-
소금, 자가조립 나노캡슐 소재로 쓰이다
우리 대학 기계공학과 김형수 교수와 박광석 박사과정이 소금의 결정화 프로세스를 표면장력 효과로 제어해 나노 및 마이크로 캡슐을 제작하는 원천 기술을 개발했다고 5일 밝혔다. 이를 `결정 모세관 오리가미 기술(Crystal Capillary Origami Technology)'이라고 칭한다.
최근 나노물질 자가 조립기술은 기능성 고분자, 바이오 재료 분야 및 반도체 나노 구조체 제조 등에 활용되는 등 바이오기술(BT) 및 정보통신기술(IT) 분야와 서로 기술적으로 융합 발전되고 있어, 미래 산업에 미칠 경제적 효과가 막대할 것으로 예상되어 그 관심도가 높아지고 있다.
일반적인 자가 조립기술은 미리 정해진 기본 유닛을 이용하는 상향식 (bottom-up approach) 기술 방법이다. 보통 폴리머나 콜로이드 등을 이용해 최종 형태를 구성하게 되고, 이 기술은 분자 수준부터 마이크로미터 수준까지 폭넓은 길이 차원에 적용할 수 있다.
자가 조립기술을 이용하면 나노캡슐을 제작할 수 있는데 공정 특성상 캡슐화를 위해서 경화 과정이 필수적이라 제작공정이 간단하지 않다.
김형수 교수는 “지구상에 존재하는 수많은 미네랄이 있을 텐데 이번 연구에서 사용한 특정 소금들과 같이 기본 결정 구조가 얇고 잘 휘는 성질의 결정을 발견해서 활용할 수 있으면 이멀젼(유화액)이나 액적(물방울) 내부에 원하는 물질을 자발적이고 효과적으로 가둘 수 있다ˮ라고 설명했다.
기계공학과 박광석 박사과정이 제1 저자로 참여한 해당 연구 결과는 국제적 권위 학술단체 영국왕립화학회(Royal Society of Chemistry)의 저명학술지 나노스케일(Nanoscale) 誌에 9월 10일 字 게재됐고, 연구의 우수성을 인정받아 표지논문(Inside Front Cover)으로 게재됐다.
한편 이번 연구는 한국연구재단의 지원을 받아 핵융합기초연구사업(NRF-2021R1A2C2007835)과 삼성전자 산학협력 과제 (IO201216-08212-01)의 지원을 부분적으로 받아 수행됐다.
(논문명: Crystal capillary origami capsule with self-assembled nanostructures)
2021.10.05
조회수 9715
-
광대역 광학 활성을 갖는 카이랄 세라믹 물질 최초 개발
우리 대학 신소재공학과 염지현 교수 연구팀이 광대역 광학 활성을 갖는 *카이랄 세라믹 물질을 최초로 개발했다고 30일 밝혔다. 신소재공학과 박기현 석사과정이 제1 저자로 참여한 이번 연구는 미국화학회가 발행하는 국제 학술지 ‘ACS 나노(ACS Nano)’에 개재됐다. (논문명 : Broad Chiroptical Activity from Ultraviolet to Short-Wave Infrared by Chirality Transfer from Molecular to Micrometer Scale)
☞ 카이랄(Chiral): 수학, 화학, 물리학, 생물학 등 다양한 과학 분야에서 비대칭성을 가르키는 용어중 하나다. 이는 어떤 대상의 모양이 거울에 비춘 모양과 일치되지 않을 때 카이랄 성이 존재한다고 일컫는다.
카이랄 나노물질은 입사하는 원형 편광의 오른쪽 또는 왼쪽 방향성에 따라 다른 광학적 성질을 보이는 광학 활성도(chiroptical activity)의 특징을 가지고 있다. 같은 물질이어도 구조에 따라 서로 다른 광학 성질을 보이는 특이성을 활용해 많은 응용이 가능할 것이라는 기대로 최근 주목을 받는 물질이다. 하지만, 기존에 보고된 대부분의 카이랄 나노물질은 자외선(ultraviolet) 및 가시광선(visible) 영역에서만 제한적으로 광학 활성을 갖고 있어 바이오 및 통신 등을 포함한 다양한 분야에서의 응용에 한계가 있었다.
염지현 교수 연구팀은 이러한 문제를 해결하고자 자외선에서부터 근적외선 영역을 넘어 단적외선 영역에서까지 광범위한 광학 활성을 갖는 카이랄 소재를 최초로 개발했다. 연구팀은 황화구리(copper sulfide) 세라믹 물질에 원자 수준에서부터 마이크로 수준에까지 체계적으로 카이랄 특성을 부여하는 기술을 선보였다. 그와 동시에 황화구리 나노입자의 화학적 상태를 긴 파장의 빛을 효과적으로 흡수할 수 있는 상으로 변화되도록 유도하여 적외선 영역 광학 활성 효율을 극대화하였다.
연구팀은 먼저 아미노산이 가지고 있는 원자 수준 카이랄 특성을 무기 나노입자에 전이시켜 나노 수준 카이랄 특성을 구현한 후, 나노입자 사이의 인력 및 척력을 조절해 1~2 마이크로미터(㎛) 길이의 카이랄 나노꽃(nanoflower, NF)이 자가조립으로 만들어지도록 유도했다. 연구팀은 이렇게 디자인된 나노꽃이 자외선에서부터 수 마이크로미터의 파장을 갖는 적외선에서까지 빛의 원형 편광 방향 따라 특이적으로 상호작용하는 것을 확인했다. 또한, 이 광대역 광학 활성은 연구팀이 유도한 대로 적외선을 흡수할 수 있는 황화구리 상으로 화학적 변화가 잘 변이됐기 때문이고, 나노꽃의 구조적 카이랄 특성이 원형 편광의 방향성에 따른 비대칭적 상호작용을 유도하기 때문인 것을 컴퓨팅 시뮬레이션으로도 밝혔다.
이렇게 개발된 광대역 광학 활성 나노 플랫폼 기술은 바이오센서, 바이오이미징, 적외선 신경 자극, 나노온열치료, 텔레커뮤니케이션 등 다양한 분야에 응용될 것으로 기대된다. 제1 저자로 이 연구에 참여한 박기현 석사과정은 “이 연구를 통해 카이랄 물질군 라이브러리를 만들고 그들의 자가조립 제어 기술을 이용해 새로운 패러다임의 나노소재를 개발하는데 기여할 수 있으며, 무엇보다 세계 최초로 단적외선 영역에서도 광학 활성을 갖는 소재를 개발함으로써 카이랄 나노소재의 응용과 발전을 위한 토대를 마련한 것 같다”며 이 연구의 의의를 설명했다.
한편, 이번 연구는 과학기술정보통신부의 재원으로 범부처전주기의료기기연구개발사업단, 삼성 반도체연구기금, 연구재단 우수신진사업, KAIST 창의도전사업 (C2 프로젝트) 등의 지원을 받아 수행됐다.
2021.10.01
조회수 10825
-
욕창 예방을 위한 무선 배터리-프리, 소프트 압력 센서 시스템 개발
우리 대학 기계공학과 박인규 교수와 오용석 연구교수 연구팀이 미국 노스웨스턴 대학(Northwestern University) 존 로저스(John A. Rogers) 교수 연구팀과 국제 공동 연구를 통해 욕창 예방을 위한 피부 계면에서의 압력과 온도의 연속적인 측정이 가능한 무선, 배터리-프리, 소프트 압력 센서 시스템을 개발했다고 밝혔다. 공동연구팀은 부산대학교병원 재활의학과 이병주 교수, 김해한솔재활요양병원 이제상 과장, 민원기 실장과 함께 임상실험을 통해 이러한 시스템 기술의 유효성과 안정성을 검증해냈다.
욕창은 신체의 특정 부위에 가해지는 지속적인 압력에 의해 모세혈관의 순환장애로 인한 허혈성 조직괴사로 생기는 피부나 하부조직의 손상을 의미하며 피부 온도 증가로 인해 욕창의 진행이 가속화될 수 있다. 이러한 욕창은 인구의 고령화와 만성질환의 증가로 높은 발병율과 유병율을 보이며, 동작, 감각 및 인지능력에 손상을 입은 환자들에게서 자주 발생한다. 욕창이 발생하면 입원환자의 입원 기간 및 의료비 지출을 증가시키고 환자, 보호자에게 상당한 고통을 유발하기 때문에 조기진단과 예방이 매우 중요하다.
현재 욕창의 예방은 미국 욕창자문기구(NPIAP, National Pressure Injury Advisory Panel)에서 제안하는 프로토콜에 기반해 주기적으로 누워있는 환자의 체위 변경을 통해서 압력을 분산하지만, 여전히 많은 욕창 환자들이 발생하고 있다. 욕창 발생률을 획기적으로 낮추기 위해서는 누워있는 환자의 피부 계면에서의 압력과 온도를 연속적으로 측정하기 위한 우수한 신뢰성을 갖는 센서와 시스템 기술이 필요한데, 아직 연구개발의 초기 단계에 있다.
우리 대학 박인규 교수와 오용석 연구교수 연구팀은 이러한 문제의 해결을 위해 무선, 배터리-프리 압력 센서 시스템을 개발해, 피부 계면에서 압력과 온도의 연속적인 모니터링을 구현하고 욕창 위험군 환자에 대해서 시스템의 유효성과 안정성을 평가했다. 이번 연구에서 개발된 무선, 배터리-프리 압력센서는 금속과 중합체로 구성된 멤브레인 (membrane) 필름의 처짐에 따른 저항 증가를 이용해 압력을 측정하는 방식으로, 욕창 발생과 관련된 요구되는 압력 범위(~10 킬로파스칼(kPa))에서 적절한 민감도, 높은 선형성(linearity), 작은 이력현상(hysteresis)과 드리프트(drift), 우수한 출력의 안정성을 보였으며 피부에 부착된 압력센서의 정확성을 높이기 위해 굽힘, 전단 등에 반응하지 않도록 설계됐다. (그림 1) 또한, 온도센서는 피부 온도 변화에 따른 저항방식의 압력 센서 출력을 보정하고 욕창 발달의 가속화와 관련된 피부 온도 변화의 연속적 측정이 가능하게 했다.
사각형의 송신기 코일 안테나에 의해 형성된 자기장은 피부에 부착된 무선 플랫폼의 원형 수신기 코일 안테나를 통해 유도전류를 발생시켜 근거리 무선통신(NFC, near-field communication)을 가능하게 한다. 또한, 무선 플랫폼의 압력 및 온도센서는 원형 코일 외부에서 늘어나는 기능을 가진 서펜타인(serpentine) 구조로 연결돼 있어 다양한 기계적 변형(굽힘, 늘어남, 휘어짐)에 대해서도 안정적인 센서 출력을 보이며 동시에 환자의 움직임이나 체위 변경 하에서도 충분한 전력 공급과 데이터 통신이 가능하다. (그림 2)
공동연구팀은 환자의 전신을 커버하기 위해 침대 매트리스 아래에 두 개의 송신기 코일 안테나, 침구 옆에 리더기(reader)와 멀티플랙서(multiplexer)를 배치해 환자의 피부에 부착된 무선 센서 플랫폼으로 안정적으로 전력 전송과 데이터 통신이 가능한 시스템을 개발하고, 송신기 코일 안테나 로부터 발생하는 자기장 분포, 방향, 세기 등을 시뮬레이션을 통해 검증했다. (그림 3) 뿐만 아니라, 반신마비 환자, 전신마비 환자 등의 욕창 위험군 환자들에 대한 무선, 배터리-프리 센서 시스템에 대한 유효성과 안정성 평가를 통해서 욕창 발생 주요 부위에서의 장시간 압력, 온도의 연속적인 모니터링과 체위 변경에 대한 압력의 정량적 측정을 검증했다. (그림 4)
이번 연구의 교신저자 박인규 교수는 “침대에 누워있는 환자의 주요한 피부 계면에서 압력과 온도의 연속적 측정이 가능한 무선, 배터리-프리 센서 시스템 기술이 세계 최초로 개발됐으며, 이를 통해 욕창 위험군 환자들에 대한 욕창의 조기진단과 예방을 획기적으로 향상시킬 수 있는 계기가 될 것으로 기대한다”고 밝혔다.
이번 연구는 제1 저자 오용석 연구교수 (우리 대학 기계공학과 & 미국 노스웨스턴 대학 바이오통합 전자센터) 주도하에 김재환 박사과정(미국 일리노이 대학교 어바나 샴페인 전자컴퓨터공학부), 자오치엔 지에(Zhaoqian Xie) 교수(중국 대련대학교 기계공학부)와 함께 진행됐으며, 박인규 교수, 용강 황(Yonggang Hwang) 교수(노스웨스턴 대학 기계공학부), 존 로저스(John A. Rogers) 교수 (노스웨스턴 대학 바이오통합 전자센터)가 교신저자로 참여했다. 또한, 임상 연구는 이병주 교수(부산대학교병원 재활의학과), 이제상 과장(김해한솔재활요양병원), 민원기 실장 (김해한솔재활요양병원)의 도움으로 진행됐다.
한편 이번 연구는 과학기술정보통신부의 재원으로 한국연구재단의 창의도전연구 기반지원사업과 중견연구사업의 지원을 받아 수행됐으며 연구 결과는 재료과학 및 융합연구 분야 최상위 학술지 중 하나인 ‘네이처 커뮤니케이션스(Nature Communications, 2020 impact factor 14.919)’ 저널의 2021년 8월 24일자 온라인 판에 게재됐다.
2021.09.30
조회수 11718
-
리튬-황 전지 성능 높일 다공성 2차원 무기질 나노소재 개발
우리 대학 생명화학공학과 이진우 교수팀이 서로 다른 크기의 기공을 동시에 가지고 있는 다공성 2차원 무기질 *나노코인을 합성하는 새로운 기술을 개발했다.
☞ 나노코인: 동전과 같이 둥근 모양이면서 두께가 약 3나노미터인 2차원 나노 소재
연구팀의 합성기술은 다공성 무기질 소재를 동전처럼 둥글고 납작한 형상으로 제어할 수 있고, 크기 및 두께 등의 물성을 정밀하게 제어할 수 있는 새로운 원천 기술이다. 이는 리튬-황 이차전지의 분리막에 사용돼 리튬-황 전지의 성능 저하 원인으로 꼽히는 리튬폴리설파이드의 용출을 효과적으로 억제해 성능을 높이는 데 성공했다.
이진우 교수 연구실의 김성섭 박사(現 전북대학교 교수)가 주도하고 임원광 박사가 참여한 이번 연구 결과는 화학 분야 국제 학술지 `미국화학회지(Journal of the American Chemical Society, JACS)' 2021년 9월 1일 字 온라인판에 게재됐다. (논문명: Polymer Interface-Dependent Morphological Transition toward Two-Dimensional Porous Inorganic Nanocoins as an Ultrathin Multifunctional Layer for Stable Lithium–Sulfur Batteries)
기존의 다공성 2차원 무기질 소재의 합성 방법은 기판을 이용하거나 별도의 주형을 사용하는 방식으로 소재의 형상 원판처럼 제어함과 동시에 두께를 조절하는 것에 한계가 있다. 또한, 다공성 구조를 형성하기 위해서는 추가적인 공정을 도입해야만 한다. 이를 해결하기 위해서 용액에서 양친성 분자를 이용한 구조를 도입하려 시도했지만, 무기질 전구체의 반응을 제어하기 쉽지 않다는 문제가 발생했다.
이 교수 연구팀은 블록공중합체와 단일중합체의 고분자 블렌드의 상거동을 이용해 기존의 문제를 해결하는 새로운 합성 방식을 제시했다. 이를 통해서 연구팀은 다공성 2차원 무기질 나노코인을 3나노미터(㎚) 두께로 합성하는 데 성공했다. 서로 섞이지 않는 단일중합체와 블록공중합체의 계면에너지가 달라짐에 따라서 나노구조의 배향과 입자의 모양이 달라지는 원리를 이용했다. 또한, 나노구조의 형성을 위해서 무기질 소재 내부에 함께 자기조립 된 블록공중합체가 제거되면서 마이크로 기공이 형성됐다.
이 합성 방법은 별도의 주형이 필요하지 않은 간단한 원팟(one-pot) 방법으로 기존의 복잡한 과정을 혁신적으로 줄여 생산력을 증대시켰다. 이를 이용해 연구팀은 다공성 2차원 알루미노실리케이트 나노코인을 차세대 전지인 리튬-황 이차전지의 분리막에 코팅해 리튬-황 전지의 성능을 높이는 데 성공했다.
기존의 리튬 이온 이차전지보다 약 2~3배 높은 에너지 밀도를 발현할 수 있을 것이라 기대되고 있는 리튬-황 이차전지의 큰 문제점은 황이 충·방전 과정에서 새어나가는 현상이다. 다공성 2차원 알루미노실리케이트 나노코인은 분리막에 약 2 마이크로미터(㎛)로 얇게 코팅돼 용출되는 리튬폴리설파이드를 물리적, 화학적으로 억제했다. 나노코인의 다공성 구조는 전해질과 리튬이온은 통과시키는 반면, 리튬폴리설파이드는 필터처럼 걸러 물리적으로 막아준다. 또한 알루미노실리케이트는 고체산으로 염기성질을 가진 리튬폴리설파이드를 흡착하여 용출을 억제한다. 이를 통해서 분리막의 두께 대비 용량 향상시켜 세계 최고 수준의 결과를 얻었다.
연구팀의 합성기술은 블록공중합체의 분자량 및 고분자 대비 질량을 조절해 손쉽게 나노구조(넓이 및 두께)를 조절할 수 있고 다른 소재로의 확장도 가능하여 맞춤형 나노소재로도 활용할 수 있을 것으로 보인다.
우리 대학 생명화학공학과 이진우 교수는 "고분자에서 일어나는 현상을 이용한 새로운 다공성 2차원 무기 소재를 합성기술이 기존 기술의 문제점을 해결할 수 있음을 보여줬다ˮ고 설명하면서 "고분자 분야와 무기 소재 합성을 잇는 연구가 실용적인 에너지 장치 성능 향상에 큰 기여를 할 수 있을 것이다ˮ고 설명했다.
한편 이번 연구는 한국연구재단이 추진하는 중견연구의 지원을 통해 수행됐다.
2021.09.24
조회수 12198
-
우수한 소재를 설계하는 딥러닝 방법론 개발
우리 대학 기계공학과 유승화 교수 연구팀이 능동-전이 학습 (active-transfer learning)과 데이터 증강기법(Data augmentation)에 기반해, 심층신경망 초기 훈련에 쓰인 소재들과 형태와 조합이 매우 다른 우수한 특성을 지닌 소재를 효율적으로 탐색하고 설계하는 방법론을 개발했다고 16일 밝혔다.
인공신경망에 기반해 방대한 설계 공간에서 새로운 소재를 찾기 위한 역설계 연구는 최근 매우 활발하게 진행되고 있다. 하지만 이러한 기존 설계 방식은 목표로 하는 소재의 형태와 조합이 심층신경망 훈련에 활용된 소재들과 매우 다를 때 인공신경망이 가지는 낮은 예측능력으로 인해 극히 많은 수의 소재 데이터 검증이 요구되며, 이에 따라 제한적으로만 활용이 가능하다.
연구팀은 이번 연구에서 이를 극복하기 위해 초기 훈련 데이터 영역에서 벗어나 우수한 소재를 효율적으로 탐색할 수 있는 인공신경망 기반 전진 설계 (Forward design) 방법론을 제안했다. 이 방법론은, <그림 1>에 도시된 바와 같이 유전 알고리즘과 결합된 능동-전이 학습 및 데이터 증강기법을 통해 심층신경망을 점진적으로 업데이트함으로써, 초기 훈련데이터를 벗어난 영역에서 심층신경망의 낮은 예측능력을 적은 숫자의 데이터 검증 및 추가로 보완한다.
유전 알고리즘에 의해 제안되는 우수 소재 후보군은 기보유한 소재 데이터를 조합해 도출하기 때문에 심층신경망의 신뢰할 수 있는 예측 영역과 설계 공간 측면에서 상대적으로 가까워 예측정확도가 유지된다. 이 후보군과 능동-전이 학습을 활용해 점진적으로 심층신경망의 신뢰성 있는 예측 범위를 확장하면, 초기 훈련데이터 영역 밖에서도 적은 데이터를 생성해 효율적인 설계 과정이 가능하다.
이번 방법은 천문학적인 수의 설계 구성을 가지는 그리드 복합소재 최적화 문제에 적용해 검증했으며, 이를 통해 전체 가능한 복합재 구조의 1029분의 1 가량인 10만 개의 복합재들만 초기 훈련 데이터로 활용해 심층신경망을 학습한 후, 이후 약 500개에 미치지 못하는 데이터 검증을 통해 초기 훈련에 쓰인 복합재와 매우 다른 구조를 가지고 우수한 특성을 지닌 복합재 구조를 설계할 수 있음을 보였다.
연구진이 개발한 방법론은 국소 최적점(Local optima)에 수렴하는 문제를 완화하면서도 인공신경망의 신뢰할 수 있는 예측 영역을 점진적으로 확장하는 효율적인 방법을 제공하기 때문에, 큰 설계 공간을 다루는 다양한 분야의 최적화 문제에 적용할 수 있을 것으로 기대되며, 특히 설계에 요구되는 데이터 검증의 숫자가 적기 때문에 데이터 생성에 시간이 오래 걸리고 비용이 많이 드는 설계 문제에서 이 방법론이 크게 활용될 수 있을 것으로 기대된다.
이번 연구는 공동 제 1저자 김용태 박사과정, 김영수 박사(한국기계연구원) 주도하에 진행됐으며, 유승화 교수(우리 대학 기계공학과)가 교신저자로 참여해, 국제학술지인 `npj 컴퓨테이셔널 머터리얼(Computational Material, IF:12.241)'에 `Deep Learning Framework for Material Design Space Exploration using Active Transfer Learning and Data Augmentation' 라는 제목으로 게재됐다.
이번 연구는 한국연구재단의 중견 연구자지원사업(3D 프린팅 복합재의 최적설계기법 및 피로수명 예측기법 개발)과 미래소재 디스커버리 사업 (레이저-물질 상호작용 멀티스케일 모델링을 통한 분자디자인), KAIST 글로벌 특이점 프렙 사업의 지원을 통해 수행됐다.
2021.09.16
조회수 11437
-
생체 내 조직 특이적 분비 단백질 표지 기법 개발
우리 대학 의과학대학원 서재명 교수 연구팀이 서울대학교 화학부 이현우 교수, 서울대학교 생명과학부 김종서 교수 연구팀과 공동연구를 통해 생체 내 조직 특이적 분비 단백질 표지 기법을 개발했다고 13일 밝혔다.
공동연구팀은 근접 표지 효소를 활용해 생쥐의 혈장 내에서 특정 조직이 분비하는 단백질만을 분리할 수 있는 기법을 개발했다. 이러한 체내 표지 기법은 지금까지의 체외 세포주 실험의 한계를 뛰어넘어 질병과 관련된 바이오마커 및 치료 표적 발굴에 적용될 수 있을 것으로 기대된다.
의과학대학원 김광은 석박사통합과정, 서울대학교 화학부 박이삭 석박사통합과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이쳐 커뮤니케이션즈(Nature Communications)' 9월 1일 字 온라인판에 출판됐다. (논문명 : Dynamic tracking and identification of tissue-specific secretory proteins in the circulation of live mice).
분비 단백질은 세포 및 조직 간의 신호 전달을 매개해 생리학적 기능을 조절하는 주요한 인자이며 질병 치료제의 주요 표적으로도 활용되고 있어 분비 단백질 연구는 생물학적, 의학적으로 중요한 의미가 있다.
현재까지 대부분의 분비 단백질 연구는 세포주 배양 수준에서 배양 상층액을 분석하는 것이지만, 체외 세포 배양은 체내 생리학적 환경을 충분히 반영하지 못한다는 한계가 잘 알려져 있다.
이를 극복하기 위해서는 체내 특정 조직이 혈액으로 분비하는 단백질을 연구해야 한다. 그러나, 체내의 혈액에는 수천 종의 단백질이 혼합되어 있어 특정 조직이 분비하는 단백질만을 분리하는 기법이 요구되는 상황이다.
공동연구팀은 문제 해결을 위해 근접 표지 효소를 활용해 소포체 내강을 통하는 분비 단백질을 바이오틴으로 표지했다. 표지된 단백질은 스트렙타비딘을 이용해 손쉽게 검출하거나 분리할 수 있었다.
이 효소를 생쥐의 간에 전달한 후 바이오틴을 투여한 결과, 생쥐의 혈장에서 간 유래 분비 단백질만을 검출할 수 있었다. 생체 내 간 유래 분비 단백질은 세포 배양을 통한 간 세포주의 분비 단백질과는 확연한 차이가 있음을 확인했다.
나아가 공동연구팀은 이 기법을 질병 모델에서 검증하기 위해 인슐린 저항성 생쥐 모델에 적용했고, 그 결과 인슐린 저항성과 관련이 있는 것으로 보고된 단백질들을 성공적으로 검출할 수 있었다.
공동연구팀은 추후 이 기법을 체내의 다양한 조직에 적용하거나 질환 모델과 결합해 질병의 진행 과정과 관련된 단백질을 검출할 수 있을 것으로 예상했다.
공동 제1 저자인 김광은 석박사통합과정은 "체내에서 간이 분비하는 단백질들은 세포주의 결과와는 크게 달랐고, 이는 기존 세포주를 이용한 분비 단백질 연구의 한계와 그 한계를 극복할 수 있는 이번 기법의 차별성을 보여주는 결과다ˮ라며 "체내 생리학적 상태를 더 온전하게 반영할 수 있는 바이오마커 및 치료 표적 발굴에 활용될 수 있을 것ˮ이라고 말했다.
한편 이번 연구는 한국연구재단, KAIST 중점연구소(융합연구단), 기초과학연구원의 지원을 받아 수행됐다.
2021.09.13
조회수 11530
-
이동형 음압병동, 경기도 특별생활치료센터로 운영
우리 대학이 코로나대응 과학기술뉴딜사업단(단장 배충식)이 개발한 '이동형 음압병동(Mobile Clinic Module, 이하 MCM)'을 경기도(도지사 이재명)와 협력해 경기도 제2호 특별생활치료센터로 운영한다.
MCM은 고급 의료 설비를 갖춘 음압격리시설로 KAIST 남택진 산업디자인학과 교수팀이 지난해 7월부터 한국형 방역패키지 기술 개발사업의 일환으로 연구해왔다. MCM은 기능성·경제성·효용성뿐만 아니라 독창적 디자인과 심미성까지 갖춘 우수한 의료 시설로 인정받아 세계적인 권위의 독일 레드닷(Red Dot) 디자인 공모전의 제품디자인 분야와 커뮤니케이션 디자인(사용자 인터페이스) 분야에서 동시에 대상(Best of the Best)을 수상한 바 있다.
올해 1월 서울 한국원자력의학원에 4개의 중환자 병상을 갖춘 병동을 설치하고 시범 운영을 진행해 경증환자 2명의 치료를 완료했다. 또한, 대전 건양대병원 응급실에 음압격리실로 설치해 지난 6월부터 2개월 동안 138명이 진료를 받았으며 현재도 계속해서 활용 중이다.경기도 인재개발원 실내체육관에 설치된 특별생활치료센터는 28병상 14병실(2인 1실)과 다목적 1실(엑스레이 및 처치실)로 구성되어 오는 13일 문을 연다. 경기도 MCM은 코로나 19 확진자를 약 2주간 격리하는 기존 생활치료센터와는 다르게 자가치료 연계 단기 진료센터로 운영된다. 자가치료 중 관리가 필요한 증상을 보이는 환자를 MCM으로 이송해 1일~3일간의 단기 입원 경과를 관찰한 뒤 후속 조치를 취하는 방식이다.
대면 및 산소치료·엑스레이·수액 등 MCM의 자체 진료 역량을 활용해 환자를 치료할 수 있다. 병실 안에 개별 화장실이 구비되어 있으며 음압·환기상황·출입문 자동 개폐를 중앙에서 모니터링하고 제어할 수 있다. 치료 중 이상 징후가 발생한 환자는 전담 중증 병원으로 전원 조치하고 특이 사항이 없는 경우 다시 자가 치료 시설로 이송하게 된다.
이를 위해, 경기도의료원 안성병원이 특별생활치료센터의 운영을 맡는다. 1일 기준 의사 1~2명, 간호사 3명, 간호조무사 2명, 행정원 1명, 방역 인원 2~3명, 영상기사 1명 등이 3교대로 근무할 예정이다. 이 외에도 KAIST 연구원, 소방, 경찰, 기타 용역 등 약 20여 명의 전담 인력이 현장에 투입된다.
13일부터 다음달 10일까지 운영되며 경기도는 한 달간의 운영 성과와 코로나19 확산 상황을 고려해 필요에 따라 운영 기간을 조정할 방침이다. 최근 심화되고 있는 음압병상 부족 사태 해결에 기여하고 더 나아가 한국 방역 시스템의 새로운 패러다임을 제시하겠다는 것이 두 기관의 협업 목표다.
우리 대학은 이번 특별생활치료센터 운영을 통해 음압병상의 효율화와 최적화 모델을 구축하기 위한 연구를 진행한다. 향후, 오폐수 처리 시스템, 감염환자에 최적화된 이동형 화장실, 모바일 기기용 MCM 사용자인터페이스 등의 연구개발을 이어갈 예정이다.
디자인과 프로젝트 총 감독을 맡은 남택진 산업디자인학과 교수는 "활용 가능한 실내 체육관이 있다면, 독립된 설비가 없더라도 2주 내에 의료가스·오폐수처리·음압설비 등이 구비된 특별생활치료센터로 바꿀 수 있다ˮ라고 설명했다.
사업단을 이끈 배충식 단장은 "지난해 7월에 연구개발을 시작한 MCM은 1년 남짓한 짧은 시간 안에 시범 운영을 거쳐 치료 현장에 상용화된 획기적이고 성공적인 사례ˮ라고 전했다. 또한, "KAIST는 코로나19에 발 빠르게 대응하기 위해 이동형 음압병동 뿐만 아니라 다각적인 방역기술 분야에서 연구개발 및 실증연구를 수행하고 있다ˮ라고 강조했다. KAIST 코로나대응 과학기술뉴딜사업단은 교내 연구진이 보유한 우수 방역기술을 바탕으로 기술이전 및 사업화를 진행하고 과학기술에 바탕을 둔 한국형 방역 패키지 모델 정립을 위한 역할을 수행하고 있다.
2021.09.09
조회수 9630
-
위치 영상화가 가능한 약물 전달체 기술 개발
우리 대학 생명화학공학과 박현규 교수 연구팀이 중앙대 화학과 박태정 교수, 가천대 바이오나노학과 김문일 교수와의 공동 연구를 통해 중금속 흡착 단백질을 이용한 금속 나노입자 고효율 생합성 기술을 개발하고, 이를 이용해 위치 영상화가 가능한 약물 전달체를 개발했다고 7일 밝혔다.
우리 대학 생명화학공학과 졸업생 김문일 박사(現 가천대 교수), 중앙대 박찬영 박사가 공동 제1 저자로 참여한 이번 연구는 미국화학회가 발행하는 국제 학술지 ‘ACS 어플라이드 머터리얼즈 앤 인터페이시스(Applied Materials and Interfaces)’ 2021년도 13호 표지 논문으로 선정됐다. (논문명: In situ biosynthesis of a metal nanoparticle encapsulated in alginate gel for imageable drug-delivery system)
현재 금속 나노입자의 합성에 주로 사용되고 있는 물리화학적 방법은 독성이 있는 환원제, 계면활성제 및 유기 용매의 이용이 필요해 약물전달체 등 생체 내에 사용하기 어려운 단점을 가지고 있다. 이를 극복하기 위해 환원력이 우수한 단백질을 미생물 내에 과발현해 금속 나노입자를 생합성하는 기술이 개발됐으나, 이 방법은 미생물이 받아들일 수 있는 금속 전구체의 종류 및 농도가 제한된다는 단점이 있다.
연구팀은 이러한 현행 기술의 한계를 극복하기 위해, 대장균에 중금속 흡착 단백질을 발현하는 플라스미드를 형질 전환해 단백질을 과발현한 후 이를 알지네이트 젤에 포집해 그 활성을 안정화하는 기술을 개발했다. 중금속 흡착 단백질을 포집한 알지네이트 젤은 다양한 종류의 금속 이온을 30분 이내로 빠르게 고농도로 흡착 및 환원시켜 금, 은, 자성 및 양자점 나노입자 등 다양한 종류의 금속 나노입자를 알지네이트 젤 내부에 고농도로 생합성하는 데 효과적으로 활용됐다.
특히, 연구팀은 항암제 등 약물과 중금속 흡착 단백질을 알지네이트 젤에 동시에 포집한 후 높은 형광을 나타내는 양자점 나노입자를 젤 내부에 합성함으로써 형광을 통해 위치의 추적 및 영상화가 가능하고 약물의 서방형 방출이 가능한 다기능 약물 전달체를 개발하는 데 성공했다.
☞ 서방형(sustained release): 약물 등이 장시간에 걸쳐 서서히 방출되는 형태
연구팀은 항암제와 녹색 형광을 보이는 카드뮴 셀레나이드 (CdSe) 및 파란색 형광을 보이는 유로피움 셀레나이드 (EuSe)로 이루어진 양자점을 동시에 포집한 약물 전달체를 마우스에 경구로 주입한 후, 이 약물 전달체의 위치를 생체 내에서 추적 및 영상화할 수 있음을 확인했다.
박현규 교수는 “이번 연구에서 개발된 중금속 흡착 단백질을 포집한 알지네이트 젤은 독성 물질 없이, 고속·고농도로 다양한 금속 나노입자를 생합성할 수 있고 동시에 약물의 서방형 방출이 가능하기 때문에, 향후 위치 추적이 가능한 약물 전달체 등에 응용될 수 있다”고 이번 연구의 의의를 설명했다.
한편 이번 연구는 한국연구재단의 지원을 받아 중견연구자지원사업의 일환으로 수행됐다.
2021.09.07
조회수 14925
-
생체 내 조직의 온도·압력 실시간 측정 가능한 센서 집적 고주파 소작 바늘 개발
우리 대학 기계공학과 박인규 교수 연구팀이 삼성서울병원 임효근 박사 연구팀, ㈜알에프메디컬 이진우 박사 연구팀과 공동 연구를 통해 암 소작 시술 시 실시간으로 고주파 소작 중인 조직의 온도와 압력의 측정이 가능한 소작용 바늘을 개발했고, 이 기술의 유효성을 전임상/임상 실험을 통해 검증했다고 2일 밝혔다.
고주파 소작술(Radiofrequency ablation, 이하 RFA) 은 암 조직에 도체 바늘을 삽입한 뒤 전기 소작을 통해 암 조직을 고온 가열해 제거하는 최소침습적 방법으로 시술 과정이 편리하고 효과적일 뿐만 아니라 환자에게도 부담이 적어 암 치료 시술에 널리 사용되고 있다. 하지만 소작 중 발생하는 열에 의해 체액이 기화되며 내부의 압력을 증가시키는데, 이는 스팀 팝(steam pop)이라는 소작 중 소규모 폭발 현상으로 연결된다. 이러한 폭발 현상은 환자에게 악영향을 끼칠 수 있을 뿐만 아니라, 만약 암조직의 소작이 완전히 이루어지지 않은 상황에서 발생하면 암의 전이까지 유발될 가능성이 있어 매우 위험하다.
박인규 교수 연구팀은 이러한 문제의 해결을 위해, RFA용 바늘에 집적 가능한 얇은 필름 형태의 생체적합성 온도/압력 센서를 개발해 소작 부위의 조건을 실시간으로 모니터링할 수 있는 RFA용 센서 집적 바늘(sRFA-needle)을 구현했다. 전임상/임상 실험을 통해 신뢰성있게 스팀 팝을 감지할 수 있으며, 조직 내부의 온도, 압력, 그리고 전기전도성의 변화를 동시에 측정함으로써 스팀 팝이 어떠한 식으로 이뤄지는지에 대한 실마리를 제공하는 기술을 세계 최초로 개발했다.
이번 연구에 사용된 압력 센서는 피라미드 형태로 초미세 3차원 형태화된 전도성 나노 복합재 필름과의 기판 전극 사이의 접촉 저항 변화로 압력을 측정하며, 연구진은 온도에 따른 금속 저항 변화를 통해 온도를 측정했다. 또한 개발된 센서가 체내 고주파 소작술 중 발생 가능한 고온/고압 조건에 높은 신뢰성을 가짐을 검증했다. (그림 1)
제작된 집적 바늘의 전임상/임상 실험 수행 전에 시뮬레이션을 통해 소작 과정이 모사됐는데, 그 결과 RFA용 바늘의 전도성 영역의 양 끝단에서 가장 활발하게 소작이 일어남이 확인됐으며, 이를 통해 스팀 팝은 소작이 진행되는 앞부분과 뒷부분의 각 소작 영역이 합쳐지며 급격한 소작 영역의 팽창에서 나타나는 결과임을 유추할 수 있었다. 이에 더해, 연구팀은 기존에 고주파 소작술에서 사용되던 임피던스 측정만으로는 모니터링할 수 없던 스팀 팝을 온도/압력 측정을 통해 감지할 수 있음을 확인했으며, 세부적인 스팀 팝 메커니즘이 시뮬레이션과 비슷하게 구현됨을 센서를 통한 소작 환경 모니터링을 통해 확인했다. 그리고 이를 통해 고주파 소작술의 안정성 및 수술 유효성 증진에 기여할 수 있는 가능성을 보였다. (그림 2) 또한, 실제 암 환자들의 고주파 소작술 모니터링에 임상 적용돼 의학적으로 유용성을 입증했으며 (그림 3), 의료기기 인증을 획득하고, ㈜알에프메디컬을 통해 상용화에 성공했다.
이번 연구를 주도한 우리 대학 박인규 교수는 "암, 하지정맥류 등의 질병에 최소침습적 치료 방법으로 널리 사용되고 있는 고주파 소작술에서 조직 내의 온도, 압력을 측정할 수 있는 기술이 세계 최초로 개발됐으며, 이를 통해 고주파 소작술의 안정성과 정확성을 획기적으로 향상할 수 있는 계기가 될 것으로 기대한다ˮ고 밝혔다.
이번 연구는 공동 제1 저자 KAIST 기계공학과 박재호 박사, KAIST 기계공학과 정용록 박사과정 학생 및 삼성서울병원 차동익 교수 주도하에 진행됐으며, 삼성서울병원 임효근 교수와 KAIST 기계공학과 박인규 교수가 교신저자로 참여했다. 또한 이번 연구는 과학기술정보통신부의 재원으로 한국연구재단의 선도연구센터 지원사업(ERC, 초정밀 광기계기술 연구센터)의 지원을 받아 수행됐다.
이번 연구 결과는 재료과학 및 융합연구 분야 최상위 학술지 중 하나인 `어드밴스드 사이언스(Advanced Science, 2020 impact factor 16.806)' 誌 2021년 8월 6일자 온라인 판에 게재됐고, 연구의 우수성을 인정받아 표지논문(frontispiece) 으로 선정됐다.
2021.09.02
조회수 11222
-
양자 기체의 스핀 상관된 제트 현상 관측 및 규명
우리 대학 물리학과 최재윤 교수 연구팀이 ‘극저온 중성원자로 구성된 보즈-아인슈타인 응집체를 이용해 스핀 상관된 물질파 방출’에 성공했다. 물리학과 김경태 박사가 제 1저자로 참여한 이번 연구는 물리학 분야 권위지인 ‘피지컬 리뷰 레터스(Physical Review Letters)’에 지난 7월 22일에 게재됐다.
극저온 중성 원자로 구현된 보즈 아인슈타인 응집체 (Bose-Einstein condensate, BEC)는 수만 개 이상의 원자들이 하나의 파동함수로 기술되는 양자 상태로, 중성 원자가 갖는 스핀 자유도를 활용하면 진공 압축 (squeezed vacuum state)상태를 구현 할 수 있으며, 이를 활용하여 다양한 양자 정보 연구를 수행할 수 있다. 양자 얽힘 상태 생성의 미시적인 과정은 두개의 스핀0인 원자가 충돌 이후 스핀1과 스핀-1로 변환되는 것으로, 생성된 스핀 쌍은 (+1,-1)와 (-1,+1)의 중첩 상태인 양자 얽힘 상태가 된다. 이러한 스핀 충돌 과정을 스핀 쌍 생성 충돌이라 하며, 이는 한 광자가 절반의 에너지를 가지 두개의 얽힌 광자로 나누어지는 과정과 매우 유사함이 알려져 있다.
현재까지 BEC에서 수행한 대부분의 양자 정보 연구는 루비둠-87 원자를 사용하였는데, 이 경우 스핀 쌍 생성률이 낮고, 생성된 양자 얽힘 상태의 원자들이 특정 위치에만 고정될 수밖에 없는 한계점이 있다. 따라서 양자 정보 처리를 목적으로 하는 비국소적 측정이나 조종을 위해서는 원자 앙상블을 나누는 과정 등이 필요하며, 이 과정에서 생성되는 추가적인 잡음을 제거하는 방법은 아직까지 보고된 바가 없다.
최재윤 교수 연구팀은 리튬-7 원자의 스피너 응집체를 이용하여 높은 운동에너지를 갖는 스핀 쌍들이 생성 이후 유도 증폭되는 것을 관측하였으며, 또한 이러한 스핀 쌍들이 서로 결맞는 상태임을 보고하여 선행 연구의 제한점을 극복하는 새로운 방향을 제시하였다.
리튬-7원자의 경우 강한 스핀 상호작용 에너지를 가짐이 오래전부터 알려져 있었으나, 양자 기체 생성의 어려움으로 인해 그동안 실험적으로 구현되지 못하였다 [이 시스템을 보유한 연구단은 아직까지 최재윤 교수 연구팀이 유일하다, Physical Review Research 2, 033471 (2020)]. 연구팀은 이차원 평면에 물질파 방출을 위해 BEC를 이차원 포텐셜에 가두었으며, 스핀0 상태의 응집체에서의 스핀 쌍을 생성 유도하였다. 생성된 스핀 쌍은 BEC를 지나며 증폭되어 충분히 많은 원자들이 포텐셜 외부로 분출되는 것을 관측했다.
아래 그림은 해당 실험의 각 스핀 성분 사진으로, 좌우의 스핀+1,-1의 중심을 기준으로 반대편에 반대 스핀 성분을 가진 원자들을 찾기 쉽다는 것을 알 수 있다. 충돌과정에서 각운동량 보존(스핀)과 선형 운동량 보존(무게중심)이 동시에 보존되어야 하기 때문에, 서로 반대 방향으로 뻗어 나가는 원자들은 필연적으로 강한 스핀 상관관계를 가지게 된다.
이번 연구에서 주목할 점은 스핀 상태의 측정 방향에 따른 상관 함수 분석을 통해, 방출된 물질파가 확장된 벨 상태의 특징적인 스핀 상관관계를 가진다는 것을 확인할 수 있었다는 점이다.
이 현상을 이용하면 비고전적 원자 앙상블의 생성과 동시에 분리가 가능해, 공간적으로 멀리 떨어진 거시적 양자 얽힘 상태를 효율적으로 생성할 수 있을 것으로 전망한다.
해당 연구는 최순원 교수(Berkeley/MIT)와의 협력 연구를 통해 진행됐으며, 삼성 미래 기술 육성 재단 및 한국연구재단 양자 컴퓨팅 기술개발 사업의 지원을 받아 수행됐다.
2021.09.01
조회수 9949
-
시각 정보가 행동으로 변환되는 신경회로 규명
우리 대학 생명과학과 이승희 교수 연구팀이 시각 정보를 인식해 목표 지향적 행동을 결정하는 대뇌 전두엽의 신경회로 기전을 새롭게 규명했다고 26일 밝혔다.
이 교수 연구팀은 시각 피질과 상호 작용하는 전측 대상회(전대상) 피질(Anterior cingulate cortex, ACC)의 억제성 신경회로가 동물이 시각 정보를 인식하고 이에 맞는 정확한 행동을 개시하는 데 중요한 역할을 함을 밝혔다. 연구 결과는 포유류 전두엽 전대상 피질의 신경회로가 어떻게 시각 인지 행동 및 충동적 행동을 제어할 수 있는지를 새롭게 규명해, 주의력결핍과잉행동장애(ADHD)와 같은 인지장애 및 충동성을 주 증상으로 하는 뇌질환 치료에 적용될 수 있을 것으로 기대된다.
생명과학과 김재현 박사가 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 뉴로사이언스 (Nature Neuroscience, IF 20.071)' 8월 19일 字 온라인판에 게재됐다. (논문명 : Gated feedforward inhibition in the frontal cortex releases goal-directed action)
우리는 외부 환경에서 유입되는 다양한 감각 정보를 인지해 상황에 맞는 행동을 수행한다. 한 예로, 운전할 때 신호등 앞에서 빨간색 신호를 보면 출발하지 않고 멈춰야 하며, 초록색 신호로 바뀌면 출발하게 된다. 이처럼 시각 정보를 인식하고 이에 맞는 운동 행동을 결정하기 위해 우리 뇌는 받아들인 감각 정보를 적절한 운동 정보로 변환해야 하는데, 이 교수 연구팀은 이것이 전대상 피질의 억제성 회로에 의해 이루어짐을 밝혔다.
연구팀은 뇌가 받아들인 시각 정보를 어떻게 운동 정보로 전달하는지 규명하기 위해, 시각 자극을 보면 물을 핥고 그렇지 않으면 물 핥기를 멈추는 목표 지향적 행동을 학습시킨 생쥐의 전대상 피질에 고밀도 실리콘 전극을 삽입해 생체 내 신경 신호를 측정 및 분석했다. 그 결과, 전두엽 전대상 피질 내에서 시각 피질로부터 정보를 받는 시각 반응성 신경세포들이 주변의 세포들을 억제할 경우 생쥐가 운동을 개시할 수 있음을 밝혔다.
또한, 약물적 방법을 이용해 전대상 피질의 활성 정도를 낮추게 되면 생쥐는 시각 자극이 주어지지 않았음에도 불구하고 충동적으로 목표 지향적 행위를 지속하는 비정상적인 행동 양상을 보였다. 이를 통해 전대상 피질은 정상적인 감각-운동 변환 과정에서도 핵심적인 기능을 수행할 뿐 아니라, 시각 정보가 없을 때 운동 개시를 멈추고 기다려야 하는 충동 조절에도 중요한 역할을 하고 있음을 밝혔다.
이 교수 연구팀은 바이러스 추적자, 광유전학, 다채널 전극 레코딩과 같은 신경과학 최첨단 실험 기법을 활용해 전대상 피질 내의 신경세포 타입과 회로가 어떠한 방식으로 시각 정보를 목표 지향적 운동 행위로 변환하는지에 대한 신경 메커니즘 원리를 최초로 규명했다.
전대상 피질에는 시각 정보에 반응하는 시각 반응성 신경세포, 운동 개시를 억제하는 운동 억제성 신경세포, 그리고 시각 정보와 운동 개시에 반응하지 않는 나머지 신경세포들이 존재함을 확인했다. 그리고 이와 같은 세 종류의 뉴런들의 신경 활성도는 생쥐가 시각 정보를 인지하여 행동을 개시하는 반응 속도와 유의미한 상관관계가 있음을 규명했다.
특히, 광유전학적(optognetics) 방법을 이용한 실험에서, 전대상 피질의 시각 반응성 뉴런들은 시각 피질로부터 신경 정보를 직접 전달받음을 확인했고, 광 자극으로 해당 신경 회로를 활성화할 때 시각 자극이 없어도 생쥐의 목표 지향적 행동을 유발할 수 있음을 증명했다.
이승희 교수는 "이번 연구 결과는 주의력결핍과잉행동장애 및 조현병과 같은 질병에서 전대상 피질이 정상적으로 작동하지 못할 때 나타나는 행동 장애를 치료하기 위한 정밀한 신경회로 타겟을 제시했다ˮ라고 말했다.
한편, 이번 연구는 한국 연구재단 및 KAIST 글로벌 특이점 프로그램의 지원을 통해 수행됐다.
2021.08.26
조회수 12126
-
신소재 데이터 고속 분석을 위한 인공지능 훈련 방법론 개발
우리 대학 신소재공학과 홍승범 교수 연구팀이 시뮬레이션을 기반으로 한 신소재 데이터 분석을 위한 인공지능을 개발했다고 24일 밝혔다.
최근 컴퓨팅 파워가 기하급수적으로 증가함에 따라 인공지능을 활용한 다양한 응용들이 실생활에 활용되고 있으며, 이에 인공지능을 활용해 신소재 데이터를 고속으로 분석하고 소재를 역설계하는 기술의 연구 역시 가속화되고 있다.
최근 인공지능의 효율 및 정확도를 증가시키는 연구를 바탕으로 자율주행 자동차, 데이터베이스 기반의 마케팅 및 물류 시스템 보조 등의 분야에 인공지능의 활용이 높아지고 있다. 특히 신소재 개발에 장시간이 소요되는 점을 고려할 때, 소재 및 공정 개발에 인공지능을 활용해 다양한 구조 및 물성 데이터 사이의 상관관계를 빠르게 분석해 신소재 개발 소요 시간을 획기적으로 줄일 수 있는 인공지능 방법론이 주목을 받고 있다.
그러나 신소재 데이터의 경우, 대량의 유의미한 실험 데이터를 구하기 어렵고 기업들이 중요한 데이터는 대외비로 취급하고 있어서 인공지능을 소재 데이터 영역에 적용하는 것이 상당히 어려운 것이 현실이다. 이런 데이터의 다양성, 크기 및 접근성 문제가 해결돼야 하며, 이를 보완하기 위해 생성 모델 및 적절한 데이터의 합성에 관한 연구가 진행되고 있다. 인공지능의 성능 향상을 위해 생성되는 데이터 또한 실제 소재가 가지는 물리적 제약을 따라야 하며, 소재 데이터의 재료적 특징을 파악할 수 있는 기술이 필요하다.
홍승범 교수 연구팀이 이번에 개발한 인공지능 훈련 방법론은 훈련을 위해 생성되는 데이터가 물리적 제약을 공유하도록 위상 필드 시뮬레이션을 활용해 기초 데이터를 형성하고 소재 데이터가 가지고 있는 실제 측정 과정에서 발생하는 다양한 잡음, 입자의 분포 정보 및 입자의 경계를 모사해 크기가 작은 소재 데이터의 한계를 해결했다. 기존에 수작업으로 작성한 소재 데이터를 활용한 인공지능과의 상 분리 성능을 비교했으며, 생성된 데이터의 모사 요소가 상 분리에 영향을 미치는 영향을 파악했다.
아울러 이번 연구에서 제시하는 소재 데이터 생성을 활용한 인공지능 훈련 방법은 기존의 수작업으로 훈련 데이터를 준비하는 시간을 크게 단축할 수 있으며, 인공지능의 전이 학습 및 다양한 물리적 제약을 바탕으로 하는 위상 필드 시뮬레이션 활용을 바탕으로 다양한 소재 데이터에 빠르게 적용할 수 있는 장점이 있다.
홍승범 교수는 "인공지능은 분야를 막론하고 다양한 영역에서 활용되고 있으며, 소재 분야 역시 인공지능의 도움을 바탕으로 신소재 개발을 더욱 빠르게 완료할 수 있는 세상을 맞이할 것이다ˮ라며, "이번 연구 내용을 신소재 개발에 바로 적용하기에는 데이터 합성 측면에서의 여전히 보강이 필요하지만, 소재 데이터 활용에 큰 문제가 됐던 훈련 데이터를 준비하는 긴 시간을 단축해 소재 데이터의 고속 분석 가능성을 연 것에 연구의 의의가 있다ˮ고 말했다.
신소재공학과 염지원 연구원, 노스웨스턴(Northwestern) 대학의 티베리우 스탄(Tiberiu Stan) 박사가 공동 제1 저자로 참여한 이번 연구는 노스웨스턴 대학의 피터 부리스(Peter Voorhees) 교수 연구실과 함께 진행됐으며 연구 결과는 국제 학술지 `악타 머터리얼리아(Acta Materialia)'에 게재됐다. (논문명: Segmentation of experimental datasets via convolutional neural networks on phase field simulations)
한편 이번 연구는 KAIST 글로벌특이점 연구 지원으로 수행됐다.
2021.08.24
조회수 10692