개념 암 치료제 개발에 전기를 마련하였다. * 혈관신생(angiogenesis) : 몸속에 새로운 혈관이 만들어지는 현상으로, 악성 종양(암)의 성장과 전이에 매우 중요한 과정
우리학교 의과학대학원 고규영 교수와 삼성의료원 남도현 교수가 주도한 이번 연구는 교육과학기술부(장관 안병만)와 한국연구재단(이사장 박찬모)이 추진하는 중견연구자지원사업(도약연구)과 삼성의료원의 난치암정복연구사업의 지원을 받아 수행되었다.
이번 연구결과는 암 분야 최고 권위의 학술지인 ‘캔서 셀(Cancer Cell, IF=25.3)’ 표지 논문(8월 17일자)에 선정되었으며, 국내 연구진이 주도한 연구업적이 “캔서 셀”에 표지 논문으로 게재된 것은 이번이 처음이다.
고규영 교수팀은 기존의 혈관성장인자*(VEGF) 이외에 또 다른 성장인자(안지오포이에틴-2, Ang2)가 혈관신생을 촉진한다는 사실을 새롭게 발견하고, 두 인자를 효과적으로 차단하는 “이중혈관성장차단제”를 개발하는데 성공하였다. * 혈관성장인자 : 혈관신생을 촉진하는 인자로, 지금까지 VEGF가 대표적인 인자로 인식되었으나, 고 교수팀이 Ang2도 암의 혈관신생을 촉진한다는 사실을 새롭게 발견함.
지금까지 의학계에서는 VEGF가 혈관신생에 중추적인 역할을 수행하는 것으로 인식하여, 이를 억제하는 항암제인 아바스틴(Avastin)을 개발하여 암 환자들에게 투여해왔다. 그러나 항암 효과가 크지 않고 오히려 암을 촉진시키는(전체 환자 50%) 등 부작용이 적지 않아 치료에 어려움이 있었다.
고 교수팀은 VEGF 억제제를 투여하자 Ang2가 급격히 증가한다는 사실을 발견하고, VEGF과 Ang2을 동시에 차단하는 “이중혈관성장 차단제”를 제작하여 환자에게 투여한 결과, 기존의 VEGF만을 차단했던 제재보다 암 성장(2.1배)과 전이(6.5배)를 효과적으로 차단한다는 사실을 검증하였다.
고 교수는 “Ang2가 VEGF 못지않게 중요한 혈관신생인자라는 사실을 새롭게 확인하여, 두 인자를 동시에 효과적으로 차단하는 ‘이중 혈관성장차단제’ 개발에 성공함으로써, 효과는 탁월하지만 부작용은 적은 신개념 항암치료제 신약 개발에 새로운 가능성을 제시하였다”라고 연구의의를 밝혔다.
2010.08.18
조회수 16234
-
김승우교수, 정밀거리측정기술 개발
- 네이처 포토닉스誌 발표, “미래우주핵심기술 개발을 통한 우주선진국 도약 가능성 열어”-
수 백 km의 거리에서 1nm*의 차이까지 정확히 측정할 수 있는 정밀거리 측정기술이 국내 연구진에 의해 개발되었다.
* 1nm(나노미터) : 10억분의 1m
우리학교 기계공학과 김승우 교수가 주도한 이번 연구는 교육과학기술부(장관 안병만)와 한국연구재단(이사장 박찬모)이 추진하는 중견연구자지원사업 (도약연구)과 우주원천기초기술개발사업의 지원을 받아 수행되었고, 연구결과는 광학 분야 최고 권위지인 ‘네이처 포토닉스(Nature photonics)’ 온라인 속보(8월 8일자)에 게재되었다.
김 교수팀은 지금까지 장거리 측정의 한계점이던 1mm 분해능*을 1nm 분해능으로 측정할 수 있는 획기적인 정밀거리 측정기술 개발에 성공하였다.
* 분해능(分解能, resolving) : 측정기가 검출할 수 있는 가장 작은 단위의 물리량을 의미하며, 1mm 분해능은 수백 km의 거리에서 1mm의 차이를 측정할 수 있음.
특히 이 기술은 일반적으로 장거리를 측정할 때 나타나는 모호성(ambiguity)도 극복하여, 이론적으로 100만km를 모호성 없이 측정할 수 있다.
김 교수팀은 실제 700m의 거리에서 150nm의 분해능 구현에 성공하였고, 우주와 같은 진공상태에서는 1nm의 분해능 구현도 가능하다는 사실을 실험을 통해 검증하였다.
이번 연구결과로 향후 지구와 유사한 행성을 찾기 위한 편대위성군 운용* 및 위성 또는 행성 간의 거리측정을 통한 상대성 이론 검증과 같은 미래우주기술개발에 한 발 다가서게 되었다.
* 편대위성군운용(formation flying of multiple satellites) : 여러 대의 소형위성을 동시에 쏘아 올려 위성간의 거리를 측정함으로써, 지구와 유사한 행성을 찾거나 상대성이론 검증에 활용
위성 또는 행성 간의 정밀거리측정은 지구와 유사한 행성을 찾거나 상대성 이론을 검증하는 핵심기술로, 우주 선진국에서는 이 기술을 개발‧보유하기 위해 경쟁적으로 연구하고 있다.
김승우 교수는 “장거리를 1nm 분해능으로 측정할 수 있는 기술개발로, 우리나라도 편대위성군운용과 같은 미래우주핵심기술인 정밀거리측정 기술을 보유하게 되어, 명실 공히 우주 선진국으로 도약할 수 있는 기반을 마련하게 되었다”라고 연구의의를 밝혔다.
2010.08.17
조회수 16512
-
융합연구로 무전원 무선 키보드 개발
- 개발한 무전원 무선키보드의 상용화를 위한 기술이전-
- 학문 분야를 초월한 융합연구로 탄생 -
우리학교 IT융합연구소 미래디바이스팀이 융합연구를 통해 무전원 무선 키보드를 최근 개발했다.
무전원 무선 키보드 기술은 지난 2007년 우리학교 구성원들을 대상으로 KAIST 연구원(KAIST INSTITUTE, KI)이 개최한 ‘미래단말 아이디어 공모전’ 수상작이다. 원내 구성원들의 참여를 이끌어낸 점에서 더욱 의미가 크다.
공모전 수상작 아이디어를 구체화한 이번 연구는 KI의 IT융합연구소 미래디바이스팀(팀장 정성관)과 여러 학문분야의 우리대학 교수들로 구성된 ‘미래단말 TFT’를 만들어 학문 분야를 초월한 융합연구로 진행됐다.
이 키보드는 900MHz 수동형 RFID 태그(Passive RFID tag) 기술을 이용해 별도의 전원 공급 장치를 탑재하지 않은 키보드의 키 누름을 무선으로 인식할 수 있는 기술로 만들어졌다. 키보드 키 구조에 맞는 소형 RFID 태그 스위치 구조 및 필름PCB와 유연한 구조를 가진 물질을 이용해 얇고 유연한 형태의 휴대성이 높다.
이러한 무전원 무선 키보드는 전기및전자공학과 조동호 교수의 수동형 RFID(passive RFID) 방식의 키 인식 기술, 물리학과 윤춘섭 교수의 유연한 구조를 갖는 물질을 개발 기술과 IT융합연구소의 태그 구조 및 인식 소프트웨어 기술의 융합으로 만들어진 결과이다.
새로 개발한 키보드는 기존의 키보드 제품과 달리 건전지를 넣지 않고도 사용이 가능하며 선이 연결되지 않아도 된다. 작고 가벼워 휴대 및 사용이 편리해 제품화에 성공하면 관련 시장에서 크게 각광받을 것으로 기대되고 있다.
위 기술을 통해서 유비쿼터스 컴퓨팅 및 통신 환경을 실현하고 접는 키보드의 새로운 시장을 개척할 뿐 아니라, 세계시장에서 모바일 디바이스 산업 경쟁력을 확보하는데 한걸음 다가갈 수 있을 것으로 기대된다.
김상수 연구원장은 “아이디어 공모전 개최와 TFT 운영과 같은 적극적인 활동 덕분에 무전원 무선 키보드와 같은 창의적이고 훌륭한 기술이 개발될 수 있었다”며 “창의적인 아이디어와 연구아이템 발굴을 위해 앞으로도 꾸준히 아이디어 공모전을 개최하고 융합연구를 통한 신기술 개발에 노력 하겠다”고 말했다.
우리학교는 이 무전원 무선 키보드의 상용화를 위해 (주)한양세미텍에 최근 기술 이전한 바 있다.
KI는 융합연구 분야의 세계적 연구개발 성과를 통해 대학의 인지도를 높이고, 국가 경쟁력 향상에 기여할 목적으로 서남표 총장이 추진해온 역점 전략사업 중 하나다.
현재 바이오, IT융합, 시스템설계, 엔터테인먼트공학, 나노, 청정에너지, 미래도시, 광기술 등 8개 연구소에서 25개 학과 230여명의 교수가 참여해 활발한 융합연구를 수행하고 있다.
<용어설명>
○ Passive RFID : RFID(Radio Frequency IDentification)는 기존의 바코드 형태의 광학식 ID 식별기술의 한계(가시성, 정보량, 인식속도 등)을 극복하기 위해 개발된 무선 ID 식별 기술로써, 기본적으로 식별정보(ID)를 갖고 있는 RFID tag와 이 tag를 인식하고 tag에 저장되어 있는 정보를 무선으로 읽어올 수 있는 RFID reader로 구성 된다.이때 RFID tag의 특성에 따라서 tag가 베터리 등의 전원 공급 장치를 갖고 있는 active RFID 방식과 별도의 전원 공급 장치를 갖고 있지 않은 passive RFID방식으로 구별된다.
(Active RFID 방식은 온도, 습도 등의 정보를 지속적으로 모니터링할 필요가 있는 분야나 긴 인식거리가 필요한 분야에서 주로 쓰이며, 본 무전원 무선 키보드의 동작 특성을 만족하기에 적합하지 않은(내장 전원 요구) 특성을 갖고 있으므로 별도의 전원을 요구하지 않는 Passive RFID 기술을 사용하여 무전원 무선 키보드를 개발하였다.)
○ RFID tag : RFID 시스템에서 식별하고자 하는 대상체를 구별하기 위한 식별자(ID) 정보를 갖고 있는 장치로서 무선 전파를 수신 및 응답하기 위한 안테나 부분과 수신된 전파로부터 전력을 획득하고 정보 처리 및 응답 동작을 수행하는 tag chip부분으로 구성되어 있다.
○ 필름 PCB 구조의 substrate : 전자 소자들을 연결하여 적절한 전자회로를 구성하기 위해서는 각 소자들을 연결해 주는 "회로"(연결선)를 만들어야 하는데, 동작 특성 만족, 소형화 및 대량 생산 등을 위해 인쇄기판(PCB: Printed Circuit Board) 기술을 이용한다. 일반적인 PCB들은 FR4 등의 단단한 특성을 갖는 재질로 만들기 때문에 형태 변형 등에 강한 특성을 갖는다. 이에 반해 얇은 필름형태의 폴리이미드(Polyimide)를 사용하여 제작되는 PCB(f-PCB: flexible-PCB, Film-PCB)는 폴리이미드의 유연한 특성으로 인해 FR4 등의 단단한 PCB들 사이의 연결회로로서 많이 사용되고 있다.
본 무전원 무선 키보드는 높은 휴대성을 지원하기 위해 얇고 쉽게 접을 수 있는 형태로 제작되었으며 이를 위해 단단한 형태의 FR4가 아닌 유연한 특성을 갖는 폴리이미드 기반의 필름 PCB로 제작되었다.
또한, 필름 PCB를 이용한 유연한 형태의 특성을 키보드 완성품에서도 유지하기 위해서, 회로부분을 지탱하고 전체 키보드 외형을 구성하는 물질(substrate)로 변형에 대한 내구성이 높고 수분/산소 등에 대한 투과도가 낮은 재질(윤춘섭 교수)을 이용하여 전체 키보드 외형을 제작하였다.
2010.07.28
조회수 16950
-
KAIST, 미국 TI社 지원받아 미래 CPU개발
- 전기 및 전자공학과 유회준교수 연구실, 공식 TI Lab 지정 -
우리학교 전기및전자공학과 유회준 교수 연구실이 공식 TI Lab(Texas Instruments Lab.)으로 선정돼 연구비와 3억원 상당의 연구장비를 지원받는다.
미국의 종합 반도체 생산업체인 Texas Instruments社(이하 TI社)는 유회준 교수 연구실과 ‘사람의 뇌를 모방한 매니코어 프로세서 칩(Many-core Processor Chip) 개발’을 위한 협약을 7월초 가진 바 있다.
21일에는 박현욱 KAIST 전기및전자공학과장, 유회준 전기및전자공학과 교수와 유혜경 TI사 한국지부 반도체영업부장은 유회준 교수 연구실에서 TI Lab 선정 현판식을 가졌다.
최근 하나의 칩상에 수십 개 이상의 프로세서를 집적하는 미래형 CPU가 미국 인텔사 등을 중심으로 활발하게 연구되고 있다. KAIST 전기 및 전자공학과 유회준 교수팀은 인텔 기술을 뛰어 넘는 새로운 CPU기술을 개발해오고 있다.
TI사 관계자는 “KAIST와의 연구 협력을 통해 미래 세계를 이끌어갈 지능형 컴퓨터의 핵심 기술인 매니코어 프로세서개발에 새로운 전기를 마련할 계획”이라며 “유회준 교수 연구실과의 기술 교류를 통해 차세대 기술 개발을 선도할 수 있을 것으로 기대 한다”고 밝혔다.
유 교수는 “이번 기회로 미래 CPU를 국내 기술이 선도할 수 있는 계기로 삼고 싶다”고 말했다.
유 교수는 면적을 적게 소모하며 계산 속도가 뛰어난 아날로그 회로와 전력 소모가 낮고 정밀도가 높은 디지털 회로를 한 칩으로 하는 혼합형 회로를 통해 인체의 뇌를 모방하는 신경회로망을 설계하였으며, 이를 Many-core Processor에 일부분으로 삽입하여 인간의 뇌의 종합적인 지능을 단순처리에 능한 종래의 프로세서에 접목시키는 연구를 해오고 있다. 특히 이를 이용해 지능형 감시 카메라, 로봇 및 자동차 등의 ‘눈’을 한층 더 똑똑하게 만들어 2008년부터 매년 미국 샌프란시스코에서 발표해오고 있다.
국제 전기전자공학자학회(IEEE) 석학회원이며 세계 최고 권위의 국제 고체회로학회(ISSCC)의 아시아 지역 회장이기도 한 유 교수는 미국의 국제적인 출판사인 Wiley사에서 올해 ‘Mobile 3D Graphics SoC’라는 책을 출간했으며 2년전에는 미국 CRC 출판사에서 ‘Low-Power NoC for High Performance SoC Design’이라는 책을 펴낸 바 있다.(끝)
<용어설명>
○ Texas Instruments社 : 인텔, 삼성, 도시바와 함께 세계 4대 반도체 엔진 생산업체 중 하나
○ Many-core Processor : 10개 이상의 코어를 탑재하여 만든 프로세서, 싱글코어에 비해 처리 속도가 빠르고 전력 소모량이 적다.
○ 신경회로망 : 인간의 뇌가 물체를 인식하는 방법을 모사하여 설계한 칩으로 기존의 복잡한 연산과정을 거치지 않기 때문에 컴퓨터의 물체 인식 처리 시간을 20배 이상 빨라지게 하였으며 전력 소모량도 크게 줄였다.
2010.07.22
조회수 18360
-
CT대학원, KBS "구미호 여우 누이뎐"CG제작
지난 5일 첫 방송된 KBS-2TV 납량미니시리즈 ‘구미호 여우누이뎐’이 한국판 ‘트와일라잇’이라는 기대이상의 호평 속에 시청률이 꾸준한 상승세를 보이고 있는 가운데 이 드라마에 등장했던 호랑이와 까마귀를 사실적이고도 자연스럽게 표현한 컴퓨터그래픽(CG) 기술이 국내대학의 연구센터에서 자체개발한 순수 국산기술이라는 점에서 많은 관심을 끌고 있다.
지난 5일(1회)과 12일(3회) 각각 방송된 ‘구미호 여우누이뎐’에 등장했던 화제의 호랑이와 까마귀 군중씬의 CG 제작을 담당한 국내대학은 우리학교 문화기술대학원 비주얼 미디어 연구센터(Visual Media Lab, 센터장: 노준용 교수).
이 센터는 지난 3년간 ‘Digital Creature의 사실적인 움직임에 대한 연구’라는 제목으로 파충류와 포유류, 조류 등의 디지털 크리쳐를 사실적으로 만들어 내며 이를 쉽고 빠르게 TV나 영화 등 문화콘텐츠에 적용시키는 연구를 진행해왔다.
이번 ‘구미호 여우누이뎐’에서 호랑이와 히치콕의 느낌을 연상시키는 까마귀가 등장한 장면이 그동안의 연구결과를 활용한 첫 번째 케이스로 컴퓨터그래픽스 연구 성과물이 상업 콘텐츠에 바로 적용될 수 있다는 가능성을 보여줬다는 점에서 관련업계로부터 높은 평가를 받고 있다.
‘구미호 여우누이뎐’은 한국인에게 가장 매혹적이고 익숙한 공포 캐릭터의 하나인 구미호를 소재로 KBS-2TV가 마련한 납량 특집극 인데 지난 7월 5일 첫 방송을 시작으로 매주 월․화 16부작으로 기획, 제작됐다.
‘가필드’, ‘나니아연대기’, ‘수퍼맨 리턴즈’ 등 여러 편에 달하는 할리우드 대작의 영상특수효과 개발에 참여한 경력을 지닌 노준용 교수가 책임을 맡고 있는 비주얼 미디어 연구센터의 성과는 단지 여기에 그치지 않는다.
이 센터 소속 학생들과 연구원들이 작년에 제작한 2분짜리 단편 CG 애니메이션 ‘Taming The Cat(고양이 길들이기)’은 지난 6월 호주 멜버른에서 열린 세계적인 국제 애니메이션 페스티벌인 ‘제10회 MIAF(Melbourne International Animation Festival)"를 시작으로 4개의 해외 유명 애니메이션 페스티벌에 초청작으로 상영되거나 상영될 예정이다.
이밖에 현재 한국콘텐츠진흥원이 주관하는 단편 애니메이션 프로젝트를 비롯, 최근 각광받고 있는 3D 영상관련 기술을 개발하는 프로젝트를 진행하는 등 다양한 연구프로젝트를 수행중이다.
노 교수는 “아무리 가치가 있는 콘텐츠라도 문화기술(CT)를 통해 잘 다듬고 정리하지 않으면 그 진가를 제대로 발휘할 수 없다”며 과학기술과 문화콘텐츠를 하나로 접목시키는 문화기술(CT)의 중요성과 CT분야 국내기술 개발을 위한 고급인력 양성의 필요성을 강조했다.
2010.07.20
조회수 19376
-
김상규교수 화학반응의 비밀을 밝히다
네이처 케미스트리誌 발표, "화학반응을 원하는 대로 제어할 수 있는 방법 개발 가능성 열어"
화학반응의 핵심적인 개념이지만, 지난 60년간 학계에서 이론적으로만 예측되었던 원뿔형 교차점(conical intersection)의 존재와 분자구조가 국내연구진에 의해 실험적으로 규명되었다.
우리학교 김상규 교수와 임정식 박사가 주도한 이번 연구는 교육과학 기술부(장관 안병만)와 한국연구재단(이사장 박찬모)이 추진하는 중견 연구자지원사업(도약연구)과 우수연구센터(SRC)사업의 지원을 받아 수행되었고, 연구결과는 화학분야 세계 최고 권위의 과학 전문지인 ‘네이처 케미스트리(Nature Chemistry)’지 온라인 속보(7월 4일자)에 주요 논문으로 게재되었다.
김상규 교수 연구팀은 지금까지 이론적으로만 존재했던 원뿔형 교차점을 실험적으로 구체화하고, 화학반응의 핵심이론을 검증했으며, 화학 반응을 제어하는 새로운 방법론 구축에 성공하였다.
원뿔형 교차점은 화학반응은 물론이고, 우리 눈의 망막에서 일어나는 광이성질체화(光異性質體化)* 반응 및 DNA의 강한 자외선 보호 메커니즘 등 화학과 의학 문제를 설명하는데 필수적인 매우 중요한 화학적 개념이다. ※ 광이성질체화(photoisomerization) : 분자가 빛을 흡수하여 들뜬상태를 거쳐 이성질체화를 일으키는 현상
학계는 눈 깜짝할 사이에 사라지고, 다차원적 위치에너지의 복잡한 구조를 지닌 ‘화학반응의 특이점’에 접근하는 것이 사실상 불가능해, 지금까지 원뿔형 교차점의 존재를 실험적으로 규명하기 위해 무수히 시도하였지만 실패하였다.
김상규 교수팀은 서로 다른 두 개의 전자적 양자상태가 화학반응을 하면서 중첩하는 지점에 발생한 원뿔형 교차점을 관측하고, 에너지 위치와 자세한 분자구조를 유추해냈다.
김 교수팀은 레이저와 분자선 기술을 사용하여 분자의 특정 양자 상태에서 일어나는 화학반응의 자세한 동역학적 움직임을 살펴본 결과, 두 개의 서로 다른 전자적 양자상태가 중첩될 때 뚜렷한 공명 (resonance)현상이 발생하며, 이것은 원뿔형 교차점에 의한 것임을 확인하였다.
김상규 교수는 “화학반응에서 전자와 핵 사이에 상호작용이 가장 크게 일어나는, 화학반응의 핵심개념인 원뿔형 교차점을 최초로 관측한 점은 이번 연구의 가장 큰 성과로, 향후 화학반응을 원하는 대로 제어하여, 치료 및 제약 등 다각적으로 활용될 수 있는 원천적 기초지식 기반을 마련하였다”라고 연구의의를 밝혔다.
2010.07.06
조회수 18914