< (왼쪽부터) 생명화학공학과 김지한 교수, 강영훈 박사과정, 박현수 박사과정 >
다공성 소재는 넓은 공극과 표면 면적을 지니고 있어, 가스 흡착, 분리, 촉매 등 다양한 에너지 및 환경 분야에서 적용된다. 다공성 소재 중 한 종류인 금속 유기 골격체(MOF)는 무한대에 가까운 경우의 수를 갖는 넓은 물질 공간(materials space) 안에 존재하기에, 인공지능을 사용해 최적의 물질을 추출하고 특성을 예측하려는 연구가 활발히 진행되고 있다. 하지만 이러한 모델들은 대부분 특정한 물성 한 종류만 학습할 수 있으며, 모든 재료 특성에 보편적으로 적용할 수 없다는 단점이 존재한다.
우리 대학 생명화학공학과 김지한 교수 연구팀이 세계 최초로 멀티모달 트랜스포머를 적용한 인공지능(AI)을 통해 다공성 소재의 다양한 물성을 예측하는 기술을 개발했다고 5일 밝혔다. 멀티모달 트랜스포머는 비디오 프레임과 오디오 트랙, 웹 이미지와 캡션, 교육용 비디오와 음성 대본과 같이 서로 다른 형태의 정보를 효과적이고 효율적으로 결합하도록 설계된 신경망 모델의 일종이다.
김지한 교수 연구팀은 챗GPT(ChatGPT)에서 사용된 모델인 트랜스포머를 다공성 소재에 도입해 모든 성능을 예측할 수 있는 멀티모달 인공 신경망을 개발했다. 멀티모달은 사진(이미지)과 설명(자연어)같이 서로 다른 형태의 데이터를 함께 학습하며, 이는 인간과 비슷하게 입체적이고 종합적인 사고를 할 수 있도록 도와준다. 연구팀이 개발한 멀티모달 트랜스포머 (MOFTransformer)는 원자 단위의 정보를 그래프로 표현하고, 결정성 단위의 정보를 3차원 그림으로 전환 후 함께 학습하는 방식으로 개발했다. 이는 다공성 소재의 물성 예측의 한계점이었던 다양한 물성에 대한 전이 학습을 극복하고 모든 물성에서 높은 성능으로 물성을 예측할 수 있게 했다.
< 그림 1. 멀티모달 트랜스포머를 이용한 범용적 물성 예측 개요 >
김지한 교수 연구팀은 다공성 소재를 위한 트랜스포머를 개발해 1백만 개의 다공성 소재로 사전학습을 진행했으며, 다공성 소재의 가스 흡착, 기체 확산, 전기적 특성 등의 다양한 소재의 물성을 기존의 발표된 머신러닝 모델들보다 모두 더 높은 성능으로 (최대 28% 상승) 예측하는 데 성공했고, 또한 논문으로부터 추출된 텍스트 데이터에서도 역시 높은 성능으로 예측하는 데 성공했다.
연구팀이 개발한 기술은 물질의 특성을 계산 및 예측하는 새로운 방법론을 제시했으며, 이를 통해 소재 분야에서 새로운 소재의 설계와 개발에 도움이 될 뿐만 아니라, 기존의 소재에 대한 깊은 이해를 얻을 수 있을 것으로 기대된다. 더불어, 멀티모달 트랜스포머는 다공성 소재뿐만 아니라 다른 종류의 소재에도 확장 가능한 범용적인 모델이므로, 인공지능을 통한 소재 과학의 발전에 크게 이바지할 수 있을 것이다.
< 그림 2. 멀티모달 트랜스포머의 모델 구조 및 입력 데이터 개요 >
생명화학공학과 강영훈, 박현수 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `네이처 머신 인텔리전스(Nature Machine Intelligence)'에 지난 3월 13일에 게재됐다. (논문명: A multi-modal pre-training transformer for universal transfer learning in metal–organic frameworks)
한편 이번 연구는 과학기술정보통신부의 지원으로 국가 소재 연구 데이터 사업단, 그리고 한국연구재단 (NRF) 중견 연구자 지원 사업의 지원을 받아 수행됐다.
우리 대학은 세계적인 미디어 아티스트인 문화기술대학원 이진준 교수와 글로벌 아티스트 지드래곤(G-DRAGON)과의 협업을 통해, 지난 4월 9일 KAIST 우주연구원에서 실시한 세계 최초로 미디어아트를 기반으로 한 '우주 음원 송출 프로젝트'를 성공적으로 추진했다. 이번 프로젝트는 KAIST와 갤럭시코퍼레이션과 추진 중인‘AI 엔터테크 연구센터’의 일환으로 제안된 것이다. 갤럭시코퍼레이션 소속 아티스트이자 KAIST 기계공학과 초빙교수로 활동 중인 가수 지드래곤(본명 권지용)의 메세지와 음원을 세계 최초로 우주로 송출하는 프로젝트이다. 과학기술, 예술, 대중음악이 결합된 융복합 프로젝트로, KAIST의 첨단 우주 기술과 이진준 교수의 미디어아트 작품, 그리고 지드래곤의 음성과 음원(홈스윗홈, HOME SWEET HOME)이 하나로 연결된 새로운 형태의 ‘우주 문화 콘텐츠’ 실험이다. 이번 협업은 ‘인간 내면의 우주를
2025-04-10우리 대학은 인공지능(AI) 엔터테크 기업 갤럭시코퍼레이션(대표 최용호)과 함께 ‘AI 엔터테크 연구센터’ 설립을 위한 현판식을 KAIST 본원에서 개최한다. 이번 협력은 KAIST가 추진해 온 예술 융합 연구 전략의 일환으로, 과학기술을 기반으로 한 창의적 문화 콘텐츠 개발을 통해 미래형 K-Culture를 주도하려는 노력의 연장선에 있다. KAIST는 단순한 기술 개발을 넘어, 감성 기술과 문화적 상상력의 융합을 통해 콘텐츠 산업의 지평을 넓히는 ‘테크-아트(Tech-Art)’ 융합 모델을 지속적으로 실현해 오고 있다. 앞서 KAIST는 세계적인 소프라노 조수미 초빙석학교수와의 협력으로 ‘조수미 아트&테크 연구센터’를 설립하고, AI 기반의 인터랙티브 공연 기술, 몰입형 콘텐츠 등 예술과 공학의 융합 연구를 선도해왔다. 이번 ‘AI 엔터테크 연구센터’ 설립은 K-콘텐츠 산업의 기술
2025-04-09우리 대학 인공지능반도체대학원 주최로 20일(목) 오전 대전 오노마 호텔에서 ‘제2회 한국인공지능시스템포럼(KAISF) 조찬 강연회’가 성황리에 개최되었다. 본 행사는 인공지능(AI) 기술의 최신 동향과 혁신 및 응용, 특히 AI-X(AI-특정산업)에 대해 다양한 분야의 전문가들이 모여 심도 있는 논의를 진행하는 자리로 LG AI 연구원의 최정규 상무가 LLM(거대언어모델)에 대해 개발에 대해 발표한다. 조찬 회의에는 총 65명의 AI 전문가가 참석하였으며, LG AI 연구원에서 최근 개발하고 공개한 대규모 언어 모델인 ‘엑사원(EXAONE)에 대해 Driving the Future of AI Innovation’라는 주제로 발제 발표가 진행되었다. 최정규 LG AI 연구원 상무는 LG 엑사원의 현재 연구 현황과 향후 글로벌 AI 시장에서의 계획을 발표하였으며 특히 최근 AI 생태계를 뜨겁게 달구고 있는 ‘딥시크(Deep
2025-03-20최근 챗GPT, 딥시크(DeepSeek) 등 초거대 인공지능(AI) 모델이 다양한 분야에서 활용되며 주목받고 있다. 이러한 대형 언어 모델은 수만 개의 데이터센터용 GPU를 갖춘 대규모 분산 시스템에서 학습되는데, GPT-4의 경우 모델을 학습하는 데 소모되는 비용은 약 1,400억 원에 육박하는 것으로 추산된다. 한국 연구진이 GPU 사용률을 높이고 학습 비용을 절감할 수 있는 최적의 병렬화 구성을 도출하도록 돕는 기술을 개발했다. 우리 대학 전기및전자공학부 유민수 교수 연구팀은 삼성전자 삼성종합기술원과 공동연구를 통해, 대규모 분산 시스템에서 대형 언어 모델(LLM)의 학습 시간을 예측하고 최적화할 수 있는 시뮬레이션 프레임워크(이하 vTrain)를 개발했다고 13일 밝혔다. 대형 언어 모델 학습 효율을 높이려면 최적의 분산 학습 전략을 찾는 것이 필수적이다. 그러나 가능한 전략의 경우의 수가 방대할 뿐 아니라 실제 환경에서 각 전략의 성능을 테스트하는 데는 막대한 비용과
2025-03-13뇌의 맥락 추론 방식이 챗지피티 같은 대규모 인공지능 모델과 어떻게 다를까? 우리 연구진이 ‘뇌처럼 생각하는 인공지능’기술로서 과도한 자신감을 보이는 인공지능의 할루시네이션(Hallucination) 현상을 완화하거나 인간이나 동물과 유사하게 스스로 가설을 세워 검증하는 신개념 인공지능 모델을 개발하는데 성공했다. 우리 대학 뇌인지과학과 이상완 교수(신경과학-인공지능 융합연구센터장)와 생명과학과 정민환 교수(IBS 시냅스 뇌질환 연구단 부연구단장) 연구팀이 동물이 가설을 세워 일관된 행동 전략을 유지함과 동시에, 본인의 가설을 스스로 의심하고 검증하면서 상황에 빠르게 적응하는 새로운 강화학습 이론을 제시하고 뇌과학적 원리를 규명했다고 20일 밝혔다. 현재 상황에 맞게 행동의 일관성과 유동성 사이의 적절한 균형점을 찾아가는 문제를 ‘안정성-유동성의 딜레마(Stability-flexibility dilemma)’라 한다. 이를 위해서
2025-02-27