본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%B0%94%EC%9D%B4%EC%98%A4%EB%B0%8F%EB%87%8C%EA%B3%B5%ED%95%99%EA%B3%BC
최신순
조회순
이수현 교수팀, 뇌 복부선조영역의 새로운 기억관련 기능 규명
우리 대학 바이오및뇌공학과 이수현 교수 연구팀과 서울대학교 생명과학부 김형 교수 연구팀이 공동연구를 통해 복부선조영역(ventral striatum)에서 습관행동을 제어하는데 필요한 장기기억이 자동적으로 인출된다는 사실을 밝혔다. 이러한 복부선조영역의 기능을 그 영역과 회로별로 규명하는 것은 인간에게 직접 적용할 수 있는 뇌질환 치료방법 개발과 뇌영역 맞춤형 치료의 이론적 기반이 될 수 있다. 뇌의 복부선조영역은 새로운 가치학습에 중요하며, 중독행동과 조현병 관련 행동에도 연관된 것으로 알려져 왔지만 이러한 행동에 기반이 될 수 있는 기억정보를 처리하고 있는지에 대해서는 불분명했다. 이에 연구팀은 기능적 자기공명뇌영상과 전기생리학적 뇌세포 활성측정법을 모두 이용해 과거에 학습한 물체를 의식적으로 인지하고 있지 않는 상황에서도 복부선조에서 과거에 배운 좋은 물체에 대한 장기기억정보가 활발하게 처리되고 있다는 사실을 밝혀냈다. 또한 자동적으로 인출된 좋은 물체에 대한 기억은 무의식적이며 자동적인 행동, 즉 습관행동을 제어하고, 이를 통해 동물이 장기기억을 기반으로 최대이익을 얻을 수 있는 자동적 의사결정(automatic decision-making) 과정에 사용된다는 실험적 증거를 제시했다. 바이오및뇌공학과 뇌인지공학프로그램 강준영 석박사통합과정 학생이 제1 저자로 참여한 이번 연구는 국제학술지 네이쳐 커뮤니케이션즈(Nature Communications)에 4월 8일(목) 게재됐다. 복부선조영역에서 기억의 자동적 인출과정을 이해함으로써 자동적 행동인 습관과 중독행동 제어의 이론적 기반을 다지고, 나아가 기억의 자동인출(automatic retrieval)과 연관된 현저성(salience) 이상으로 조현병을 이해할 수 있는 이론적 발판을 마련한 것에 이번 연구의 의의가 있다고 볼 수 있다. 이번 연구는 한국연구재단 뇌질환극복사업 및 개인기초연구지원사업 등의 지원을 받아 수행됐다.
2021.04.09
조회수 70054
인공근육 재생을 위한 세포기반 3D 파이버 구조체 개발
우리 대학 바이오및뇌공학과 박성준 교수 연구팀이 연세대학교, MIT 공동 연구팀과 함께 광섬유 제작 방법을 이용해 근육 및 혈관, 신경조직을 재생시키기 위한 맞춤형 3D 구조체(세포 기반 인공근육)를 개발했다고 19일 밝혔다. 외상 및 종양 절제 후에 발생하는 근육 손실은 장기적으로 환자의 움직임을 제한하는 가장 큰 원인 중의 하나다. 현재 치료를 위해 이식 기반의 수술법이 시행되고 있으나, 이는 조직을 제공한 부위에 문제를 일으킬 여지가 있을 뿐만 아니라, 이식한 부위에서도 근육의 효과적인 재생력 및 기능성이 충분히 나타나지 않는 문제점을 가지고 있다. 이에 대한 대안으로 손상 부위에 세포를 직접 이식해 골격근(skeletal muscle)의 재생을 유도하는 연구가 진행되고 있지만, 현재의 기술로는 세포의 장기 생존율 및 기능성이 많이 떨어져 실제 임상에 적용하기 어려운 상황이다. 연구팀은 문제 해결을 위해, 섬유아세포(fibroblast)를 리프로그래밍(direct reprogramming)해 유도 근육전구세포(induced myogenic progenitor cells, iMPCs)로 바꾸는 방법을 사용했다. 또한, 세포의 효과적인 분화 및 성장을 위해서는 이상적인 기계적/생화학적 마이크로환경을 제공해야 하므로, 연구팀은 이를 적절한 인공/자연 고분자의 조합을 통한 하이브리드 3D 구조체를 제공하는 방법을 통해 해결했다. 구조체 제작을 위해 첫 번째로 이용한 재료는 우수한 생체적합성 및 강도를 가진 PCL(polycarpolactone) 고분자다. 연구팀은 주로 광섬유를 제작하는데 사용되는 열 인발 공정(thermal drawing process, TDP) 및 다공성 구조 형성을 위한 염침출법(salt leaching)을 이용해, 파이버 기반의 3D PCL 구조체를 제작하는데 성공했다. 해당 공정은 구조체의 사이즈, 강도, 다공성을 자유롭게 조절할 수 있으면서도 구조체의 대량생산을 가능하게 한다는 장점이 있다. 두 번째 재료는 탈세포화(de-cellularization) 과정을 통해 만든 세포외기질(extracellular matrix, ECM)로써, 연구진은 두 재료의 적절한 조합을 통해 이식한 세포에게 최적의 분화 환경을 제공하는데 성공했다. 그 결과, 연구팀은 생체 외(in vitro) 및 생체 내(in vivo) 모델에서 근육 세포의 분화 및 형성이 촉진될 뿐만 아니라, 근육 이외에 주변 신경 및 혈관 분포율이 증가하는 것을 확인했다. 또한 연구팀은 마우스를 대상으로 한 체적 근육 손실 모델에서, 개발한 구조체와 세포를 함께 이식했을 경우 세포만을 이식했을 때에 비해 재생된 근육의 능력이 비약적으로 상승함을 확인했다. 연구를 주도한 박성준 교수는 "이번 연구는 향후 근육 이외에도 다양한 조직의 재생을 위한 맞춤형 3D 구조체를 대량생산 할 수 있는 새로운 방법을 개발했다는 데에 의의가 있다. 이후 본 기술이 여러 가지 생체재료 및 줄기세포 기술과 결합할 경우, 조직 공학 및 인공근육 개발 분야에서 큰 시너지를 낼 수 있으리라 기대한다.ˮ 라고 말했다. 이번 연구결과는 국제 학술지 `어드벤스드 머터리얼즈(Advanced Materials)' 2021년 2월 19일 자에 출판됐다. (논문명: Functional skeletal muscle regeneration with thermally drawn porous fibers and reprogrammed muscle progenitors for volumetric muscle injury)
2021.02.22
조회수 90269
인공지능으로 3차원 고해상도 나노입자 영상화 기술 개발
우리 대학 바이오및뇌공학과 예종철 교수 연구팀이 삼성전자 종합기술원과 공동연구를 통해 나노입자의 3차원 형상과 조성 분포의 복원 성능을 획기적으로 향상한 인공지능 기술을 개발했다고 16일 밝혔다. 공동연구팀은 에너지 분산형 X선 분광법(EDX)을 주사 투과전자현미경(STEM)과 결합한 시스템을 활용했다. 이번 연구를 통해 나노입자를 형성하고 있는 물질의 형상과 조성 분포를 정확하게 재구성함으로써, 실제 상용 디스플레이를 구성하는 양자점(퀀텀닷)과 같은 반도체 입자의 정확한 분석에 도움을 줄 것으로 기대된다. 예종철 교수 연구팀의 한요섭 박사, 차은주 박사과정, 정형진 석사과정과 삼성종합기술원의 이은하 전문연구원팀의 장재덕, 이준호 전문연구원이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `네이처 머신 인텔리전스(Nature Machine Intelligence)' 2월 8일 字 온라인판에 게재됐다. (논문명 : Deep learning STEM-EDX tomography of nanocrystals) 에너지 분산형 X선 분광법(이하 EDX)은 나노입자의 성분 분석에 주로 이용되며, X선과 반응한 물체의 성분에 따라 고유한 방출 스펙트럼을 보인다는 점에서 화학적인 분석이 가능하다. 퀀텀닷 및 배터리 등 다양한 나노 소재의 열화 메커니즘과 결함을 해석하기 위해 형상 및 조성 분포 분석이 가능한 이 분광법의 필요성과 중요도가 급증하고 있다. 그러나 EDX 측정 신호의 해상도를 향상하기 위해, 나노 소재를 오랜 시간 전자빔에 노출하면 소재의 영구적인 피해가 발생한다. 이로 인해 나노입자의 3차원 영상화를 위한 투사(projection) 데이터 획득 시간이 제한되며, 한 각도에서의 스캔 시간을 단축하거나 측정하는 각도를 줄이는 방식이 사용된다. 기존의 방식으로 획득된 투사 데이터를 이용해 3차원 영상을 복원할 시, 미량 존재하는 원자 신호의 측정이 불가능하거나 복원 영상의 정밀도와 해상도가 매우 낮다. 그러나 공동 연구팀이 자체 개발한 인공지능 기반의 커널 회귀(kernel regression)와 투사 데이터 향상(projection enhancement)은 정밀도와 해상도를 획기적으로 발전시켰다. 연구팀은 측정된 데이터의 분포를 네트워크가 스스로 학습하는 인공지능 기반의 커널 회귀를 통해 스캔 시간이 단축된 투사 데이터의 신호 대 잡음비(SNR)를 높인 데이터를 제공하는 네트워크를 개발했다. 그리고 개선된 고화질의 EDX 투사 데이터를 기반으로 기존의 방법으로는 불가능했던 적은 수의 투사 데이터로부터 더욱 정확한 3차원 복원 영상을 제공하는 데 성공했다. 연구팀이 개발한 알고리즘은 기존의 EDX 측정 신호 기반 3차원 재구성 기법과 비교해 나노입자를 형성하고 있는 원자의 형상과 경계를 뚜렷하게 구별했으며, 복원된 다양한 코어-쉘(core-shell) 구조의 퀀텀닷 3차원 영상이 샘플의 광학적 특성과 높은 상관관계를 나타내는 것이 확인됐다. 예종철 교수는 "연구에서 개발한 인공지능 기술을 통해 상용 디스플레이의 핵심 기반이 되는 퀀텀닷 및 반도체 소자의 양자 효율과 화학적 안정성을 더욱 정밀하게 분석할 수 있다ˮ고 말했다.
2021.02.16
조회수 81924
해상도 높인 초박형 4D 카메라 개발
우리 대학 바이오및뇌공학과 정기훈 교수 연구팀이 금속 나노 광 흡수층을 통해 고해상도 4D 영상 구현이 가능한 초박형 라이트필드 카메라를 개발했다고 4일 밝혔다. `라이트필드 카메라'는 곤충의 시각 구조에서 발견되는 형태에 착안해 미세렌즈와 대물렌즈를 결합한 진보된 형태의 카메라다. 한 번의 2차원 촬영으로 빛의 공간 뿐만 아니라 방향까지 4차원 정보를 동시에 획득한다. 그러나 기존 라이트필드 카메라는 미세렌즈 배열의 *광학 크로스토크(Optical crosstalk)로 인한 해상도 저하와 대물렌즈의 위치로 인한 크기의 한계가 존재한다. ☞ 광학 크로스토크(Optical Crosstalk): 어떤 통신회선의 전기 신호가 다른 통신회선과 전자기적으로 결합해 혼선을 일으키는 통신 용어를 크로스토크라고 하며, 광학에서는 한 렌즈를 통과한 빛이 다른 렌즈로부터 들어온 빛과 겹쳐 생기는 현상으로 영상이 중첩되어 촬영되는 것을 의미한다. 연구팀이 개발한 `4D 카메라'는 나노 두께의 광 흡수 구조를 미세렌즈 배열(Microlens arrays) 사이에 삽입해 대비도 및 해상도를 높였으며, 기존의 카메라가 가지는 외부 광원, 추가 센서 부착의 한계를 극복할 수 있다. 이러한 특징을 이용해 의료영상, 생체인식, 모바일 카메라 또는 다양한 가상현실/증강현실 카메라 분야에 적용 가능할 것으로 기대된다. 연구팀은 미세렌즈 배열의 광학 크로스토크를 제거하기 위해 200나노미터(nm) 두께 수준의 금속-유전체-금속 박막으로 이루어진 광 흡수층을 렌즈 사이에 배치하고, 대물렌즈와 미세렌즈 사이의 간격을 일정 수준으로 줄여 초박형 라이트필드 카메라를 개발하는 데 성공했다. 높은 광학적 손실성과 낮은 분산성을 갖는 크로뮴(Cr) 금속과 높은 투과율을 갖는 유리층을 나노미터 두께로 적층한 구조(Cr–SiO2–Cr)는 가시광선 영역의 빛을 완전히 흡수할 수 있다. 나노 광 흡수층을 미세렌즈 배열 사이에 배치해 미세렌즈들 사이의 광학 크로스토크를 제거하고 고 대비 및 고해상도 3차원 영상을 획득하는 데 도움을 준다. 연구팀은 광 흡수 구조를 갖는 미세렌즈 배열을 포토리소그래피(Photolithography), 리프트 오프(Lift-off), 열 재유동(Thermal reflow) 공정을 통해 양산 제작했다. 또한, 라이트필드 카메라의 전체 두께를 최소화하기 위해 미세렌즈의 방향을 이미지센서 방향의 역방향으로 배치하고 대물렌즈와 미세렌즈 사이 거리를 2.1mm 수준으로 줄여, 전체 5.1mm의 두께를 갖는다. 이는 현재까지 개발된 라이트필드 카메라 중 가장 얇은 두께다. 나노 광 흡수 구조를 갖는 미세렌즈에 의해 이미지센서에 기록되는 원시 영상은 기존 미세렌즈를 통한 영상에 비해 높은 대비도와 해상도를 가지며, 연구팀은 이를 영상처리 기법을 통해 시점 영상 및 3차원 영상으로 재구성했을 때 향상된 정확도를 가짐을 확인했다. 정기훈 교수는 "초박형이면서 고해상도의 라이트필드 카메라를 제작하는 새로운 방법을 제시했다ˮ며 "이 카메라는 생체인식, 의료 내시경, 휴대폰 카메라와 같이 다시점(Multi-view), 재초점(Refocusing)을 요구하는 초소형 영상장치로 통합돼, 초소형 4D 카메라의 새로운 플랫폼으로 활용될 것ˮ이라고 말했다. 우리 대학 바이오및뇌공학과 배상인 박사과정이 주도한 이번 연구 결과는 국제 학술지 `어드밴스드 옵티컬 머티리얼즈(Advanced Optical Materials)'에 1월 20일 字 게재됐다. (논문명: High Contrast Ultrathin Light-field Camera using inverted Microlens arrays with Metal-Insulator-Metal Optical Absorber) 한편 이번 연구는 과학기술정보통신부의 개인연구지원사업, 산업 통산 자원부의 기술혁신프로그램, 보건복지부의 보건의료기술연구개발사업으로 수행됐다.
2021.02.04
조회수 79590
피부 땀 발생량을 뛰어넘는 고발습 피부 부착 유연 소재 개발
우리 대학 바이오및뇌공학과 조영호 교수 연구팀이 피부에서 발생하는 땀의 양을 뛰어넘는 발습(습기를 밖으로 내보내는) 효과를 가진 다공성 폴리머 유연 소재와 제조공정을 개발했다고 27일 밝혔다. 기존의 피부부착형 유연 소재는 피부에서 발생하는 땀을 모두 증발시키지 못해 웨어러블 기기를 장기적으로 피부에 부착할 때 피부 발진이나 홍조를 유발하는 단점을 갖고 있었다. 연구팀이 새로 개발한 고발습 유연 소재와 제조공정 기술은 폴리머 소재 내에 미세공극(구멍)을 균일하게 형성해 높은 수분 투과도를 가지도록 한 것으로, 유연 소재 표면에 피부의 생리 신호를 감지할 수 있는 센서들을 제작할 수 있어 상시 착용이 가능한 피부부착형 패치 개발이 가능하다. 바이오및뇌공학과 윤성현 박사가 주도한 이번 연구는 국제학술지 네이처(Nature)의 자매지인 `사이언티픽 리포트(Scientific Reports)' 1월 13일 字 온라인판에 게재됐다. (논문명: Wearable Porous PDMS Layer of High Moisture Permeability for Skin Trouble Reduction) 기존의 다공성 폴리머는 설탕 등의 고형 입자를 폴리머에 혼합한 후 용액으로 입자를 녹여서 공극을 형성하는데, 고형 입자의 크기와 분포가 불균일하며 얇은 박막 형성이 불가능하다. 이에 연구팀은 고형 입자 대신 구연산 용액을 폴리머에 혼합한 후 온도조절로 용액을 결정화해 작고 균일한 입자를 분리해내고 이를 에탄올로 녹여냈다. 그 결과 공극 크기가 작고 균일하며 얇은 막 형성이 가능한 새로운 방식의 다공성 폴리머 유연 소재와 제조공정을 개발하는 데 성공했다. 연구팀이 개발한 다공성 폴리머 유연 소재는 기존 대비 공극 크기를 약 1/15로 줄이고, 크기 균일도를 2배로 증가시켰으며, 스핀 코팅을 통해 21~300마이크로미터(μm) 두께의 얇은 막을 만들 수 있다. 또한 피부의 하루 땀 발생량(432g/m2)보다 1.8배 높은 수분 투과율(770g/m2)을 가지므로 연구팀은 피부에 장시간 부착해도 피부홍조나 발진이 생기지 않음을 실험으로 검증했다. 조영호 교수는 "고발습 유연 소재 박막 위에 인간의 생체신호를 측정할 수 있는 센서를 집적해 상시 착용이 가능한 반창고형 감정 측정 패치를 개발하고 있다ˮ며, "이번 연구로 피부부착형 웨어러블 소자의 착용 시간을 늘릴 수 있는 계기를 마련했다ˮ며 개발 소감을 밝혔다. 한편 이번 연구는 알키미스트 프로젝트의 지원을 통해 수행됐다.
2021.01.29
조회수 71751
초고감도 생체 분자 검출용 디지털 라만 분광 기술 개발
우리 대학 바이오및뇌공학과 정기훈 교수 연구팀이 생체 분자의 광학 검출의 기술적 장벽인 신호대잡음비를 1,000배 이상, 검출한계를 기존 대비 10억 배인 아토몰(10-18 mole) 단위까지 향상시키는 디지털 코드 *라만 분광 기술을 세계 최초로 개발했다고 15일 밝혔다. ☞ 라만 분광법(Raman spectroscopy): 특정 분자에 레이저를 쏘았을 때, 그 분자 전자의 에너지준위 차이만큼 에너지를 흡수하는 현상을 통해 분자의 종류를 알아내는 방법이다. 연구진은 통신 분야에서 잘 알려진 대역 확산기술(CDMA)을 생분자화합물의 라만 분광 검출법에 세계 최초로 적용했다. 디지털 코드화된 레이저광원을 이용해 모든 잡음신호를 제거하고, 생화합물의 고순도 라만 분광 신호를 복원함으로써, 극저농도의 생분자화합물을 형광 표지 없이 정확하게 분석했다. 이러한 디지털 코드 라만 분광 기술은 다양한 분자진단, 약물 및 암 치료 모니터링뿐 아니라 현장 진단용 광학 진단기기나 모바일 헬스케어 기기에도 활용이 가능할 것으로 크게 기대된다. 우리 대학 바이오및뇌공학과 이원경 박사과정이 제 1저자로 참여한 이번 연구는 세계적 권위의 과학전문지 `네이처(nature)'의 자매지인 `네이처 커뮤니케이션스(Nature Communications)'에 1월 8일 字 온라인판에 발표됐다. (논문명: Spread Spectrum SERS allows label-free detection of attomolar neurotransmitters) 알츠하이머병, 파킨슨병, 우울증 등의 뇌세포와 관련된 신경 질환은 뇌세포에서 만들어지는 신경전달물질이 적절히 분비되지 않거나 불균형으로 분비돼 발생하는 질병으로, 최근에는 발병과 직간접적인 사망자가 급증하고 있으나 치료가 쉽지 않다. 신경전달물질은 뉴런의 축색 돌기 말단에서 분비돼 시냅스 갭을 통과한 후 다른 뉴런에 신호를 전달하는 물질로, 결합하는 수용체의 화학적 성질에 따라 기능이 다르고, 발생하는 질병도 다양하다. 알츠하이머병 환자들은 신경전달물질 가운데 아세틸콜린이 부족하거나 글루탐산염이 높은 특징이 있고, 도파민이 부족하면 몸이 굳어지며 떨리는 파킨슨병에 걸리기 쉽고 조현병이나 주의력 결핍 과잉 행동장애와 같은 정신질환의 원인이 된다. 신경전달물질과 관련된 신경 질환은 특정 수용체 작용제나 수용체 길항체로 치료를 하는데, 효과는 그다지 성공적이지 않다. 따라서 알츠하이머병이나 파킨슨병과 같은 신경 질환의 조기 진단을 위해서 적절한 신경전달물질의 적절한 분비를 위한 지속적인 신경전달물질 농도 변화를 모니터링하는 것이 매우 중요하다. 극저농도의 신경전달물질을 간편하면서도 정확하게 측정할 수 있다면 신경계 질환의 조기 진단율을 크게 높일 수 있고 신경 질환 환자의 치료 추적 관리에 큰 도움을 줄 수 있다. 하지만 신경전달물질 기반의 기존 신경 질환 진단기술은 양전자 방출 단층촬영(PET), 표면증강라만분광(SERS), 고성능 액체 크로마토그래피(HPLC), 형광 표지 기반 센서로 측정해 분석하는 방식이다. 이러한 기존 신경 질환 진단기술은 검출한계가 나노몰(10-9 mole) 이상에 그치며, 시료 전처리 단계가 복잡하고 측정 시간이 오래 걸리는 한계가 있다. 연구팀은 문제 해결을 위해 대역확산 통신기술의 뛰어난 잡음 제거 기술을 생체 분자 검출에 적용해 레이저 출력 변동, 수신기 자체 잡음 등의 시스템 잡음과 표적 분자 이외의 분자 신호를 효율적으로 제거하고 표적 생체 분자 신호만 선택적으로 복원했다. 그 결과 생체 분자 신호의 신호대잡음비를 증가시켜 더욱 정밀한 검출한계를 달성했다. 대역확산 기반 디지털 코드 분광 기술은 직교성을 가지는 확산 코드로 암호화된 빛으로 생체 분자를 높은 에너지로 이동시켜 생체 분자에서 산란돼 나오는 빛을 다시 확산 코드로 복호화한다. 이러한 과정을 거쳐 표적 생체 분자의 산란 신호를 복원해 질병 및 건강 진단 지표, 유전 물질 검출 등에 응용할 수 있다. 또한 직교성을 가지는 확산 코드는 기존의 다른 신호처리 기술보다 잡음을 제거하는 성능이 우수해 신호대잡음비와 검출한계, 시간해상도를 최고 수준으로 끌어올릴 수 있다. 연구팀이 개발한 대역확산 라만 분광 기술은 물질의 고유진동 지문을 측정하는 성분 분석과 전처리가 필요하지 않다는 라만 분광 기술의 장점을 그대로 유지하면서 기존의 기술적 한계인 낮은 신호대잡음비와 검출한계를 극복하는 기술로, 바이오 이미징, 현미경, 바이오 마커 센서, 약물 모니터링, 암 조직 검사 등의 다양한 분야에 활용될 수 있다. 연구팀은 대역확산 분광 기술과 표면증강 라만 분광법(Surface-enhanced Raman spectroscopy)을 접목시켜 별도의 표지 없이도 5종의 신경전달물질을 아토 몰 농도에서 검출해 기존 검출한계를 10억(109)배 향상시켰으며, 신호대잡음비가 1,000배 이상 증가함을 확인했다. 제1 저자인 이원경 박사과정은 "고감도 분자 진단을 위해 통신 분야의 최첨단 기술인 대역확산 기술을 접목한 차세대 디지털 코드 라만 분광 기술을 최초로 제안했으며, 이 방법으로 기존 생체 분자 검출 기술의 장벽을 해결하고 기존 기술의 신경전달물질 검출한계를 획기적으로 향상시켰다ˮ며 "고감도 소형 분광기로 신속하고 간단하게 현장 진단이 가능하고 다양한 분야에 활용될 수 있어 파급효과가 크다ˮ고 말했다. 정기훈 교수는 "이번 결과를 바탕으로 향후 휴대용으로 소형화를 진행하면 낮은 비용으로 무표지 초고감도 생체 분자 분석 및 신속한 현장 진단이 가능해질 것이다ˮ며 "또한 신경전달물질뿐 아니라 다양한 생화합물 검출, 바이러스 검출, 신약평가분야에 크게 활용될수 있을 것이다ˮ고 말했다. 한편, 이번 연구는 한국연구재단 바이오기술개발사업, KAIST 코로나대응 과학기술뉴딜사업단과 범부처 전주기 의료기기 사업, 과학기술정보통신부 ETRI 연구개발지원사업의 지원을 받아 수행됐다.
2021.01.18
조회수 75372
시스템생물학 이용 세계 최초 알츠하이머성 치매 환자 맞춤형 치료 효능 예측 기술 개발
우리 대학 바이오및뇌공학과 조광현 교수 연구팀 (장소영 박사과정(제1저자), 강의룡 박사과정, 장홍준 박사과정)은 서울대학교 의과대학 묵인희 교수 연구팀과 공동연구를 통해 시스템생물학*과 알츠하이머 환자 유래 뇌 오가노이드** 모델의 융합으로 환자 맞춤형 약물 효능평가 플랫폼(Drug-screening platform)을 세계 최초로 개발했다고 13일 밝혔다. * 시스템생물학: IT의 수학모델링 및 컴퓨터시뮬레이션과 BT의 분자세포생물학 실험을 융합하여 복잡한 생명현상을 규명하고 설명하는 연구 패러다임 ** 뇌 오가노이드: 환자의 역분화 줄기세포(iPSC) 유래 인공 미니 뇌 알츠하이머병은 치매의 약 70%를 차지하는 대표적 치매 질환이나 현재까지 발병 원인이 불명확하며, 근본적인 치료제도 없는 인류가 극복하지 못한 질병 중 하나다. 알츠하이머병 치료제 개발 난제 중 하나는 실제 살아있는 환자의 뇌를 직접 실험 샘플로 사용할 수 없다는 것이었다. 이는 수많은 치료제 후보군의 약물 효능을 정확히 평가하기가 어려워 치료제 개발의 걸림돌로 작용해왔다. 조광현 교수 공동 연구팀은 실제 치매환자에서 유래한 뇌 오가노이드 기반으로 생물학적 메커니즘에 대한 수학 모델링을 융합하여 약물효능 예측이 가능한 플랫폼을 세계 최초로 개발했다. 환자 혈액으로부터 역분화줄기세포(Induced-pluripotent stem cell)*를 구축 후 이를 이용하여 3D 뇌 오가노이드를 제작해 실제 환자의 뇌와 유사한 환경 구축을 통해 실험적 한계를 극복했다. * 역분화줄기세포: 다능성이 없는 혈액 면역세포에 역분화를 일으키는 4가지 특정 유전자를 도입하여 배아 줄기세포와 같이 모든 종류의 세포로 분화할 수 있는 성질(다능성)을 가진 줄기세포 또한, 시스템생물학 기반 수학 모델링 기법으로 알츠하이머병의 신경세포 특이적 네트워크망을 구축하고, 이를 실제 알츠하이머병 환자 및 정상군 유래 뇌 오가노이드를 통하여 신경세포 컴퓨터 모델의 실효성을 검증했다. 이 연구결과는 알츠하이머병의 시스템생물학 기반 신경세포 컴퓨터 모델을 실제 환자 유래 뇌 오가노이드로 검증한 세계 최초의 사례이다. 이는 환자 맞춤형 치료(Precision medicine)의 불모지로 여겨졌던 뇌 질환분야에서도 알츠하이머병 환자의 유전형에 따른 최적의 약물 효능 예측이 가능하게 됨을 의미하며 향후 약물 타겟 발굴에 기여할 것으로 기대된다. 조광현 교수는 “이번에 개발한 시스템생물학 기반 알츠하이머성 치매환자 약물 효능평가 플랫폼을 통해 향후 치매 치료제 개발 경쟁에서 우리나라가 국가적 우위를 선점할 수 있을 것으로 기대한다”고 밝혔다. 이번 연구는 보건복지부 한국보건산업진흥원의 국가치매극복기술개발 사업 및 한국연구재단의 중견연구자지원사업으로 수행됐으며, 연구성과는 국제학술지 네이처 커뮤니케이션즈(Nature Communications)의 2021년 1월 12일자 논문으로 게재됐다. (https://www.nature.com/articles/s41467-020-20440-5)
2021.01.13
조회수 70595
신경 네트워크의 연결을 실시간으로 조절 가능한 신경 칩 플랫폼 개발
우리 대학 바이오및뇌공학과 남윤기 교수 연구팀이 나노입자 기술을 기반으로 시험관 조건에서 배양한 신경 네트워크의 연결을 실시간으로 조절할 수 있는 신경칩 플랫폼을 개발했다고 7일 밝혔다. 이번 연구는 신경 네트워크의 구조를 조절하기 위한 기존의 많은 세포 형태화 기술이 세포 배양 이전 단계에만 적용 가능한 데 반해, 네트워크의 발달 및 성숙 단계에서도 도입할 수 있다는 점에서 큰 의미가 있다. 바이오및뇌공학과 홍나리 박사과정(지도교수:남윤기)이 주도한 이번 연구 결과는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 12월 9일 字에 게재됐다. (논문명: Thermoplasmonic neural chip platform for in situ manipulation of neuronal connections in vitro) 우리 뇌의 복잡한 구조를 모방하는 신경 네트워크 모델을 체외 조건에서 구현하기 위해서는 신경세포의 위치와 연결을 원하는 구조에 맞춰 정렬하는 기술이 필요하며, 이를 위해 다양한 방식의 미세공정 기법을 통한 신경세포 형태화 기술이 개발돼왔다. 그러나 이러한 기술들은 세포를 배양하기 전에 배양기판의 표면을 개질하는 방법을 기반으로 하고 있어 배양 초기 단계에서 원하는 네트워크의 구조를 통제하는 것은 가능하나, 이후 수일 또는 수 주에 걸친 세포 간 네트워크 형성 과정 중에 네트워크 연결을 조절하는 것이 매우 어렵다는 단점이 있었다. 연구진은 세포 배양 중에도 신경 네트워크의 구조와 기능을 실시간으로 조절할 수 있는 기술을 개발하기 위해, `아가로즈 하이드로겔 (agarose hydrogel), 금 나노막대, 미세 전극 칩' 기반의 신경 칩 플랫폼을 제작했다. 해초로부터 추출한 물질로 조직공학 분야에서 활용되고 있는 아가로즈 하이드로겔은 신경세포의 흡착을 방해하는 세포 반발성을 가지고 있어, 배양기판 상에 다양한 형태의 패턴을 제작해 이 물질이 없는 영역에만 한정적으로 신경 네트워크를 형성시킬 수 있다. 또한 아가로즈 하이드로겔은 열에 의해 녹는 특성이 있어, 국소적인 열을 통해 특정한 위치의 하이드로겔을 제거할 수 있다. 연구진은 원하는 영역에만 국소적 열을 발생시키기 위한 매개체로 금 나노막대를 사용했다. 금 나노막대는 근적외선을 선택적으로 흡수해 열을 발생시킬 수 있는 광열 특성이 있다. 마지막으로 미세 전극 칩은 신경세포의 전기적 신호를 비침습적으로 장기간 측정한다. 연구진은 배양기판인 미세 전극 칩 위에 금 나노막대 층을 형성하고, 그 위에 미세 패턴을 지닌 아가로즈 하이드로겔 층을 제작함으로써, 각 미세 패턴 안에 독립된 신경 네트워크들을 구축했다. 다음으로 개발된 플랫폼을 통해 세 가지의 다른 조작 방식으로 신경 네트워크의 구조와 기능을 조절할 수 있음을 실험적으로 확인했다. 첫 번째로는, 금 나노막대 층에서 발생하는 열을 통해 네트워크 사이에 하이드로겔을 국소적으로 제거했으며, 제거된 영역을 따라 신경돌기(축삭)가 생장해 새로운 신경 연결이 생성됨을 확인했다. 두 번째로는, 네트워크를 연결하고 있는 신경돌기에 직접 열을 가함으로써 원하는 신경 연결을 선택적으로 제거할 수 있음을 관찰했다. 이러한 신경 연결의 생성과 제거 기술을 미세 전극 칩 상에서 실행함으로써, 연구팀은 네트워크의 구조적 변화에 의한 기능적 연결성을 분석할 수 있었다. 세 번째로는, 광열 자극을 이용한 신경 활성 억제 현상을 이용해 개별 네트워크의 활성 변화를 조절하면서 서로 연결된 네트워크 간의 기능적 연결성을 대응시킬 수 있음을 확인했다. 이번 연구의 교신저자인 남윤기 교수는 "이번 연구에서 개발된 신경 세포 칩 플랫폼은 신경회로의 구조와 기능을 세포 발달과정 중에 조절할 수 있다ˮ며, "앞으로 뇌신경과학 연구를 위한 다양하고 복잡한 형태의 체외 신경 모델을 구현하는 데 활용될 것으로 기대된다ˮ고 말했다. 한편 이번 연구는 과학기술정보통신부 중견연구자지원사업(도약연구)와 글로벌박사양성사업 지원을 받아 수행됐다.
2021.01.06
조회수 55719
효율적 정보 처리를 위한 뇌신경망의 최적화 구조 형성 원리 규명
우리 대학 바이오및뇌공학과 백세범 교수 연구팀이 대뇌 시각 피질 회로가 정보처리에 가장 최적화된 구조를 자발적으로 형성하는 원리를 밝혔다. 이번 연구 결과는 수 십년간의 뇌신경과학 연구에서 그 원리를 명확히 밝혀내지 못했던 시각 피질 기능성 지도들의 복합 구조 형성의 기작을 규명한 것으로, 수학적 모델의 도입을 통해 복잡한 생물학적 신경망 구조의 기원을 찾아낸 성공적인 연구로 평가된다. 연구팀은 망막 신경세포들이 초기 발생 단계에서 일정한 물리적 공간 분포 패턴을 형성하는 과정에서 다양한 종류의 정보 처리 회로가 자발적으로 생성될 뿐만 아니라, 이 패턴으로부터 시각 피질의 기능성 뇌지도들의 규칙적이고 효율적인 복합적 구조가 형성됨을 밝혀냈다. 바이오및뇌공학과 송민 박사과정과 장재선 박사가 공동 1저자로 참여한 이번 연구는 국제 학술지 ‘셀(cell)’의 온라인 자매지 ‘셀 리포츠(Cell Reports)’ 1월 5일 자에 게재됐다. (논문명: Projection of orthogonal tiling from the retina to the visual cortex). 포유류의 일차시각피질 신경세포들은 눈으로부터 입력된 시각 정보의 색, 물체의 형태를 이루는 선분의 각도, 폭 등의 기본적인 시각 정보를 구별하여 전기적 신호로 부호화 한다. 예를 들어 시각 자극의 방향에 따라 반응의 정도가 달라지는 성질인 방향 선택성(orientation selectivity)을 가지는 세포들은 물체의 형태를 구별하기위해 필요한 윤곽선에 대한 정보를 선택적으로 처리한다. 이러한 시각 피질 세포들의 방향 선택성, 공간 주기성등의 성질은 시각 피질 상에서 연속적, 주기적인 형태로 변하는 기능성 지도 (functional map) 구조를 형성하는데, 이 지도들의 구조는 서로 독립적으로 형성되는 것이 아니라 서로 수평, 또는 수직 관계를 이루며 매우 효율적인 짜임새 구조(efficient tiling)를 이룬다. 이를 통해 시각 피질의 모든 국소 영역에서 정보 요소들을 손실없이 효율적으로 부호화할 수 있도록 만드는 대주(hypercolumn) 구조를 형성하는데, 시각 정보처리의 핵심이 되는 이러한 기능성 구조가 어떻게 발생하는지에 대해서는 밝혀진 바가 없었다. 연구팀은 수학적 모델에 기반한 컴퓨터 시뮬레이션을 통하여 포유류의 망막에서 발견되는 신경절 세포들이 단순한 물리적 상호작용을 통해 시각 정보의 입력이 없는 상태에서도 놀라울 정도로 효율적인 공간적 배치를 자발적으로 형성할 수 있음을 확인하였다. 연구팀은 이러한 구조가 시각 피질로 투영되어 시각 피질의 다양한 기능성 뇌지도들을 형성됨과 동시에, 그 지도들 간의 상호 짜임새를 정보처리에 가장 최적화된 형태로 구성할 수 있음을 보였다. 뇌의 주요 정보 처리 회로에 대한 설계도가 이미 망막 단계의 신경망이 형성되는 과정에서 자발적으로 발생함을 증명한 것이다. 백세범 교수는 “시각 정보처리의 핵심 구조인 시각 피질의 기능성 지도가 어떻게 자발적으로 발생하는지 규명하였을 뿐 아니라, 다양한 정보를 처리하는 각각의 뇌신경망 회로 구조가 단순한 물리적 상호작용에 의해 가장 효율적인 형태의 복합 구조를 형성할 수 있음을 처음으로 증명한 연구다" 라고 언급했다. 이번 연구는 한국연구재단의 이공분야기초연구사업 및 원천기술개발사업의 지원을 받아 수행됐다.
2021.01.06
조회수 53143
백세범 교수팀, 고등 인지 기능의 자발적 발생 원리 규명
우리 대학 바이오및뇌공학과 백세범 교수 연구팀이 학습 과정을 전혀 거치지 않은 신경망에서 고등 시각 인지 기능이 자발적으로 발생할 수 있음을 보였다고 4일 밝혔다. 이번 연구 결과는 신경망에서 상위 인지 기능을 발생시키기 위해서는 반드시 충분한 데이터 학습이 필요하다는 기존의 상식과 완전히 상반되는 것으로, 현재 통용되고 있는 인공지능의 구현 방식에 대한 근본적인 의문을 던진다. 또한 연구팀의 결과는 다양한 생물 종의 뇌에서 관측되는 선천적인 인지 기능의 발생에 대한 설명 가능한 이론을 제시할 뿐만 아니라, 뇌신경과학 연구의 가장 근본적인 질문 중 하나인 `인지 지능의 발생 및 진화'의 원리에 대한 기존과는 전혀 다른 새로운 시각을 제시한다. 연구팀은 뇌의 시각 신경망을 모사한 인공신경망 시뮬레이션을 통해, 모든 연결 가중치가 무작위로 정해지도록 초기화된 신경망이 전혀 학습을 거치지 않은 상태에서도 특정 숫자에 선택적으로 반응하는 `수량 선택성'을 자발적으로 생성함을 발견했다. 또한 이렇게 자발적으로 발생한 수량 선택적 유닛은 실제 동물의 뇌에서 발견되는 수량 선택적 뉴런들이 보이는 *`베버-페히너 법칙' 등의 주요 특성을 동일하게 따름을 확인했다. ☞ 베버-페히너 법칙(Webber-Fechner law): 자극과 감각 사이의 상대적 관계를 나타내는 심리물리학적 법칙. 인지 가능한 자극 강도 변화량은 현재 강도에 지수적으로 비례한다는 것으로 이는 인지생물학에서 기본적인 원리로 알려져 있다. 우리 대학 물리학과 김광수 석박사통합과정, 바이오및뇌공학과 장재선 박사가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스(Science)'의 온라인 자매지 `사이언스 어드밴시스(Science Advances)' 1월 1일 字에 게재됐다. (논문명 : Visual number sense in untrained deep neural networks) 신경망에서 인지 지능의 발생에 관한 연구는 뇌인지과학과 인공지능 분야 모두에서 핵심적인 연구 주제 중 하나다. 흥미롭게도 인지 기능을 발생시키기 위해서 일반적으로 많은 양의 데이터 입력을 통한 학습 과정을 거쳐야 하는 인공신경망과 달리 동물의 뇌는 태어난 직후부터 다양한 인지 기능을 수행하는 `선천적' 인지 지능을 가지고 있는 것이 관찰돼왔다. 이러한 차이점은 생물학적 지능의 발생과 진화의 원리를 이해하는 데 결정적인 역할을 하고, 현재 개발된 인공지능과의 차이점을 보여주는 핵심적인 단서를 제공할 것으로 기대되고 있으나 이러한 인지 기능이 어떻게 자발적으로 발생하는지는 아직 명확하게 알려진 바가 없었다. 이에 연구팀은 학습을 거치지 않은 신경망의 초기 상태에서 나타나는 단순한 물리적 구조 특성이 다양한 인지 기능을 발생시킬 수 있을 것이라 예상했다. 이를 확인하기 위해 수행한 심층신경망 시뮬레이션 연구를 통해 모든 연결 가중치가 무작위로 초기화된 신경망에서도 `계층 구조'와 무작위적 피드 포워드 연결만 형성된다면 특정 수량에 선택적으로 강한 반응을 보이는 신경망 유닛들이 자발적으로 생성됨을 확인했다. 이러한 신경망 유닛들은 실제 뇌에서 발견되는 수량 선택적 신경세포의 주요한 성질들과 유사한 특성을 보였다. 이 결과는 생물학적 뇌에서 생애 초기에 발견되는 선천적인 숫자 선택성 역시 동일한 원리에 의해 발생할 가능성을 시사한다. 이러한 결과는 기초적인 인지 기능이 신경망의 초기 구조가 갖춰진 시점에 이미 존재하고 이후 다양한 학습을 통해 조절될 수 있음을 보여주며, 뇌신경과학의 중요한 화두 중 하나인 `지능의 선천적 혹은 후천적(nature vs. nurture) 형성'에 관해 매우 중요한 단서를 제공하는 발견으로 평가된다. 연구팀의 결과는 학습과 훈련에 의존해 대부분의 뇌 기능이 발생한다는 기존의 시각을 탈피해, 선천적이고 자발적으로 발생하는 뇌 기능에 대한 보다 심도 있는 연구가 필요하다는 사실을 시사한다. 한편으로 현재의 인공지능 구현 기법들과 완전히 다른 인공지능 구현 원리를 제시할 수 있는 생물학적 뇌 기반 이론을 제시한다. 백세범 교수는 "뇌 신경망 연구를 통해 얻은 아이디어를 인공신경망 연구에 적용하고, 그 결과를 다시 뇌과학적 원리를 발견하는 데 사용해 중요한 통찰을 가능하게 한 의미있는 연구ˮ라며 "뇌신경과학과 뇌공학 분야 모두에서 가장 중요한 질문 중 하나라고 할 수 있는 인지 지능의 기원에 대한 이해의 전환점을 가져올 것으로 기대된다ˮ라고 언급했다. 한편 이번 연구는 한국연구재단의 이공분야기초연구사업 및 원천기술개발사업의 지원을 받아 수행됐다.
2021.01.04
조회수 60065
난치성 악성 위암의 분자병태생리 기전 최초 규명
우리 대학 바이오및뇌공학과 김필남 교수, 최정균 교수 연구팀은 연세대학교 세브란스 병원 정재호 교수 연구팀과 공동연구를 통해 종양 미세환경의 물리적 인자[세포기질의 강성도 증가]가 암세포의 악성화를 촉진하는 분자후성유전학적 원인을 최초로 규명함으로써 향후 새로운 항암치료전략 수립에 중요한 통찰과 방향을 제시했다. 지금까지 종양연구가 대부분 암세포 자체의 돌연변이나 내부 신호전달 경로에 집중되어 진행되었다면 이번 연구는 암세포가 위치한 종양의 미세환경적 요인이 악성화에 어떤 영향을 주는지를 규명해 종양학 연구의 새로운 패러다임을 제공하고 있다. 최근에 암면역치료의 임상적 성공에 힘입어 *종양미세환경의 면역세포에 대한 관심과 연구가 증가하고 있으나 종양미세환경의 물리적 요인이 암세포의 악성화 및 치료반응에 어떤 영향을 주는지에 대한 연구는 거의 없었다. 연구팀은 생체재료를 활용해 인간의 종양미세환경과 유사한 위암실험모델을 개발하고, 이를 이용하여 단단해진 미세환경에 의한 위암세포의 악성화 메커니즘을 규명했다. 암을 유발하는 단백질로 잘 알려진 YAP (Yes-associated protein)의 DNA 가 단단해진 조직내에서 후성유전학적 변화인 DNA 탈메틸화가 유도되어 악성화가 촉진됨을 밝혔다. 이와 더불어, 본 연구팀은 단단하게 변성된 미세환경을 다시 물렁한 조직으로 변화할 경우, 악성화된 위암 세포에서 역전현상이 일어나 악성화가 약화되고 항암제에 반응하는 세포로 변화함을 확인했다. 이번 연구 결과는 치료가 어려운 난치성 *미만형 위암의 악성화를 촉진하는 원인을 규명함으로써 임상적으로 가장 어려운 scirrhous cancer 의 새로운 치료 가능성을 제시하고, 위암 뿐만 아니라 다양한 암종의 유사한 표현형의 암에 대한 치료 확장성에 기여할 것으로 기대한다. *종양미세환경: 종양내에 존재하는 암세포, 암의 형성 및 진행에 직/간접적으로 영향을 미치는 주변 조직세포 (면역세포, 섬유아세포, 혈관세포 등) 및 이를 구성하고 있는 *세포외기질물질(Extracellular Matrix) 를 총칭해서 종양미세환경이라고 한다. *세포외기질: 세포와 세포사이를 연결하고 지탱해주는 지지체의 역할을 하는 물질로 콜라겐과 같은 단백질이 이에 속한다. 세포외기질은 단순한 지지체가 아니라, 이것의 물리적, 화학적 특성이 세포의 운명, 특성 등에 직접적으로 영향을 미친다. 특히, 병적요인으로 인해서 조직 섬유화와 같은 변성이 일어나고 이러한 변성이 암과 같은 질병의 악화의 원인이 된다고 알려져 있다. *미만성 위암: 위암은 조직학적으로 크게 장형암과 미만 위암으로 분류된다. 장형암의 경우 헬리코박터 감염이나 만성 위축성 위염에 속발하는 위암으로 일반적으로 미만성에 비해 양호한 예후를 보인다. 미만성 위암은 장형암에 비해 암 덩어리를 잘 형성하지 않으며 작은 악성 세포들이 위벽에 퍼져서 침윤과 전이를 잘하며 조기 발견도 어렵다. 40세 미만에서 호발하며 악성도가 매우 높아 치료가 어려운 암으로 알려져 있다. 바이오및뇌공학과 장민정 박사가 제1 저자로 참여한 이번 연구는 국제학술지인 `네이처 바이오메디컬엔지니어링’ 12월 7일 字 온라인 판에 실렸다. (논문명: Matrix stiffness epigenetically regulates the oncogenic activation of the Yes-associated protein in gastric cancer) 이번 연구성과는 한국연구재단 과학기술 분야 기초연구사업인 중견연구자지원사업 및 보건복지부 연구중심병원 R&D 사업의 지원을 통해 수행됐다.
2020.12.10
조회수 42312
노화된 세포를 젊은 세포로 되돌리는 초기 원천기술 개발
우리 연구진이 노화된 세포를 젊은 세포로 되돌리는 역 노화 원천기술을 개발했다. 이를 활용하면 노화 현상을 막고 각종 노인성 질환을 사전 억제할 수 있는 치료제를 개발할 단서를 찾을 수 있을 것으로 기대된다. 우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 시스템생물학 연구를 통해 노화된 인간 진피 섬유아세포를 정상적인 젊은 세포로 되돌리는 역 노화의 초기 원천기술을 개발했다고 26일 밝혔다. 조광현 교수팀의 이번 연구 결과는 ㈜아모레퍼시픽 기술연구원과의 산학 공동연구를 통해 최초로 개발된 노화 인공피부 모델에서 이 기술을 적용함으로써 입증하는 데 성공했다. 조 교수팀은 이번 연구를 위해 인간 진피 섬유아세포의 세포노화 신호전달 네트워크의 컴퓨터 모델을 개발한 후 시뮬레이션 분석을 통해 노화된 인간 진피 섬유아세포를 젊은 세포로 되돌리는데 필요한 핵심 인자를 찾아냈다. 이후 노화 인공피부 모델에서 핵심 인자를 조절함으로써 노화된 피부조직에서 감소된 콜라겐의 합성을 증가시키고 재생 능력을 회복시켜 젊은 피부조직의 특성을 보이게 하는 역 노화 기술을 개발했다. 연구팀 관계자는 이러한 역 노화 기술은 노화된 피부 등을 포함한 노화 현상 및 많은 노인성 질환의 발생을 사전에 억제할 수 있도록 근본적인 치료전략을 제시한 것으로 건강 수명을 오랫동안 유지하고 싶은 인류의 꿈을 실현하는데 한 걸음 다가선 결과라고 의미를 부여했다. 바이오및뇌공학과 안수균 박사과정 학생, 강준수 연구원, 이수범 연구원과 ㈜아모레퍼시픽의 바이오사이언스랩이 참여한 이번 연구 결과는 국제저명학술지인 `미국국립과학원회보(PNAS)'에 게재됐다.(논문명: Inhibition of 3-phosphoinositide-dependent protein kinase 1 (PDK1) can revert cellular senescence in human dermal fibroblasts) 현재 널리 연구되고 있는 회춘 전략은 이미 분화된 세포를 역분화시키는 4개의 `OSKM(Oct4, Sox2, Klf4, c-Myc) 야마나카 전사인자'를 일시적으로 발현시켜 후성유전학적 리모델링(epigenetic remodeling)을 일으킴으로써 노화된 세포를 젊은 상태로 되돌리는 부분적 역분화(partial reprogramming) 전략이다. 이 기술은 노화된 세포가 젊은 세포로 되돌아갈 수 있다는 것을 증명했지만 종양의 형성과 암의 진행을 유발하는 부작용이 생긴다. 따라서 이와 같은 부작용을 배제할 수 있는 정교한 제어 전략이 과학 난제로 남아있었다. 조 교수팀은 이러한 난제 해결을 위해 시스템생물학 연구 방법을 통해 노화된 인간 진피 섬유아세포를 정상적인 젊은 세포로 되돌릴 수 있는 핵심 조절인자를 오래전부터 탐구하기 시작했다. 4년에 걸친 연구 끝에 단백질 합성, 세포의 성장 등을 조절하는 mTOR와 면역 물질 사이토카인의 생성에 관여하는 NF-kB를 동시에 제어하고 있는 상위 조절 인자인 `PDK1(3-phosphoinositide-dependent protein kinase 1)'을 찾아냈다. 연구팀은 PDK1을 억제함으로써 노화된 인간 진피 섬유아세포를 다시 정상적인 젊은 세포로 되돌릴 수 있음을 분자 세포실험 및 노화 인공피부 모델 실험을 통해 입증했다. 연구를 통해 노화된 인간 진피 섬유아세포에서 PDK1을 억제했을 때 세포노화 표지 인자들이 사라지고 주변 환경에 적절하게 반응하는 정상 세포로서 기능을 회복하는 현상을 확인했다. 연구 결과 노화된 인간 진피 섬유아세포에서는 PDK1이 mTOR와 NF-kB를 활성화해 노화와 관련된 분비 표현형(SASP: Senescence Associated Secretary Phenotype)을 유발하고 노화 형질을 유지하는 것과 연관돼 있음을 밝혀냈다. 즉, PDK1을 억제함으로써 다시 원래의 정상적인 젊은 세포 상태로 안전하게 되돌릴 수 있음을 증명한 것이다. 조 교수팀이 연구 과정에서 찾아낸 표적 단백질의 활성을 억제할 수 있는 저분자화합물과 관련된 신약개발과 그리고 전임상실험을 통해 노화된 세포의 정상 세포화라는 연구 결과는 새로운 노인성 질환의 치료 기술과 회춘 기술에 관한 연구를 본 궤도에 올려놓은 초석을 다진 획기적인 연구로 평가받고 있다. 실제 ㈜아모레퍼시픽 기술연구원은 이번 연구 결과로부터 동백추출물에서 PDK1 억제 성분을 추출해 노화된 피부의 주름을 개선하는 화장품을 개발중이다. 조광현 교수는 "그동안 비가역적 생명현상이라고 인식돼왔던 노화를 가역화할 가능성을 보여줬다ˮ라며 "이번 연구는 노화를 가역적 생명현상으로 인식하고 이에 적극적으로 대처해 건강 수명을 연장하는 한편 노인성 질환을 예방할 수 있는 새로운 시대의 서막을 열었다ˮ라고 의미를 부여했다. 이번 연구는 조광현 교수 연구팀의 시스템생물학 기반 가역화 기술 개발의 일환으로 이뤄졌으며, 연구팀은 지난 1월 같은 기술을 적용해 대장암세포를 다시 정상 대장 세포로 되돌리는 연구에 성공한 바 있다. 한편 이번 연구는 한국연구재단의 중견연구자지원사업과 KAIST 그랜드챌린지 30 (KC30) 프로젝트 및 아모레퍼시픽 R&D 센터의 지원으로 수행됐다.
2020.11.26
조회수 42757
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 10