-
인간 뇌처럼 뉴런-시냅스 동시 구동 모사한 메모리 최초 구현
우리 대학 신소재공학과 이건재 교수팀이 100 nm(나노미터) 두께의 단일 소자에서 뉴런과 시냅스를 동시에 모사하는 뉴로모픽(neuromorphic) 메모리를 개발했다고 23일 밝혔다. 뉴런은 신경계를 이루는 기본적인 단위세포를, 시냅스는 뉴런 간의 접합 부위를 말한다.
이 교수팀은 인간의 뇌처럼 뉴런과 시냅스가 유기적으로 동작하는 방식의 단일 메모리 소자를 최초로 구현했으며, 이를 통해 반도체 소자로 인간 뇌를 완전히 구현한다는 뉴로모픽 컴퓨팅 본연의 목표 달성에 근접할 수 있을 것으로 기대된다.
1,000억 개의 뉴런과 100조 개의 시냅스의 복잡한 네트워크로 구성된 인간 뇌는 그 기능과 구조가 고정된 것이 아니라 외부 환경에 따라서 유연하게 변하는 특징을 가지고 있다. 따라서 뉴로모픽 소자는 뉴런과 시냅스의 특성을 모사해 기존의 컴퓨터로는 구현할 수 없는 인간 뇌의 고도 인지 기능을 실현하는 데에 가장 큰 목적을 두고 있다.
지금까지 뉴로모픽 컴퓨팅 구현을 위해서 CMOS 집적회로와 비휘발성 메모리 등을 이용한 연구들이 진행됐으나, 기존 기술들은 뉴런과 시냅스의 기능을 분리해 모사한다는 한계점을 가지고 있었다.
인간 뇌에서 뉴런과 시냅스는 서로 유기적으로 연결돼 있으며, 서로 간의 상호작용을 통해 인지 기능이 발현된다. 이러한 뉴런과 시냅스의 기능을 인간 뇌처럼 단일 구조체에서 통합해 구현하는 것은 어려운 도전 과제였다.
이 교수 연구팀은 휘발성의 소자(threshold switch)로 뉴런을, 비휘발성의 상변화 메모리 소자로 시냅스를 모사해 단기·장기 기억이 공존하는 단일 뉴로모픽 소자를 개발했으며, 이를 통해 집적도 개선 및 비용 절감 효과도 얻을 수 있을 것으로 기대된다. 특히 기존 CMOS 뉴런 소자에서는 단순 신호 발산 기능만이 구현됐으나, 연구팀의 뉴런-시냅스 통합소자는 신호 발산 유형이 환경에 따라서 유연하게 적응하는 가소성(plasticity)을 구현하는 데 성공했다.
이건재 교수는 이번 연구 성과에 대해 "인간은 뉴런과 시냅스의 상호작용을 통해 기억, 학습, 인지 기능을 발현하므로 둘 모두를 통합 모사하는 것이 인공지능에 있어서 필수적인 요소ˮ라며 "개발한 단일 뉴런-시냅스 소자는 기존의 단순 이미지 학습 효과를 넘어서, 피드백 효과를 기반으로 한 번 배운 내용을 더 빨리 학습하는 재학습(retraining) 효과 구현도 성공해 인공지능뿐만 아니라 뇌를 역설계하는 연구에도 큰 도움이 될 것이다”고 언급했다.
한편 이번 연구는 삼성전자 전략산학과제와 지능형반도체 사업의 지원을 받아 수행됐으며, 국제 학술지 `네이쳐 커뮤니케이션즈(Nature Communications)'에 5월 19일 字 게재됐다.
2022.06.23
조회수 10232
-
20큐비트급 소형 리드버그 양자컴퓨터 개발
우리 대학 물리학과 안재욱, 문은국 교수 연구팀이 20큐비트급 리드버그 양자컴퓨터를 개발해 계산과학의 난제인 최대독립집합 문제를 계산했다고 22일 밝혔다.
양자컴퓨터는 양자역학의 원리를 사용하여, 디지털컴퓨터로는 불가능한 계산을 수행할 것으로 예상되는 대표적 미래기술이다. 20큐비트급 양자컴퓨터는 기존 컴퓨터가 백만회 순차 처리해야 하는 계산량을 한 번에 처리하는 계산성능을 갖는다.
세계 주요국들은 양자컴퓨팅을 전략기술로 분류해, 국가적 연구역량을 집중하고 있으며 글로벌 대기업, 기술벤처, 국가연구소와 주요 대학의 막대한 시설과 인력, 연구비가 동원되고 있다. 우리나라 정부도 양자기술을 10대 전략기술의 하나로 선정해 투자를 확대하고 있다.
소형(20~50큐비트급)의 양자컴퓨터가 속속 개발되고 있는 현시점에서, 가장 중요한 이슈 중 하나는 `디지털컴퓨팅 알고리즘으로는 비효율적인 계산 문제(NP-문제로 분류됨)를 양자컴퓨터가 계산할 수 있는지'이다.
따라서, KAIST가 20큐비트급의 양자컴퓨터를 개발해 NP-완전문제를 계산했다는 것은 한국의 양자컴퓨팅 연구가 세계적 양자컴퓨터 개발경쟁에 진입하였음을 의미한다.
우리 대학 물리학과 안재욱, 문은국 교수 연구팀은 리드버그 원자들을 이용해, 조합 최적화 문제를 계산하는 양자 단열 컴퓨팅 방식의 양자컴퓨터를 개발했다. 연구팀은 초고진공 공간에 배치한 극저온 리드버그 원자를 사용해, 20큐비트급 그래프의 조합 최적화 문제를 실험적으로 계산하는 데 성공했다.
물리학과 김민혁, 김강흔 대학원생 연구원과 황재용 학부생 연구원이 참여한 이번 연구는 국제 학술지 `네이처 피직스(Nature Physics)' 6월 18권 7호에 출판됐다. (논문명 : Rydberg quantum wires for Maximum Independent Set problems).
한편 리드버그 원자란 높은 에너지 상태의 원자로서, 일반 원자보다 만 배 정도 큰 마이크로미터 크기의 지름을 갖고, 리드버그 원자들간의 상호작용은 일반 원자들보다 10^22배 정도로 강하다.
양자 단열형 양자컴퓨팅은 양자 회로형(또는 양자디지털형), 측정기반형과 함께 범용양자컴퓨팅 방식으로 알려져 있다. 대표적인 양자 단열형 양자컴퓨터인 D-wave 社의 양자컴퓨터는 고정 큐비트를 사용한다는 결정적 단점이 있다. 하지만 KAIST의 리드버그 양자 단열형 양자컴퓨터는 재배치 또는 이동이 가능한 큐비트를 사용하기 때문에 주목을 받는다.
KAIST 리드버그 양자컴퓨터는 초고진공 상태에 최대 126개의 리드버그 원자들을 임의로 배치해 양자 단열형 양자컴퓨팅을 수행한다. 이번에 발표한 최근 연구에서는 꼭지점이 최대 20개인 그래프의 최대독립집합을 계산하는데 성공했다. 또한 원거리 꼭지점들을 잇는 리드버그 양자선 개념을 최초로 개발해 모든 꼭지점들을 임의로 연결하는 초기하학적 그래프를 계산할 수 있음을 보였다.
참고로, 디지털 컴퓨팅에서 모든 계산 문제들을 계산복잡도에 따라 P-문제(결정 다항)와 NP-문제(비결정적 다항)로 분류한다. 여행자 문제(Traveling Salesman Problem), 최대독립집합 문제 등으로 대표되는 NP-문제들은 디지털 컴퓨팅의 알고리즘으로는 효율적으로 계산할 수 없음이 잘 알려져 있다. 따라서, 양자컴퓨터가 NP-문제들을 계산할 수 있을지가 큰 관심사다.
최대독립집합 문제는 대표적인 NP-완전문제의 하나이며, 주어진 그래프(꼭지점과 간선의 집합)에서 서로 연결되지 않는 꼭지점들의 최대집합을 알아내는 계산 문제다. 그래프의 크기가 커지면, 디지털컴퓨팅 알고리즘으로는 계산량이 지수적으로 증가해 효과적인 계산을 할 수 없다. 이러한 문제를 효과적으로 계산하게 되면 산업적으로 물류, 생산관리, 작업관리, 네트워크 디자인 등에서 혁명적 경제가치를 창출하게 된다.
<그림 1> 은 리드버그 양자선(각각 빨강, 주황, 노랑 꼭지점들)을 이용하여 간선으로 연결되지 않는 데이터 큐비트(하얀 꼭지점들)를 연결하는 3차원 큐비트 구조체의 모식도이다. 이 구조는 쿠라토프스키 그래프로 잘 알려진 K(3:3) 그래프이다. 참고로 쿠라토프스키 K(3:3)와 K(5) 그래프쌍은 상대적으로 만들기 쉬운 평면그래프와 조합하여 모든 그래프를 만들 수 있다. 우리 대학 연구진은 본 연구에서 K(3:3)와 K(5)를 실험적으로 최초 구현하였다.
연구를 주도한 물리학과 안재욱 교수는 “이번 연구는 리드버그 양자컴퓨터의 활용 가능성을 보였다는 데 의의가 있다”라고 자평하며 “아직은 큐비트 개수가 충분하지 않지만, 차 단계 연구를 통해 실 활용이 가능한 꿈의 양자컴퓨터를 개발할 수 있을 것”이라는 포부를 밝혔다.
한편 이번 연구는 삼성미래기술재단과 한국연구재단의 지원으로 수행됐다.
2022.06.22
조회수 12424
-
음파를 이용한 세포 자극 미세시스템 개발
우리 대학 연구진이 면역세포를 대상으로 기계적 자극을 가할 수 있는 고주파수 음파 기반의 미세유체 시스템 기술을 개발했다.
미국 스크립스 연구소의 아르뎀 파타푸리안 교수는 기계적 자극에 반응하는 세포 압력센서를 발견한 공로로 2021년도 노벨 생리의학상을 공동 수상했다. 또한 최근 다수의 연구를 통해 기계적 자극이 면역세포의 암세포 제거 기능에도 깊게 관여하는 기전이 보고되고 있다.
이에 기계적 자극을 인가할 수 있는 다양한 형태의 체외 동적 세포배양 시스템이 개발돼왔다. 그러나 펌프, 자력 교반기 등의 기존 시스템은 요구되는 시료 양이 비교적 크고, 부품과 세포 간의 접촉이 수반되어 잠재적 시료 오염과 세포 활성 저하의 문제점을 가진다.
문제 해결을 위해 기계공학과 전성윤 교수 연구팀(바이오미세유체 연구실)과 성형진 교수, 전남대학교 박진수 교수 연구팀은 필요한 시료 양이 수십 마이크로리터에 불과한 미세유체 칩에 기계적 자극을 비접촉식으로 만들어내고 그 크기를 정밀하게 제어할 수 있는 표면탄성파 인가 기술을 접목하였다. 해당 시스템의 빗살무늬전극에 고주파수 교류신호를 인가하여 표면탄성파를 형성하고, 표면탄성파는 기판을 따라 진행하여 미세유체 칩 내부의 유체에 흐름유동을 만들어낸다. 이 흐름유동은 유체 내부의 면역세포에 기계적 자극을 가함으로써 면역세포으로의 칼슘 이온 유입을 이끌어낸다.
연구팀은 “이번 연구는 고주파수 음파 기반의 비접촉식 기계적 자극 전달 시스템을 개발한 데 의의가 있으며, 음파를 접목한 미세유체 칩이 ‘차세대 동적 배양 시스템’으로써 적극적으로 활용될 가능성을 제시하였다”고 본 연구의 의의를 설명했다.
김승규 박사가 주저자로 참여한 이번 연구는 국제학술지 ‘Advanced Science' 16호의 앞면 내부 표지논문으로 게재되었다. (논문명: Acoustofluidic Stimulation of Functional Immune Cells in a Microreactor)
이번 연구는 한국연구재단 중견연구자사업과 보건산업진흥원 글로벌바이오메디컬연수자사업 및 BK 21 Plus program의 지원을 받아 수행되었으며, 우리 대학 남현오 박사과정과 전남대학교 차범석 석사과정이 공동연구자로 참여했다.
#논문정보
Kim, S., Nam, H., Cha, B., Park, J., Sung, H. J., & Jeon, J. S. (2022). Acoustofluidic Stimulation of Functional Immune Cells in a Microreactor. Advanced Science, 9(16), 2105809.
https://doi.org/10.1002/advs.202105809
2022.06.22
조회수 7352
-
초대규모 인공지능 모델 처리하기 위한 세계 최고 성능의 기계학습 시스템 기술 개발
우리 연구진이 오늘날 인공지능 딥러닝 모델들을 처리하기 위해 필수적으로 사용되는 기계학습 시스템을 세계 최고 수준의 성능으로 끌어올렸다.
우리 대학 전산학부 김민수 교수 연구팀이 딥러닝 모델을 비롯한 기계학습 모델을 학습하거나 추론하기 위해 필수적으로 사용되는 기계학습 시스템의 성능을 대폭 높일 수 있는 세계 최고 수준의 행렬 연산자 융합 기술(일명 FuseME)을 개발했다고 20일 밝혔다.
오늘날 광범위한 산업 분야들에서 사용되고 있는 딥러닝 모델들은 대부분 구글 텐서플로우(TensorFlow)나 IBM 시스템DS와 같은 기계학습 시스템을 이용해 처리되는데, 딥러닝 모델의 규모가 점점 더 커지고, 그 모델에 사용되는 데이터의 규모가 점점 더 커짐에 따라, 이들을 원활히 처리할 수 있는 고성능 기계학습 시스템에 대한 중요성도 점점 더 커지고 있다.
일반적으로 딥러닝 모델은 행렬 곱셈, 행렬 합, 행렬 집계 등의 많은 행렬 연산자들로 구성된 방향성 비순환 그래프(Directed Acyclic Graph; 이하 DAG) 형태의 질의 계획으로 표현돼 기계학습 시스템에 의해 처리된다. 모델과 데이터의 규모가 클 때는 일반적으로 DAG 질의 계획은 수많은 컴퓨터로 구성된 클러스터에서 처리된다. 클러스터의 사양에 비해 모델과 데이터의 규모가 커지면 처리에 실패하거나 시간이 오래 걸리는 근본적인 문제가 있었다.
지금까지는 더 큰 규모의 모델이나 데이터를 처리하기 위해 단순히 컴퓨터 클러스터의 규모를 증가시키는 방식을 주로 사용했다. 그러나, 김 교수팀은 DAG 질의 계획을 구성하는 각 행렬 연산자로부터 생성되는 일종의 `중간 데이터'를 메모리에 저장하거나 네트워크 통신을 통해 다른 컴퓨터로 전송하는 것이 문제의 원인임에 착안해, 중간 데이터를 저장하지 않거나 다른 컴퓨터로 전송하지 않도록 여러 행렬 연산자들을 하나의 연산자로 융합(fusion)하는 세계 최고 성능의 융합 기술인 FuseME(Fused Matrix Engine)을 개발해 문제를 해결했다.
현재까지의 기계학습 시스템들은 낮은 수준의 연산자 융합 기술만을 사용하고 있었다. 가장 복잡한 행렬 연산자인 행렬 곱을 제외한 나머지 연산자들만 융합해 성능이 별로 개선되지 않거나, 전체 DAG 질의 계획을 단순히 하나의 연산자처럼 실행해 메모리 부족으로 처리에 실패하는 한계를 지니고 있었다.
김 교수팀이 개발한 FuseME 기술은 수십 개 이상의 행렬 연산자들로 구성되는 DAG 질의 계획에서 어떤 연산자들끼리 서로 융합하는 것이 더 우수한 성능을 내는지 비용 기반으로 판별해 그룹으로 묶고, 클러스터의 사양, 네트워크 통신 속도, 입력 데이터 크기 등을 모두 고려해 각 융합 연산자 그룹을 메모리 부족으로 처리에 실패하지 않으면서 이론적으로 최적 성능을 낼 수 있는 CFO(Cuboid-based Fused Operator)라 불리는 연산자로 융합함으로써 한계를 극복했다. 이때, 행렬 곱 연산자까지 포함해 연산자들을 융합하는 것이 핵심이다.
김민수 교수 연구팀은 FuseME 기술을 종래 최고 기술로 알려진 구글의 텐서플로우나 IBM의 시스템DS와 비교 평가한 결과, 딥러닝 모델의 처리 속도를 최대 8.8배 향상하고, 텐서플로우나 시스템DS가 처리할 수 없는 훨씬 더 큰 규모의 모델 및 데이터를 처리하는 데 성공함을 보였다. 또한, FuseME의 CFO 융합 연산자는 종래의 최고 수준 융합 연산자와 비교해 처리 속도를 최대 238배 향상시키고, 네트워크 통신 비용을 최대 64배 감소시키는 사실을 확인했다.
김 교수팀은 이미 지난 2019년에 초대규모 행렬 곱 연산에 대해 종래 세계 최고 기술이었던 IBM 시스템ML과 슈퍼컴퓨팅 분야의 스칼라팩(ScaLAPACK) 대비 성능과 처리 규모를 훨씬 향상시킨 DistME라는 기술을 개발해 데이터베이스 분야 최고 국제학술대회 중 하나인 ACM SIGMOD에서 발표한 바 있다. 이번 FuseME 기술은 연산자 융합이 가능하도록 DistME를 한층 더 발전시킨 것으로, 해당 분야를 세계 최고 수준의 기술력을 바탕으로 지속적으로 선도하는 쾌거를 보여준 것이다.
교신저자로 참여한 김민수 교수는 "연구팀이 개발한 새로운 기술은 딥러닝 등 기계학습 모델의 처리 규모와 성능을 획기적으로 높일 수 있어 산업적 측면에서 파급 효과가 매우 클 것으로 기대한다ˮ 라고 말했다.
이번 연구에는 김 교수의 제자이자 현재 GraphAI(그래파이) 스타트업의 공동 창업자인 한동형 박사가 제1 저자로, 김 교수가 교신저자로 참여했으며 지난 16일 미국 필라델피아에서 열린 데이터베이스 분야 최고 국제학술대회 중 하나인 ACM SIGMOD에서 발표됐다. (논문명 : FuseME: Distributed Matrix Computation Engine based on Cuboid-based Fused Operator and Plan Generation).
한편, 이번 연구는 한국연구재단 선도연구센터 사업 및 중견연구자 지원사업, 과기정통부 IITP SW스타랩 사업의 지원을 받아 수행됐다.
2022.06.20
조회수 8527
-
디스플레이 소재로 빛 이용해 친환경 암모니아 합성법 제시
우리 대학 생명화학공학과 이도창 교수, 이상엽 특훈교수, 박영신 연구교수 연구팀이 디스플레이 소재인 양자점(퀀텀닷)을 이용해 *질소 고정 박테리아의 암모니아 생산 효율을 대폭 늘렸다고 16일 밝혔다.
☞ 질소 고정(Nitrogen Fixation) : 공기 중 질소 기체 분자(N₂)를 암모니아(NH₃)를 비롯한 질소화합물로 전환하는 과정을 말한다.
이 교수 연구팀은 양자점에 의해 흡수된 빛 에너지가 박테리아의 암모니아 합성 반응에 사용되도록 설계했으며, 그 결과 박테리아의 암모니아 생산량을 큰 폭으로 증가시킬 수 있었다. 이를 위해 연구팀은 양자점을 질소고정 박테리아 안에 더 많이 넣을 수 있는 방법을 제시했다.
생명화학공학과 고성준 박사가 제1저자로 참여한 이번 연구의 결과는 국제 학술지 `미국 화학회지(JACS)'에 표지 논문으로 선정돼 출판됐다. (논문명 : Light-Driven Ammonia Production by Azotobacter vinelandii Cultured in Medium Containing Colloidal Quantum Dots).
질소 고정 박테리아는 질소 고정 효소를 이용해 대기 중 질소를 암모니아로 전환하여 생장에 필요한 단백질을 생산한다. 이러한 질소 고정 반응은 화학적 암모니아 합성법인 하버-보슈 공정에 비해 에너지 소비와 이산화탄소 배출이 현저하게 적다.
하지만, 박테리아는 생장에 필요한 만큼만 암모니아를 생산하도록 진화돼 질소 고정 효소의 반응이 느리기에 이를 산업적으로 활용하기 어렵다. 질소 고정 반응이 느린 이유는 효소의 두 가지 구성요소(전자 전달부, 촉매 반응부)의 비효율적인 상호작용 때문이다. 전자 전달부가 촉매 반응부에 전자를 공급한 후, 반드시 탈착돼야만 촉매 반응부가 새로운 전자를 추가로 공급받아 암모니아를 생성할 수 있다.
연구팀은 문제 해결을 위해 빛을 흡수하는 양자점을 박테리아의 질소 고정 반응에 전자 공급원으로 활용해 나노·바이오 복합 시스템을 구축했다. 양자점은 수 나노미터의 작은 크기를 갖는 반도체 나노입자이며 디스플레이 소재로 많이 알려진 물질이다. 하지만, 양자점이 흡수한 빛 에너지를 표면에 쉽게 전달할 수 있도록 입자의 구조 및 표면을 제어하면 광 감응 및 광 촉매 소재로도 우수한 특성을 보인다. 연구팀은 질소 고정 효소의 전자 전달부 역할을 양자점으로 대체하기 위해 양자점의 코어/쉘 구조를 전자 전달에 유리하게 설계했다. 또한, 양자점이 생물학적 시스템에 결합할 수 있도록 표면 화학 특성을 제어해 수(水)분산 특성을 확보했다.
연구팀은 구조 및 표면이 제어된 양자점을 질소 고정 박테리아의 대사활동이 가장 활발한 성장기에 추가해, 박테리아의 능동적인 양자점 흡수를 유도했다. 이렇게 제작된 양자점-박테리아 복합 시스템에 빛을 조사한 결과, 질소고정 반응 속도가 증가하며 암모니아 생산량이 대폭 증가함을 확인했다. 고성준 박사는 "디스플레이 소재와 미생물의 장점을 합해 빛 에너지를 이용한 새로운 방식의 암모니아 합성법을 제시한 결과ˮ라며 "이번 연구를 활용한 그린 암모니아 생산 플랫폼을 구축한다면, 환경 및 에너지 문제에 적극적으로 대응할 수 있을 것이다ˮ라고 말했다.
한편 이번 연구는 삼성미래기술육성사업의 지원을 받아 수행됐다.
2022.06.16
조회수 11550
-
질병 세포만 찾아 교정치료 가능한 유전자 가위 시스템 개발
우리 대학 의과학대학원 이지민 교수 연구팀이 한국과학기술연구원(KIST) 오승자 선임연구원, 강원대학교 이주용 교수와 공동 연구를 통해 질병 세포에서만 핵 내 유전자 교정을 수행할 수 있는 유전자 가위 시스템(CRISPR/Cas9)을 개발했다고 14일 밝혔다.
연구팀은 세포 내 마이크로RNA가 특정 서열을 인식해 절단한다는 특성을 활용해, 질병 세포에서 과발현되는 마이크로RNA에 의해 특이적으로 절단될 수 있는 링커를 연결한 유전자 가위 시스템을 설계했다. 이렇게 설계된 시스템은 질병 세포 특이적 마이크로RNA가 적은 정상세포에서는 세포질에 머물러 유전자 교정을 수행하지 않지만, 질병 세포에서는 링커가 절단되면서 유전자 가위가 세포핵으로 들어가 유전자 교정을 수행할 수 있다.
이러한 플랫폼은 유전자 가위를 질병 세포에서만 기능 할 수 있게 해 정상세포와 질병 세포가 혼합돼있는 실제 환자에게도 효과적인 유전자 교정 치료를 진행할 수 있을 것으로 기대된다.
KIST 신철희 박사와 우리 대학 의과학대학원 박수찬 연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `뉴클레익 엑시드 리서치(Nucleic Acids Research, IF 16.971)' 온라인판에 지난달 30일 자 출판됐다. (논문명 : Cytosolic microRNA-inducible nuclear translocation of Cas9 protein for disease-specific genome modification).
마이크로RNA는 유전자를 전사 후 조절하는 19~24 뉴클레오티드(DNA나 RNA의 기본 단위) 길이의 RNA다. 마이크로RNA는 DNA로부터 전사된 메신저 RNA에 아르고너트(Argonaute; Ago) 단백질을 통해 결합하며, 결합한 메신저 RNA를 절단한다. 마이크로RNA의 비정상적인 발현이 다양한 질병에서 보고되고 있으며, 질병의 치료를 위한 표적 바이오마커로 많이 연구되고 있다.
다양한 질병에서 마이크로RNA를 표적으로 하는 치료법들이 빠르게 연구되고 있지만, 치료 물질의 전달 및 투여량의 문제, 세포 독성 및 비정상적 면역 반응 활성화 등의 문제가 있다.
유전자 가위 시스템은 단일 가이드 RNA(single guide RNA)를 조합해 정교한 유전자 교정을 수행하는 매우 효과적인 도구다. 하지만, 이 시스템의 실제 활용에는 기술적 한계들이 존재한다. 가장 큰 문제는 안정성 문제로, 표적 유전자가 아닌 다른 유전자를 편집하는 오프-타겟 이펙트(off-target effect)다. 또한, 다양한 세포가 혼합된 환경에서는 유전자 교정을 수행하기 어렵다.
연구팀은 이러한 문제를 해결하기 위해 질병 세포 본연의 생태를 활용하는 접근법을 고안했다. 연구팀은 핵 위치 신호(Nuclear localization signal; NLS)가 부착된 기존 유전자 가위(Cas9)에 핵 외 수송신호(Nuclear export signal; NES)를 연결한 질병 세포 마이크로RNA의 메신저 RNA 표적 서열을 결합한 유전자 가위를 제작했고, 이를 유전자 가위 `셀프 체크인'으로 명명했다.
연구팀은 인간 질병 세포에서 과발현되는 마이크로RNA-21의 표적 서열과 실험용 쥐의 마이크로RNA-294의 표적 서열을 연결한 유전자 가위의 인간 질병 세포 내 유전자 교정 기능을 비교했고, 마이크로RNA-21 표적 서열 연결 유전자 가위만이 세포 내 마이크로RNA-21에 의해 절단돼 핵까지 전달되어 기능을 수행할 수 있음을 확인했다.
연구팀은 다양한 폐암 세포에서 마이크로RNA-21의 발현량과 발암 단백질 Ezh2가 양의 상관관계가 있다는 것을 증명했고, `셀프 체크인'을 적용해 마이크로RNA-21이 과발현된 폐암 세포에서 발암 유전자 Ezh2의 유전자 교정을 성공적으로 수행했다.
또한, 암세포는 항암 약물에 지속해서 노출되게 되면, 약물 저항성을 획득하게 되는데, 연구팀은 폐암 세포에서 마이크로RNA-21과 Ezh2의 발현이 항암 약물 시스플라틴을 투여하면 오히려 증가함을 확인했다. 유전자 가위 셀프 체크인 기술을 통한 Ezh2 유전자 교정과 항암제(시스플라틴)의 병행 사용은 폐암 세포의 성장을 더욱 효과적으로 억제할 수 있음을 마우스 실험을 통해서 밝혔다.
연구팀이 개발한 유전자 가위 셀프 체크인 기술은 질병 세포에서만 기능하기 때문에, 오프-타겟 이펙트를 최소화할 수 있다는 장점이 있으며, 세포 내 시스템을 활용한다는 점에서 안정성이 높다고 할 수 있다. 또한, 단일 가이드 RNA 및 메신저 RNA 표적 서열을 상황에 맞게 교체해 사용할 수 있어, 다양한 질병에 적용이 가능할 것으로 기대된다.
연구팀은 "유전자 가위 셀프 체크인 기술은 기존 유전자 가위 시스템의 문제를 개선해, 높은 특이성을 가지고 질병 세포에 대한 유전자를 세포 특이적으로 교정할 수 있다는 것을 확인할 수 있다ˮ 라며 "다양한 질병 연관 마이크로RNA에 대응해 기술을 적용할 수 있을 것이다ˮ 라고 전했다.
한편 이번 연구는 삼성미래기술육성사업, 한국연구재단 이공분야기초연구사업 및 한국과학기술연구원 지원을 받아 수행됐다.
2022.06.14
조회수 15020
-
인공지능 엔진으로 영상 위변조 탐지 기술 개발
우리 연구진이 영상 내 변형 영역을 더욱 정밀하게 탐지하기 위해 영상내 색상 정보와 주파수 정보를 함께 활용하는 인공지능 엔진 기술을 학계 처음으로 개발했다. 이번 개발 기술은 기존 기술보다 정밀도와 정확도를 크게 높여 위변조 탐지 기술의 기술 유용성을 일정 수준 확보할 수 있는 기반을 제공한다는 점에서 그 의미가 크다. KAIST에서 각종 위변조 영상들을 잡아낸다는 의미를 지닌 `카이캐치(KaiCatch)' 소프트웨어는 이미지, 영상뿐만 아니라 CCTV 비디오 변형 여부도 분석할 수 있다.
우리 대학 전산학부 이흥규 교수 연구팀이 새로운 인공지능 구조와학습 방법론, 그리고 실험실 환경에서는 구하기 힘든 고급 변형 이미지 영상들을 사용해 영상 이미지 위변조 탐지 소프트웨어인 `카이캐치(KaiCatch)'의 영상 이미지 정밀도와 정확도를 크게 높일 뿐만 아니라 비디오 편집 변형도 탐지할 수 있는 카이캐치 2.1 버전을 개발했다고 13일 밝혔다.
카이캐치 소프트웨어는 `이상(異常) 유형 분석 엔진'과 `이상(異常) 영역 추정 엔진' 두 개의 인공지능 엔진으로 구성된다. `이상 유형 분석 엔진'은 블러링, 노이즈, 크기 변화, 명암 대비 변화, 모핑, 리샘플링 등을 필수 변이로 정의해 이를 탐지하며 `이상 영역 추정 엔진'은 이미지 짜깁기, 잘라 붙이기, 복사 붙이기, 복사 이동 등을 탐지한다. 이번에 새로 개발한 기술은 `이상 영역 추정 엔진'으로 기존 기술에서는 이상 영역 탐지 시 그레이 스케일(회색조)로 이상 유무를 탐지하였으나 분석 신호의 표현력이 낮고 탐지 오류가 많아 위변조 여부 판정에 어려움이 많았다. 이번에 개발된 기술은 색상 정보와 주파수 정보를 함께 활용해 정밀도(precision)와 재현율(recall)이 크게 향상되고 변형 영역을 컬러 스케일로 표현함으로써 해당 영역의 이상 유무뿐만 아니라 위변조 여부도 더욱 명확하게 판별이 가능해졌다.
연구팀은 이번 연구에서 영상 생성 시 발생하는 흔적과 압축 시 발생하는 흔적 신호들을 함께 분석하기 위해 색상 정보와 주파수 정보를 모두 활용하는 접근 방법을 학계 처음으로 제시했다. 또 이러한 방법론을 설계 구현하기 위해 주파수 정보를 하나의 분할 네트워크에서 직접 입력으로 받아들이는 방식의 ‘압축 왜곡신호 탐지 네트워크(Compression Artifact Tracing Network, 이하 CAT-Net)’을 학계 최초로 개발하고 기존 기법들과 비교해 탐지 성능이 크게 뛰어남을 입증했다. 개발한 기술은 기존에 제시된 기법들과 비교할 때 특히 원본과 변형본을 판별하는 평가 척도인 F1 점수, 평균 정밀도(average precision)에서 대단히 뛰어나 실환경 위변조 탐지 능력이 크게 강화됐다.
비디오 편집 변형의 경우도, 프레임 삭제, 추가 등에 의한 편집 변형이 흔히 CCTV 비디오 등에서 발생한다는데 착안해 이러한 비디오 편집 변형을 탐지하는 기능 역시 이번 카이캐치 2.1 버전에 탑재됐다.
이번에 카이캐치 2.1 소프트웨어를 연구 개발한 이흥규 교수는 "영상 이미지 위변조 소프트웨어인 카이캐치를 휴대폰에 탑재되는 안드로이드 앱 형태로 일반에 소개한 2021년 3월 이후 현재까지 카이캐치 앱을 통한 900여 건의 위변조 분석 의뢰와 개별적으로 60건이 넘는 정밀 위변조 분석 의뢰를 받았다. KAIST 발표 논문 수준이나 실험 결과 등을 감안할 때 위변조 분야 최고 기술로 만든 소프트웨어인데, 오탐지율이 높아 실제 탐지 정밀도가 이론치보다 매우 낮았다. 많은 경우 위변조나 변형 여부에 대한 명확한 기술 판정이 불가능했으나 이번에 개발한 카이캐치 2.1 은 CAT-Net이라는 새로운 네트워크 구조와 학습 방법론, 그리고 ‘색상 및 주파수 영역 왜곡 흔적 동시 분석’이라는 첨단 기술을 사용해 정밀도를 높여, 보다 명확한 판별이 가능하도록 개발됐다. 앞으로 영상 위변조 판단 여부가 어려운 경우가 많이 줄어들기를 기대한다”고 말했다.
이 교수는 이어 "비디오는 MP4 파일 포맷이, 그리고 영상 이미지는 JPEG 이미지들이 일반인들이 널리 사용한다는 점에서 해당 포맷을 주 개발 대상으로 삼았다. 영상 이미지의 경우 영상 편집 변형 시 영상에 남겨지는 인위적으로 발생하는 JPEG 압축 미세 신호 탐지에 주안점을 두어, 위변조 여부와 위변조 영역을 잡아내는 것에 집중했다. 비디오의 경우 특정 프레임들을 삭제하거나 삽입하는 경우, 프레임 부분 편집 후 재압축 하는 경우 등을 탐지한다. 최근 CCTV 비디오 편집 여부에 대한 분쟁이 많아 크게 도움을 줄 수 있을 것으로 기대하며 향후에도 지속적으로 연구 개발해 취약점들을 보완해 나갈 계획이다ˮ 고 덧붙였다.
현재 카이캐치 소프트웨어는 안드로이드 기반 휴대폰의 구글 플레이스토어에서 ‘카이캐치’를 검색하여 앱을 다운로드 받아 설치한 후, 영상 이미지들을 카이캐치에 업로드하면 위변조 여부를 간단하게 테스트해 볼 수 있다.
한편 이번 연구는 제1 저자로 참여한 우리 대학 전기및전자공학부 권명준 박사, 그리고 김창익 교수, 남승훈 박사, 유인재 박사 등과 공동으로 수행됐으며, `스프링거 네이처(Springer Nature)'에서 발간하는 컴퓨터 비전 분야 톱 국제저널인 `국제 컴퓨터 비전 저널(International Journal of Computer Vision, IF 7.410)'에 2022년 5월 25일 字 온라인판에 게재됐다. (논문명 : Learning JPEG Compression Artifacts for Image Manipulation Detection and Localization)
이번 연구는 한국연구재단 창의도전연구기반지원사업지원과 KAIST 창업기업인 ㈜디지탈이노텍(http://www.kaicatch.com/) 과의 산학협력 연구로 수행됐다.
2022.06.13
조회수 11726
-
기존 개념을 깬 새로운 면역 T 세포 발견
우리 대학 의과학대학원 신의철 교수 연구팀이 우리 대학 의과학대학원 박수형 교수, 연세대학교 의과대학 주동진, 박준용 교수팀과 공동 연구를 통해 선천면역과 적응면역의 특성을 모두 지니는 새로운 유형의 `NK 유사 T 세포'를 간에서 발견하고 그 작용 특성을 규명했다고 8일 밝혔다.
이번 연구는, 그동안 면역학의 영역에서 이분법적으로 나눠져 있던 선천면역과 적응면역의 경계에서 작동하는 새로운 면역세포를 발견하고 그 특성을 밝힘으로써 인체의 면역 반응을 새로운 시각에서 바라볼 수 있게 했다는 점에서 큰 의의가 있다.
의과학대학원 고준영 박사, 나민석 박사, 최승진 박사가 공동 제1 저자로 참여한 이번 연구 결과는 간장(肝腸)학 분야의 최고 국제 학술지 `간장학 저널(Journal of Hepatology)' 5월 26일 字 온라인판에 게재됐다 (논문명: Identification of a distinct NK-like hepatic T-cell population activated by NKG2C in a TCR-independent manner).
인체에 세균이나 바이러스 같은 병원성 미생물이 침입하면 먼저 선천면역이 작동한다. 선천면역은 신속하게 작동하는 장점이 있지만, 병원성 미생물의 종류를 구분하지 못하고 기억면역을 형성하지 못하는 단점이 있다. 한편 감염 후 4~5일 후부터는 적응면역이 서서히 작동한다. 적응면역은 느리게 활성화되는 대신 각각의 병원성 미생물을 구분하는 능력이 있고 회복 후에는 기억 면역 세포를 만들어 같은 미생물이 재침입하였을 때 재빠른 반응을 할 수 있다.
특히 바이러스 감염 시에는 바이러스에 감염된 세포를 제거하는 기능에 특화된 면역세포들이 중요한 역할을 하는데, 이들 중 NK 세포(자연살해 세포)는 선천면역, T 세포는 적응면역의 특성이 있는 대표적인 면역 세포다. 이 2가지 면역 세포는 바이러스에 감염된 세포를 인식하는 방식도 달라, T 세포는 바이러스 단백질 조각을 항원으로 감지하는 반면, NK 세포는 스트레스 분자 발현이 증가한 것을 통해 바이러스 감염 세포를 감지한다.
지금까지 면역학계에서는 이렇게 NK 세포와 T 세포를 명확히 구분되는 면역 세포로서 나누어 연구를 진행해 왔는데, 연구팀은 이번 연구를 통해 NK 세포와 T 세포의 특성을 모두 지니는 `NK 유사 T 세포'를 새롭게 발견한 것이다. 그리고 이러한 NK 유사 T 세포는 T 세포 수용체를 통해 바이러스 단백질 항원을 인식하는 대신에 NK 세포 수용체인 `NKG2C'를 통해 비정상 세포들을 감지하고 제거할 수 있다는 사실을 발견했다.
연구팀은 이번 연구에서 간에 존재하는 면역세포를 주로 분석했는데, 간은 면역학적으로 특이한 장기로 여겨지고 있다. 소장이나 대장으로부터 들어오는 혈액은 전신 순환계에 합류하기 전에 간을 먼저 지나게 된다. 이 과정에서 장으로부터 들어온 많은 외부 물질이나 병원성 미생물들은 간에서 걸러지게 되어, 간은 면역학적 1차 관문의 역할을 하게 된다. 한편 간은 면역학적 관용을 나타내는 장기로도 잘 알려져, 병원성 미생물에 대한 과도한 면역 반응을 조절하기도 한다. 연구팀은 이처럼 복잡하고 정교하게 조절되는 간의 면역학적 특성을 상세히 분석하기 위해 단일세포 전사체 분석이라는 최신 연구기법을 적용해 분석한 결과, 간 내에서 선천면역과 적응면역의 특성을 모두 지니는 NK 유사 T 세포를 발견했다. 그리고 B형간염 바이러스에 의한 만성 간 질환을 앓는 환자의 간에서는 이러한 NK 유사 T 세포의 수가 증가해 있는 것도 발견했다.
연구팀이 이번에 새롭게 발견한 NK 유사 T 세포가 바이러스 감염 등의 각종 질환에서 어떤 역할을 하는지는 아직 분명하지 않다. 현재 연구팀은 NK 유사 T 세포가 체내에서 감염뿐만 아니라 각종 원인에 의해 비정상적으로 변한 세포들을 선택적으로 제거해 체내 항상성을 유지하는 데 중요한 역할을 한다는 가설을 가지고 후속 연구를 활발히 진행하고 있다. 한편, 미국 스탠퍼드 의대의 마크 데이비스 교수 연구팀이 최근 NK 수용체를 발현하는 T 세포는 다른 면역세포의 기능을 억제한다는 논문을 사이언스지에 발표함에 따라, 연구팀은 이번에 발견한 NK 유사 T 세포가 체내 상황에 따라 면역억제 기능을 수행하는지에 대한 분석도 진행하고 있다.
이번 연구 결과는 연세의대 세브란스병원 외과 및 내과 연구팀과 KAIST 의과학대학원이 간의 면역학적 특성을 규명하기 위해 수행한 협동 연구의 성과로서, 중개 연구(translational research)를 통해 인간 면역학을 새롭게 이해하는 계기를 마련했다는 평가를 받는다.
의과학대학원 신의철 교수는 "최신 연구 방법인 단일세포 전사체 분석 기술을 이용해 복잡한 간장 내 면역세포들을 상세히 분석할 수 있었고, 그 결과로 새로운 유형의 면역 세포인 NK 유사 T 세포를 발견하게 된 중요한 연구ˮ라며 "앞으로 NK 유사 T 세포의 생리 및 병리적 기능을 밝히는 연구를 지속하겠다ˮ라고 말했다.
2022.06.08
조회수 10057
-
차세대 뉴로모픽 구현을 앞당길 멤리스터 기반 고신뢰성 인공 뉴런(신경세포) 어레이 개발
우리 대학 전기및전자공학부 최신현 교수 연구팀이 뛰어난 안정성과 집적도가 높은 우리 뇌의 뉴런 세포의 동작을 모사하는 *고신뢰성 차세대 저항 변화 소자(멤리스터) 어레이를 개발했다고 7일 밝혔다.
☞ 멤리스터(Memristor): 입력에 따라 소자의 저항 상태가 바뀌는 소자. 입력 전압의 크기와 길이 등에 따라 소자 내부의 저항 값이 바뀌며 정보를 저장하거나 처리한다.
최 교수 연구팀은 기존 멤리스터의 불안정한 특성을 보이는 필라멘트 기반 방식에서 벗어나, 점진적인 산소 농도를 갖는 금속산화물을 이용해 안정적이고 신뢰성 높은 인공 뉴런 어레이를 발표하였다. 기존의 멤리스터 소자는 안정성이 낮고 응용에 사용하기 위한 어레이 형태로 제작하기 힘든 문제점이 있지만, 최 교수 연구팀이 개발한 소자는 뛰어난 안정성을 갖출 뿐만 아니라, 자가 정류 특성과 높은 수율을 갖춰 대용량 어레이 형태로 집적될 수 있다. 따라서 집적도가 높고 안정적인 뉴로모픽 시스템을 구현할 때 활발히 사용될 수 있을 것으로 기대된다.
전기및전자공학부 박시온, 정학천 석박사통합과정, 박종용 석사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션스(Nature Communications)' 6월호에 출판됐다. (논문명 : Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing)
인간의 뉴런은 들어오는 신호의 크기와 주파수에 따라 스파이크를 내보내거나 내보내지 않는 방식으로 정보를 처리한다. 현대의 컴퓨터가 빅데이터를 처리하는데 많은 에너지를 소모하는 것과 다르게, 사람의 뇌는 매우 적은 에너지만으로도 많은 양의 데이터를 빠르게 처리할 수 있다. 이러한 이유로, 신경의 효율적인 신호전달 시스템을 모사하여 컴퓨팅에 사용하는 `뉴로모픽' 하드웨어 기술이 활발히 연구되고 있다. 멤리스터 소자는 고집적, 고효율로 뉴로모픽 컴퓨팅 시스템을 구현할 수 있는 차세대 소자로 주목받고 있다.
그러나 현존하는 멤리스터로 실용적인 대용량 인공신경망 컴퓨팅(Large-scale Neural Computing) 시스템을 구현하기에는 단위 소자의 신뢰성 및 수율의 문제가 있다. 기존의 멤리스터는 절연체 내부에서 필라멘트가 마치 번개와 같이 무작위적으로 생성되고 사라지며 동작하기 때문에 제어하기가 힘들어 낮은 신뢰성을 보이게 되며, 이로 인해 안정적인 뉴로모픽 시스템을 구현하는 데 한계점으로 지적되어 왔다.
최신현 교수 연구팀은 이러한 무작위적인 필라멘트 문제를 해결하기 위해 필라멘트 기반 저항 변화가 아닌, 산소 이온의 점진적인 이동을 이용해 저항 변화 소자를 구현함으로써 소자의 신뢰성 확보하였다. 또한 단위 소자를 통한 어레이 제작 기술을 확보하여, 400개의 고신뢰성 인공 뉴런 소자를 100% 수율의 크로스바 어레이 형태로 집적하는 데 성공했다.
연구팀은 제작한 고신뢰성 인공 뉴런 어레이 기반 뉴로모픽 시스템을 이용해 항균성 단백질(anti-microbial peptide) 아미노산 서열을 학습하고, 이를 바탕으로 새로운 항균성 단백질을 만들어내는 뉴로모픽 시스템을 구현하였다.
제1 저자인 박시온 석박통합과정 연구원은 "이번에 개발한 고신뢰성 인공 뉴런 소자는 안정적인 특성과 높은 수율을 바탕으로 차세대 멤리스터 기반 뉴로모픽 컴퓨팅 시스템 구현에 기여할 수 있을 것으로 기대되며, 개발된 인공 뉴런 소자를 이용해 촉각 등을 감지하는 로봇의 인공 신경계, 시계열 데이터를 처리하는 축적 컴퓨팅(reservoir computing) 등 다양한 응용을 가능케 하여 미래 전자공학의 기반이 될 것으로 기대한다ˮ라고 말했다.
한편 이번 연구는 삼성미래육성사업의 지원을 받아 수행됐다.
2022.06.07
조회수 11773
-
기억 저장 세포의 뇌 지도 제작기법 최초 개발
우리 대학 연구진이 기억을 저장하는 다양한 뇌 부위 세포들의 분포를 지도로 제작하는 기법의 개발에 최초로 성공했다.
바이오및뇌공학과 박영균 교수 연구팀이 메사추세츠 공과대학(MIT) 정광훈 교수 및 스스무 도네가와(Susumu Tonegawa) 교수 공동연구팀과 함께 단일 기억을 저장하는 세포들을 생쥐의 뇌 전체에서 매핑하는 기법을 개발하고, 이를 통해 공간 공포 기억을 저장하는 새로운 뇌 부위 세포들을 발견했다고 2일 밝혔다.
기억은 주로 몇몇 뇌 부위에 국한해 연구돼왔다. 예를 들어 공포 기억은 편도체, 공간 기억은 해마의 세포들에 저장된다고 생각돼왔으며, 해당 뇌 부위들이 주로 연구됐다. 하지만 단일 기억이 다양한 뇌 부위에 나누어 저장될 것이라는 가설도 제시돼왔는데, 이러한 가설은 기억을 저장하는 세포들의 분포를 뇌 전체에서 확인(매핑)함으로써 확실한 검증이 가능하나, 이는 기술적 한계로 이뤄지지 못했다.
공동연구팀은 기존 팀이 개발한 전뇌 투명화 기술(SHIELD) 및 초고속 전뇌 면역염색 기술(eFLASH)을 통해, 공간 공포 기억을 학습한 생쥐에서 기억의 학습과 회상 시 모두 활성화된 세포들을 뇌 전체에서 매핑했다. 이를 통해 공간 공포 기억을 저장하고 있을 확률이 높은 뇌 부위의 세포들을 생쥐 뇌 전체에서 찾아낼 수 있었다. 이후 해당 세포들을 광유전학적 방법으로 조절해 해당 세포들에 공간 공포 기억이 저장됐음을 확인함으로써, 공간 공포 기억을 저장하는 7개의 새로운 뇌 부위와 세포들을 연구팀은 찾아낼 수 있었다.
그렇다면 기억에 다양한 뇌 부위의 기억저장 세포들이 모두 필요한 것일까? 연구팀은 이를 확인하기 위해, 화학유전학 기법을 통해 다양한 뇌 부위의 기억저장 세포들을 한꺼번에 자극해 보았으며, 그 결과 뇌의 한 부위의 기억저장 세포를 자극했을 때와는 다르게, 자연적인 기억 회상에 가까운 기억의 완전한 회상이 유도됨을 확인했다. 이는 다양한 뇌 부위의 기억저장 세포들의 활성이 기억에 모두 필요함을 의미한다.
박영균 교수는 "이번 연구는 연구팀이 기존에 개발한 기술들에 힘입어 기억저장 세포의 매핑을 최초로 실현하고, 이를 통해 단일 기억이 다양한 뇌 부위 세포들에 흩어져 저장됨을 증명한 데 의의가 있다ˮ며, "이번 연구에서 밝혀진 기억저장 세포의 뇌 지도는, 각 뇌 부위의 세포 및 세포 간 상호작용이 기억에 있어 각각 어떠한 세부적인 기능을 하는지에 관한 연구를 촉진함으로써, 기억의 메커니즘에 대한 완전한 이해를 도울 수 있다ˮ고 말했다.
이번 연구 결과는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)'에 지난 4월 4일 자로 게재됐다(논문명: Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions)
2022.06.02
조회수 8632
-
차세대 반도체 나노구조 공정을 혁신하는 새로운 3차원 노광 공정 개발
우리 대학 신소재공학과 전석우 교수와 신종화 교수 공동연구팀이 차세대 반도체 공정 핵심기술인 3차원의 나노구조를 단일 노광으로 효율적으로 제작하는 방법을 개발했다고 27일 밝혔다. 노광 공정이란 빛을 이용해 실리콘 웨이퍼에 전자 회로를 새기는 공정을 말한다.
이번 연구 성과는 갈수록 복잡해지는 반도체 구조와 배선구조 등을 기존 2차원 평면 노광 방식으로 건물을 한층 한층 제작하듯이 진행하던 방식에 비해 훨씬 더 낮은 비용과 공정으로 제작할 수 있는 근거를 마련한 획기적인 연구 결과로 판단된다.
전석우 교수와 신종화 교수가 교신 저자로, 남상현 박사와 김명준, 김나영 박사과정이 공동 제1 저자로 참여한 이번 연구는 저명한 국제 학술지 `사이언스 어드밴시스(Science Advances)' 5월 25일 字 온라인판에 게재됐다. (논문명: Photolithographic Realization of Target Nanostructures in 3D Space by Inverse Design of Phase Modulation)
공동연구팀은 수반행렬 방법(Adjoint method) 기반 역설계 알고리즘을 활용해, 적은 연산으로 원하는 형태의 나노 홀로그램을 생성하는 위상 마스크의 격자구조를 효율적으로 찾아내는 방법론을 제시했다. 이는 기존의 반도체 리소그래피 공정에 적용됐으며, 연구팀은 광감응성 물질에 단 한 번의 빛을 쏘아 목표하는 나노 홀로그램을 형성하고, 물질화해 원하는 3차원 나노구조를 단 한 번의 노광으로 구현할 수 있음을 실험적으로 증명했다.
최근 리소그래피 및 패터닝 기술의 발달로 소재의 형상을 나노스케일에서 구현하는 기술이 발달함에 따라 기존 소재의 물성을 극복하는 메타 소재 및 3차원 프린팅 연구가 주목받고 있다. 특히 3차원 나노소재를 구현하기 위해 활용되는 기존 공정들은 구현하는 구조의 자유도, 생산성, 정밀도를 모두 만족하기 어려운 점이 있어 이를 개선하기 위한 다양한 시도가 진행 중이다.
다양한 3차원 패터닝 공정 가운데, 근접장 나노패터닝(PnP, Proximity-field nanoPatterning)은 단일 노광으로 주기적인 3차원의 나노구조를 정확하고 생산성 있게 구현할 수 있다. 하지만, 현재까지 주기적인 위상 마스크 패턴을 활용해 구현할 수 있는 구조의 자유도는 제한돼왔으며, 이를 극복하기 위해서는 감광물질에 원하는 형태의 홀로그램을 구현하는 위상 마스크의 디자인을 계산하는 과정이 필요하다.
기존 연구에서는 유전 알고리즘(Genetic Algorithm)을 통해 이러한 역계산을 수행했으나, 비효율적인 계산방식, 많은 계산량 등의 문제로 활용이 제한된다. 최근 주목받는 머신러닝도 학습을 위한 데이터양이 최소 수천 개 이상으로 많이 요구돼 현실적으로 이를 역계산에 활용하기에는 아직 요원한 상황이다.
연구팀은 수학적 방법론인 수반행렬 방법(Adjoint Method) 기반 알고리즘을 위상 마스크의 패턴이 빛과 상호작용하는 광학현상에 적용해, 원하는 홀로그램 형상을 광감응성 소재에 효율적으로 계산해 그 형상을 얻어내는 데 성공했다. 이 알고리즘은 수식으로 표현된 목표 디자인을 최소한의 계산 경로로 찾아내는 알고리즘이며, 행렬 연산을 활용해 많은 계산량을 효율적으로 처리한다는 장점이 있다. 기존의 단순한 주기적 위상 마스크 패턴은 수직 입사하는 빛으로 특정 배열의 나노구조만을 발생시켰다. 연구팀은 해당 연구에서 위상 마스크에 반도체 공정에 적용 가능한 수직 입사 빔 방식으로 기존의 마스크로 얻어내는 것이 불가능했던 새로운 배열의 3차원 나노구조를 얻어내는 데 성공했다. 이번 연구는 이를 통해 기존의 반도체 노광공정이 갖는 자유도의 한계를 극복하고 더 나아가 보다 복잡한 나노구조를 구현할 수 있다는 것을 이론적, 실험적으로 증명한 주요 연구라 할 수 있다.
이렇게 제작된 3차원의 나노구조는 원자층 증착법을 활용해 구조에 따라 물질의 주입 및 치환으로 다양한 소재를 원하는 구조로 제작할 가능성을 열어준다. 이번 기술이 차세대 반도체 소자인 GAA(Gate All Around) 소자나 3차원 반도체 집적기술에 적용된다면 현재 국가적으로 많은 노력을 기울이고 있는 차세대 반도체 역량 강화에 크게 이바지할 것으로 기대된다. 더 나아가 소재의 물성이 소재를 구성하는 원자나 결합이 아닌 순수한 나노구조에서 기인하는 새로운 물성을 확보하는 메타 소재 연구에서 원하는 나노구조를 낮은 비용으로 대면적에 생산함으로 국내의 소재 경쟁력을 크게 강화할 원천기술이 될 것이다.
이번 연구는 한국연구재단 원천기술개발사업의 미래소재디스커버리 사업과(NRF-2020M3D1A1110522) 삼성전자의(G01190420) 지원을 통해 수행됐다.
2022.05.27
조회수 10271
-
마찰전기의 발생 원리를 세계 최초로 규명
우리 대학 물리학과 김용현 교수 연구팀이 수천 년 동안 해결되지 않은 난제 중의 난제로 알려진 마찰전기 발생 원리를 세계 최초로 규명했다고 26일 밝혔다.
김 교수 연구팀은 두 물질을 마찰시킬 때 경계면에서 발생하는 열에 의해 전하가 이동할 수 있다는 아이디어를 바탕으로 `제1 원리 전자구조 계산'과 `열전달 방정식'을 풀어 마찰전기의 미시적 작동원리를 찾아냈고, 기존에 알려진 실험적 사실을 정성적으로 기술할 수 있었을 뿐만 아니라 정량적으로도 이동 전하량을 설명해 낼 수 있었다. 기존에는 정량적으로 마찰전기를 설명할 수 있는 이론은 없었다.
마찰전기에 대한 새로운 이론은 최근 주목받고 있는 에너지 수확 기술 중의 하나인 마찰전기 나노 발전기(triboelectric nanogenerator, TENG) 효율의 혁신적 증대에 이바지할 것이며, 여러 실생활 및 반도체 산업에서 원하지 않는 문제를 일으키거나 터치스크린처럼 긍정적으로 사용되고 있는 정전기의 미시적 제어를 가능하게 할 것으로 기대된다.
물리학과 신의철 박사과정이 제1 저자로 참여하고 한국표준과학연구원 여호기 박사가 공동연구로 참여한 이번 연구는 1년여의 동료심사를 거쳐 미국물리학회 오픈엑세스 국제 학술지 `피지컬 리뷰 리서치 (Physical Review Research)' 5월 4권 2호에 지난 17일 출판됐다. (논문명 : Derivation of a governing rule in triboelectric charging and series from thermoelectricity).
마찰전기는 2,600년 전 인류가 처음 `전기'를 인식하게 된 계기로 알려질 만큼 인류와 함께한 역사가 굉장히 오래된 현상이다. 최근에는 에너지 수확 기술 중 하나로 중요하게 여겨지고 있을 뿐만 아니라 코로나19의 감염을 막기 위한 마스크 그리고 공기 정화 기술로 광범위하게 사용되고 있다.
실생활에서도 번개나 정전기 등으로 매우 친숙한 자연현상이지만 지금까지 마찰전기의 발생을 정량적으로 설명할 수 있는 양자역학 이론이나 나노기술 이론은 없었다.
김용현 교수와 여호기 박사는 2014년 열전 영상 측정 기술을 개발하며 두 물질 간의 계면에 급격한 온도변화가 발생할 수 있다는 사실에 주목했다. 계면에 마찰에 의한 열이 발생하면 열전효과에 의해 전하가 이동할 수 있고, 마찰전기의 원리를 규명할 수 있는 실마리를 찾은 것으로 기대했다. 하지만 당시 2~3명의 박사과정 학생이 달려들어도 문제는 쉽게 해결되지 않았고, 7년여 만인 지금 대부분 난관을 해결하고 마침내 마찰전기의 비밀을 인류 최초로 맛볼 수 있었다.
연구팀은 마찰전기의 전하 이동 방향을 예측할 수 있는 `마찰전기 팩터(triboelectric factor)' 공식을 유도했으며 이를 이용해서 세계 최초의 이론 마찰 대전열을 구성했다. 마찰전기 팩터는 제벡 계수(단위 온도차에서 유도되는 전압), 밀도, 비열, 열전도도 등 물질 특성으로 구성돼 있다. 또한 마찰전기로 발생시킬 수 있는 전압강하의 크기를 예측하는 `마찰전기 파워(triboelectric power)'라는 물리량 K도 연구팀이 최초로 제안했다.
마찰 대전열은 중학교 2학년 교과서에서 다루는 내용이었지만 2015년 개정 교육과정 교과서에서는 더이상 다루고 있지 않다. 기존의 경험적 방법으로 결정되는 마찰 대전열이 연구자마다 다른 결과를 보고하고 있어 부정확하다는 인식이 확산됐기 때문이다. 그러나 우리 연구팀이 미시적, 양자역학적으로 정의된 마찰전기 팩터를 이용해 정량적인 대전열을 최초로 구성했기 때문에 다시 교과서에 마찰 대전열이 실릴 수 있는 계기가 마련됐다.
김용현 교수는 "미시세계에서의 열전현상을 양자역학적으로 연구하고 있었기 때문에 인류의 난제인 마찰전기 문제를 해결할 수 있는 행운이 따랐고, 오랫동안 포기하지 않고 매달려 준 학생들과 동료들에게 감사하다ˮ 라며 "마찰전기에 대한 미시적 이해를 통해, 보다 고효율 마찰전기 나노 발전기를 물질 수준에서 설계할 수 있게 됐으며, 실생활이나 산업에서 정전기를 제어하는 데 널리 이용되기를 바란다ˮ 라고 말했다.
한편 이번 연구는 한국연구재단의 자율운영 중점연구소 지원사업, SRC 이공분야기초연구사업, 미래소재디스커버리사업, 그리고 KAIST의 최장 30년까지 지원하는 그랜드 챌린지 30 사업의 지원을 받아 수행됐고, 관련 기술은 국내 특허출원이 완료됐다.
2022.05.26
조회수 15339