< 사진 1. (왼쪽부터) 김준수 석사과정, 김주영 교수, 고건우 석사과정, 전민수 박사과정, 김성환 박사, 윤찬현 교수, 이창하 박사과정, 김태우 박사과정. 좌측 하단에 (왼쪽)설명가능한 인공지능 처리를 위한 KAIST 프로토타입 보드와 (오른쪽) 새롭게 개발한 EPU칩. >
우리 대학 전기및전자공학부 윤찬현, 김주영 교수 연구팀이 설명 가능한 인공지능(eXplainable AI, XAI) 기법을 처리하기 위한 노이즈(잡음)에 강한 다중 피라미드 활성화 맵 기반 주의집중 구조가 탑재된 인공지능 칩을 설계하고, 삼성전자 DS부문의 지원으로 설명가능 뉴로프로세싱 유닛(이하 EPU, Explainable neuro-Processing Unit)을 개발했다고 24일 밝혔다.
설명가능 인공지능이란 사람이 이해할 수 있고 신뢰할 수 있는 설명을 제공할 수 있는 인공지능 기법이다. 기존의 수학적 알고리즘으로 학습되는 인공지능은 학습예제에 편향되어 신뢰할 수 없거나, 수천억개의 매개변수를 사람이 이해할 수 없다는 문제점을 해결하기 위해, 왜 인공지능이 특정 결과를 추론했는지 판단근거를 설명할 수 있도록 개발되었다. 설명가능한 인공지능은 어떤 이유에 의해서 인공지능의 의사결정에 큰 영향을 주었는지 설명할 수 있다는 점에서 기존의 인공지능보다 정확성, 공정성, 신뢰성을 보장할 수 있다는 특징을 가진다.
공동연구팀은 다중 규모 및 다중물체의 특징 추출 구조인 피라미드형 신경망 구조에서 추론 결과에 영향을 주는 인공지능 내부의 신경층별 활성화되는 정도를 복합적으로 해석할 수 있는 인공지능 모델과 이를 가속처리 특화된 채널 방향 합성곱 연산 및 정확도를 유지하는 EPU칩을 구현했다.
다중 규모 및 다중물체 특징 추출에 특화된 피라미드형 인공지능 모델에서 설명 시각화 구현을 위해서는 추론 과정의 역방향으로 모든 합성곱 층별 활성화 맵에서 모델 파라미터의 변화도를 추출할 수 있는 구조가 요구된다.
그러나 역전파 계산 과정은 기존의 추론처리 가속을 위한 인공지능 칩 설계와 달리 이전 파라미터 및 상태를 기억해야 하며 이는 한정된 온 칩 메모리 크기 및 인공지능 모델 전체를 특정한 용도에 맞게 주문 제작(ASIC; Application Specific Integrated Circuit)해 구현하기에는 물리적 한계가 있다.
또한, 피라미드형 구조의 설명 가능한 인공지능 모델은 설명성 보장을 위한 N개 층의 활성화 맵으로부터 기울기 기반의 클래스 활성 맵핑 시각화 처리 각각 필요해 복잡도를 높이는 문제가 있다. 그리고, 입력의 매우 작은 노이즈에도 클래스 활성화 맵핑 시각화 설명이 완전히 달라져 설명 가능한 인공지능 모델의 신뢰도 저하가 큰 문제점이었다.
< 그림 1. (KAIST 개발 EPU 내부구조 및 기능) 1) 설명가능한 인공지능의 다중 활성화 맵 고유의 특성 정보를 융합하여 전역 주의 집중 맵을 생성하는, 다중 피라미드 활성 맵 기반 주의집중 네트워크 구조. 2) 새로 개발한 EPU는 입력 영상 객체의 예측 근거 시각화를 위해 칩 내부의 합성곱 역전파 연산 시 객체 근처의 non-zero에 대한 계산만 수행하게 되어 기존의 NPU구조보다 평균 3.33배 가속처리가 가능함. >
전기및전자공학부 윤찬현 교수 연구팀은 문제해결을 위해(그림1 참조) 설명 가능한 인공지능의 다중 활성화 맵 고유의 특성 정보를 융합해 전역 주의 집중 맵을 생성하는 네트워크 구조와 입력 이미지 노이즈에 강건한 모델 생성을 위한 상호학습 방법을 개발해, 단일 활성화 맵 기반 주의집중 맵 생성 기술에 비해 설명성 지표를 최대 6배가량 높였다.
< 그림 2. 객체탐지를 위한 피라미드형 신경망 구조 중 하나인 Faster-RCNN 모델 >
또한, 다중 스케일의 다양한 주의집중 맵들의 상호 보완적인 특성을 일원화된 주의집중 맵으로 정교하게 재구성함으로써 사람이 해석 가능한 수준의 정밀한 설명성을 제공할 수 있게 했다. 이번 연구 성과를 통해 위성 영상과 같이 객체 크기 변화가 큰 이미지 분석에서 인공지능 모델의 설명성을 크게 향상할 수 있을 것으로 기대된다고 연구팀 관계자는 설명했다.
전기및전자공학부 김주영 교수 연구팀은 제안된 설명 가능한 인공지능 모델을 가속하기 위해 기존 모델의 추론과 역전파 과정에 더해 활성화 맵 생성까지 처리할 수 있는 XAI 코어를 개발하고, 다양한 연산 태스크를 유연하게 분할해 동시에 처리할 수 있는 멀티 데이터 플로우 방식을 제안했다. 또한, 많은 0 값을 포함하는 활성화 맵의 특성을 활용해, 연속된 0을 건너뛸 수 있는 새로운 데이터 압축 포맷을 제안하고 이를 지원하는 가속 유닛을 개발해 최대 10배 이상의 활성화 맵을 칩 내부에서 처리할 수 있도록 했다.
< 그림 3. [개발된 구조] 노이즈에 강건한 시각적 설명 생성을 위한 다중 피라미드 활성 맵 기반 주의집중 네트워크 구조 >
< 그림 4. [제안된 EPU구조] zero skipping 데이터 경로 제어 기반 EMA 효율적 EPU Array 구조 >
연구팀이 개발한 EPU 칩은 광학 위성, 전천후 관측 영상레이더(Synthetic Aperture Radar) 위성 등 특수 목적과 고정밀 인공지능 영상처리시스템에 적용할 수 있으며, 저지연‧저전력으로 인공지능 시스템의 판단 근거에 대한 설명성을 획기적으로 높일 수 있을 것으로 기대된다. 연구팀은 EPU 칩 개발 후속 연구를 진행할 계획이다.
그린수소 또는 배터리 분야 등 청정 에너지의 성능을 높이는데 가장 큰 영향을 미치는 소재 중 하나는 전극이다. 한국 연구진이 차세대 전극 및 촉매로 활용될 수 있는 신소재를 효율적으로 설계하는 인공지능 기술을 개발했다. 이 기술을 통해 친환경 에너지 사회를 촉진하는데 중요한 역할을 할 것으로 기대된다. 우리 대학 기계공학과 이강택 교수 연구팀의 주도로 한국에너지기술연구원 (원장 이창근), 한국지질자원연구원 (원장 이평구), KAIST 신소재공학과 공동 연구팀들과 함께, 인공지능(AI)과 계산화학을 결합해 그린수소 및 배터리에 활용될 수 있는 스피넬 산화물 신소재를 설계하고, 성능과 안정성을 예측할 수 있는 새로운 지표를 개발하는 데 성공했다고 21일 밝혔다. 스피넬 산화물(AB2O4)은 그린수소 또는 배터리 분야의 차세대 촉매 및 전극 물질로 활용되어 산소 환원 반응(ORR)과 산소 발생 반응(OER)의 속도를 향상시킬 수 있는 잠재력이 높은 물질이다. 하지만, 수천 개
2024-11-21우리 대학이 12일(화) 오전 대전 인터시티호텔에서 ‘제1회 한국인공지능시스템포럼(이하 KAISF) 조찬 강연회’를 개최했다. 이는 우리 대학 인공지능반도체대학원이 AI 기술에 관련 미래와 혁신 등에 대해 다양한 분야의 전문가들이 함께 논의하는 장을 열고자 추진됐다. 총 77명의 전문가가 참석한 이번 행사에는 이광형 총장, 홍진배 정보통신기획평가원장, 방승찬 한국전자통신연구원장 등이 축사를 전했다. 이어서 ▲칩렛 이종 집적 첨단 패키지 기반 페타플롭스급 고성능 PIM 설계(한진호 한국전자통신연구원 PIM인공지능반도체연구실장) ▲자율주행·자율 행동체 연구개발사업 소개(최정단 한국전자통신연구원 모빌리티로봇연구본부장)에 대해 발표했다. 이후 인공지능 반도체 설계 전문 기업인 리벨리온(Rebellions)의 박성현 대표가 ‘인공지능 반도체와 리벨리온의 여정’을 주제로 강연을 진행했다. 박성현 리벨리온 대표는 강연에서 &ldq
2024-11-12최근 건강에 관한 관심이 점차 커지면서 일상생활에서 스마트 워치, 스마트 링 등을 통해 자기 신체 변화를 살펴보는 일이 보편화되었다. 그런데 기존 헬스케어 앱에서는 걷기에서 뛰기로 갑자기 변화를 줄 경우는 잘 측정이 되지만 천천히 속도를 높이는 경우는 측정이 안 되는 현상이 발생했다. 우리 연구진이 완만한 변화에도 동작을 정확하게 파악하는 기술을 개발했다. 우리 대학 전산학부 이재길 교수 연구팀이 다양한 착용 기기 센서 데이터에서 사용자 상태 변화를 정확하게 검출하는 새로운 인공지능 기술을 개발했다고 12일 밝혔다. 보통 헬스케어 앱에서는 센서 데이터를 통해 사용자의 상태 변화를 탐지하여 현재 동작을 정확히 인식하는 기능이 필수이다. 이를 변화점 탐지라 부르며 다양한 인공지능 기술이 변화점 탐지 품질을 향상하기 위해 적용되고 있다. 이재길 교수팀은 사용자의 상태가 급진적으로 변하거나 점진적으로 변하는지에 관계없이 정확하게 잘 동작하는 변화점 탐지 방법론을 개발했다.
2024-11-12우리 대학 문술미래전략대학원 전우정 교수가 우리나라 법학자 최초로 세계 최고 과학 학술지인 네이처(Nature)의 자매지 ‘네이처 일렉트로닉스(Nature Electronics)'의 코리스판던스(Correspondance) 섹션에 군사 AI 통제의 과학적 도전에 관한 기고문을 게재했다고 8일 밝혔다. 지난 9월 9일부터 10일까지 서울에서 개최된 ‘2024 인공지능(AI)의 책임 있는 군사적 이용에 관한 고위급 회의(REAIM 2024)'에서 군사 AI 거버넌스에 중요한 진전이 이뤄졌다. 우리나라 뿐만 아니라 네덜란드, 싱가포르, 케냐, 영국이 공동 주최국으로 참여한 이 회의에서 미국, 독일, 프랑스, 일본 등 61개국이 ‘행동을 위한 청사진(Blueprint for Action)'을 채택했다. 이후 두 개 국가가 추가로 동참해 현재 총 63개국이 채택하고 있다. 전우정 교수는 이번 기고문에서 군사 분야의 AI 활용에 대한 이러한 원칙들을
2024-11-08인공지능 차세대 반도체, 자율 실행 실험실 (Self-Driving Lab), 소재 개발 자율 로봇(Robotics for Autonomous Materials Development) 등 최신 연구 동향과 네이처 편집위원들을 만나 토론을 할 수 있는 국제행사가 KAIST에서 열린다. 우리 대학이 2025년 2월 5일부터 7일까지 3일간 대전 KAIST 본원 학술문화관에서 ‘2025 네이처 컨퍼런스’를 개최한다고 4일(월) 밝혔다. 국제학술지 네이처와 공동으로 개최하는 이번 행사에서는 5일 네이처 인텍스(Nature Index)와 정책포럼으로 시작하여 6~7일은 ‘인공지능을 위한 신소재, 신소재를 위한 인공지능(Materials for AI, AI for Materials)’을 주제로 인공지능과 신소재 분야의 최신 연구 동향을 공유한다. 네이처 인덱스는 올해 특집호에서 한국의 과학기술 분야 연구개발(R&D) 성과가 인력과 예산
2024-11-04