< (왼쪽부터) 우리 대학 산업및시스템공학과 박찬영 교수, 우리 대학 산업및시스템공학과 이남경 석사과정, 포항공과대학교 현동민 박사, 우리 대학 산업및시스템공학과 이준석 석사과정 >
최근 다양한 분야 (소셜 네트워크 분석, 추천시스템 등)에서 그래프 데이터 (그림 1) 의 중요성이 대두되고 있으며, 이에 따라 그래프 신경망(Graph Neural Network) 기술을 활용한 서비스가 급속히 증가하고 있다. 서비스 구축을 위해서는 심층 학습 모델을 훈련해야 하며, 이를 위해서는 충분한 훈련 데이터를 준비해야 한다. 특히 훈련 데이터에 정답지를 만드는 레이블링(labeling) 과정이 필요한데 (예를 들어, 소셜 네트워크의 특정 사용자에 `20대'라는 레이블을 부여하는 행위), 이 과정은 일반적으로 수작업으로 진행되므로 노동력과 시간이 소요된다. 따라서 그래프 신경망 모델 훈련 시 데이터가 충분하지 않은 상황을 효과적으로 타개하는 방법의 필요성이 대두되고 있다.
< 그림 1. 그래프 데이터 예시 >
우리 대학 산업및시스템공학과 박찬영 교수 연구팀이 데이터의 레이블이 없는 상황에서도 높은 예측 정확도를 달성할 수 있는 새로운 그래프 신경망 모델 훈련 기술을 개발했다고 25일 밝혔다.
정점의 레이블이 없는 상황에서 그래프 신경망 모델의 훈련은 데이터 증강을 통해 생성된 정점들의 공통된 특성을 학습하는 과정으로 볼 수 있다. 하지만 이러한 정점의 공통된 특성을 학습하는 과정에서, 기존 훈련 방법은 표상 공간에서 자신을 제외한 다른 정점들과의 유사도가 작아지도록 훈련을 한다. 하지만 그래프 데이터가 정점들 사이의 관계를 나타내는 데이터 구조라는 점을 고려했을 때, 이런 일차원적인 방법론은 정점 간의 관계를 정확히 반영하지 못하게 된다.
박 교수팀이 개발한 기술은 그래프 신경망 모델에서 정점들 사이의 관계를 보존해 정점의 레이블이 없는 상황에서 모델을 훈련시켜 높은 예측 정확도를 달성할 수 있게 해준다.
KAIST 산업및시스템공학과 이남경 석사과정이 제1 저자, 현동민 박사, 이준석 석사과정 학생이 제2, 제3 저자로 참여한 이번 연구는 최고권위 국제학술대회 `정보지식관리 콘퍼런스(CIKM) 2022'에서 올 10월 발표될 예정이다. (논문명: Relational Self-Supervised Learning on Graphs)
기존 연구에서는 정점의 레이블이 없는 상황에서 정점에 대한 표상을 훈련하기 위해 표상 공간 내에서 자기 자신을 제외한 다른 정점들과의 유사도가 작아지도록 훈련을 한다. 예를 들어서, 소셜 네트워크에 A, B, C 라는 사용자가 존재할 때, A, B와 C가 표상 공간에서 서로 간의 유사도가 모두 작아지도록 모델을 훈련하는 것이다. 이때 박 교수팀이 착안한 점은 그래프 데이터가 정점 간의 관계를 나타내는 데이터이므로 정점 간의 관계를 포착하도록 정점의 표상을 훈련할 필요가 있다는 점이었다.
< 그림 2. 연구팀에서 개발한 “관계 보존 학습” 방법론. 기존 방법론과 달리 데이터 증강 기법을 통해 생성된 두 개의 그래프를 기반으로 노드들 사이의 관계를 보존하면서 모델이 학습된다. 이를 통해 그래프 데이터가 나타내는 관계를 잘 학습하여 예측 정확도가 향상됨을 다양한 실험을 통해서 입증하였다. >
즉, A, B와 C 서로 간의 유사도가 모두 작아지게 하는 훈련 메커니즘과는 달리, 실제 그래프상에서는 이들이 연관이 있을 수 있다는 점이다. 따라서 A, B와 C 사이의 관계를 긍정/부정의 이진 분류를 통해 표상 공간에서 유사도가 작아지도록 훈련을 하는 것이 아닌, 이들의 관계를 정의해 그 관계를 보존하도록 학습하는 모델을 연구팀은 개발했다(그림 2). 연구팀은 정점 간의 관계를 기반으로 정점의 표상을 훈련함으로써, 기존 연구가 갖는 엄격한 규제들을 완화해 그래프 데이터를 더 유연하게 모델링했다.
< 그림 3. 연구팀이 제안하는 관계 보존 학습 모델의 구조 >
연구팀은 이 학습 방법론을 `관계 보존 학습'이라고 명명했으며, 그래프 데이터 분석의 주요 문제(정점 분류, 간선 예측)에 적용했다(그림 3). 그 결과 최신 연구 방법론과 비교했을 때, 정점 분류 문제에서 최대 3% 예측 정확도를 향상했고, 간선 예측 문제에서 6%의 성능 향상, 다중 연결 네트워크 (Multiplex network)의 정점 분류 문제에서 3%의 성능 향상을 보였다.
제1 저자인 이남경 석사과정은 "이번 기술은 데이터의 레이블이 부재한 상황에서도 그래프 신경망을 학습할 수 있는 새로운 방법ˮ 이라면서 "그래프 기반의 데이터뿐만이 아닌 이미지 텍스트 음성 데이터 등에 폭넓게 적용될 수 있어, 심층 학습 전반적인 성능 개선에 기여할 수 있다ˮ고 밝혔다.
연구팀을 지도한 박찬영 교수도 "이번 기술은 그래프 데이터상에 레이블이 부재한 상황에서 표상 학습 모델을 훈련하는 기존 모델들의 단점들을 `관계 보존`이라는 개념을 통해 보완해 새로운 학습 패러다임을 제시하여 학계에 큰 파급효과를 낼 수 있다ˮ라고 말했다.
한편, 이번 연구는 과학기술정보통신부 재원으로 정보통신기획평가원의 지원을 받아 사람중심인공지능핵심원천기술개발 과제로 개발한 연구성과 결과물(No. 2022-0-00157, 강건하고 공정하며 확장 가능한 데이터 중심의 연속 학습)이다.
최근 다양한 분야에서 인공지능 심층 학습(딥러닝) 기술을 활용한 서비스가 급속히 증가하고 있다. GPT와 같은 거대 언어 모델을 훈련하기 위해서는 수백 대의 GPU와 몇 주 이상의 시간이 필요하다고 알려져 있다. 따라서, 심층신경망 훈련 비용을 최소화하는 방법 개발이 요구되고 있다. 우리 대학 전산학부 이재길 교수 연구팀이 심층신경망 훈련 비용을 최소화할 수 있도록 훈련 데이터의 양을 줄이는 새로운 데이터 선택 기술을 개발했다고 2일 밝혔다. 일반적으로 대용량의 심층 학습용 훈련 데이터는 레이블 오류(예를 들어, 강아지 사진이 `고양이'라고 잘못 표기되어 있음)를 포함한다. 최신 인공지능 방법론인 재(再)레이블링(Re-labeling) 학습법은 훈련 도중 레이블 오류를 스스로 수정하면서 높은 심층신경망 성능을 달성하는데, 레이블 오류를 수정하기 위한 추가적인 과정들로 인해 훈련에 필요한 시간이 더욱 증가한다는 단점이 있다. 한편 막대한 훈련 시간을 줄이려는 방법으로 중복되
2023-11-02우리 대학 김재철AI대학원 신기정 교수가 이끄는 연구팀이 지난 10월 17일부터 10월 21일까지 미국 애틀랜타에서 진행된 미 컴퓨터협회 정보 및 지식 관리 학술대회(이하 ACM CIKM 2022)에서 튜토리얼 강연을 진행했다고 1일 밝혔다. 올해 31회를 맞은 ACM CIKM은, 정보 검색(Information Retrieval) 분야 세계 최고 권위 학회 중 하나로, 전 세계에서 해당 분야 전문가들이 참석해 최신 연구 성과를 공유한다. ACM CIKM에서는 매년 강연자의 전문성 그리고 강연 주제의 깊이와 다양성 등을 고려해 강연자를 선정해 튜토리얼 강연을 열고 있다. 김재철AI대학원 이건 석박통합과정과 유재민 박사(미국 카네기멜론대학교 박사 후 연구원)로 구성된 신기정 교수 연구팀은 `Mining of Real-world Hypergraphs: Concepts, Patterns, and Generators'라는 제목으로 ACM CIKM 2022 학술대회에서 튜토리얼 강
2022-11-01최근 다양한 분야에서 인공지능 심층 학습(딥러닝) 기술을 활용한 서비스가 급속히 증가하고 있다. 서비스 구축을 위해서 인공지능은 심층신경망을 훈련해야 하며, 이를 위해서는 충분한 훈련 데이터를 준비해야 한다. 특히 훈련 데이터에 정답지를 만드는 레이블링(labeling) 과정이 필요한데 (예를 들어, 고양이 사진에 `고양이'라고 정답을 적어줌), 이 과정은 일반적으로 수작업으로 진행되므로 엄청난 노동력과 시간적 비용이 소요된다. 따라서 훈련 데이터 구축 비용을 최소화하는 방법 개발이 요구되고 있다. 우리 대학 전산학부 이재길 교수 연구팀이 심층 학습 훈련 데이터 구축 비용을 최소화할 수 있는 새로운 데이터 동시 정제 및 선택 기술을 개발했다고 12일 밝혔다. 일반적으로 심층 학습용 훈련 데이터 구축 과정은 수집, 정제, 선택 및 레이블링 단계로 이뤄진다. 수집 단계에서는 웹, 카메라, 센서 등으로부터 대용량의 데이터가 정제되지 않은 채로 수집된다. 따라서 수집된 데이터에는
2022-10-12우리 대학 생명화학공학과 정유성 교수 연구팀이 화학자처럼 생각하는 인공지능을 개발했다고 4일 밝혔다. 연구팀이 개발한 인공지능은 유기 반응의 결과를 정확하게 예측한다. 유기 화학자는 반응물을 보고 유기 화학반응의 결과를 예상해 약물이나 유기발광다이오드(OLED)와 같이 원하는 물성을 갖는 분자를 합성한다. 하지만 실험을 통해 화학반응의 생성물을 직접 확인하는 작업은 일반적으로 시간과 비용이 많이 소모된다. 게다가 유기 화학 반응은 같은 반응물에서 다양한 생성물이 생길 수 있어 숙련된 유기 화학자라도 모든 화학반응을 정확하게 예측하지 못한다. 이런 한계를 극복하고자 인공지능을 이용해 유기 반응을 예측하는 연구가 활발하게 일어나고 있다. 대부분의 연구는 반응물과 생성물을 서로 다른 두 개의 언어로 생각하고 한 언어에서 다른 언어로 번역하는 언어 번역 모델을 사용하는 방법에 집중하고 있다. 이 방법은 예측 정확도는 높지만, 인공지능이 화학을 이해하고 생성물을 예측했다고 해석하기
2022-10-04