본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%A0%84%EA%B8%B0%EB%B0%8F%EC%A0%84%EC%9E%90%EA%B3%B5%ED%95%99
최신순
조회순
광반도체 소자 집적도 100배 이상 높이다
라이다(LiDAR) 및 양자 센서·컴퓨터와 같은 복잡한 광학 시스템을 하나의 작은 칩으로 만들어 줄 수 있어 세계적으로 많은 연구와 투자가 이루어지고 있는 차세대 반도체 기술이 집적 광학 반도체(이하 광반도체) 기술이다. 기존의 반도체 기술에서 5나노, 2나노 등의 단위로 얼마나 작게 만드느냐가 관건이었는데, 광반도체 소자에서 집적도를 높이는 것은 성능, 가격, 에너지 효율 등을 결정짓는 핵심적인 기술이라 말할 수 있다. 우리 대학 전기및전자공학부 김상식 교수 연구팀이 광반도체 소자의 집적도를 100배 이상 높일 수 있는 새로운 광 결합 메커니즘을 발견했다고 19일 밝혔다. 하나의 칩당 구성할 수 있는 소자 수의 정도를 집적도(集積度)라고 하는데, 집적도가 높을수록 많은 연산을 할 수 있고 공정 단가 또한 낮춰준다. 하지만 광반도체 소자의 집적도를 높이기는 매우 어려운데, 이는 빛의 파동성으로 인해 근접한 소자 사이에서 광자 간에 혼선(crosstalk)이 발생하기 때문이다. 기존 연구에서는 특정 편광에서만 빛의 혼선을 줄여줄 수 있었는데, 연구팀은 이번 연구에서 새로운 광 결합(coupling) 메커니즘의 발견으로써 기존에는 불가능이라 여겨졌던 편광 조건에서도 집적도를 높이는 방법을 개발했다. 김상식 교수가 교신저자로 주도하고 미국 텍사스 공과대학 재직 당시 지도하던 학생들과 함께한 이번 연구는 국제학술지‘라이트: 사이언스 앤 어플리케이션(Light: Science & Applications)’ [IF=20.257]에 6월 2일 字 게재됐다. (논문명: Anisotropic leaky-like perturbation with subwavelength gratings enables zero crosstalk). 김상식 교수는 “이번 연구가 흥미로운 점은 기존에는 오히려 빛의 혼선을 크게 해줄 거라고 여겨졌던 누설파(leaky wave, 빛이 옆으로 잘 퍼지는 특성을 가짐)를 통해 역설적으로 혼선을 없애준 점이다”라며 “이번 연구에서 밝혀진 누설파를 이용한 광 결합 방법을 응용한다면 더욱 작고 노이즈가 적은 다양한 광반도체 소자를 개발할 수 있을 것이다”라고 말했다. 김상식 교수는 광반도체의 집적도에 있어서 전문성과 연구 업적을 인정받는 연구자다. 선행 연구를 통해 반도체 구조물을 파장보다 작은 크기로 패턴화해 빛이 옆으로 퍼지는 정도를 제어할 수 있는 무손실 메타물질(all-dielectric metamaterial)을 개발했고, 실험을 통해 이를 입증해 광반도체 집적도에 있어서 세계적인 기록을 보유하고 있다. 이러한 연구는 ‘네이처 커뮤니케이션즈(Nature Communications) 9, 1893 (2018)’와 ‘옵티카(Optica) 7, 881-887 (2020)’에 보고됐다. 김 교수는 이러한 성과를 인정받아 미국 국립과학재단(National Science Foundation, NSF)에서 NSF 커리어 어워드(NSF Career Award)와 재미한인과학기술자협회에서 젊은과학기술자상을 수상한 바 있다. 한편 이번 연구는 한국연구재단 우수신진연구 사업 및 미국 NSF의 지원을 받아 수행됐다.
2023.06.19
조회수 3617
고성능 조립형 SSD 시스템반도체 최초 개발
최근 인공지능을 훈련하기 위해 더 많은 데이터가 필요해지면서 그 중요성은 더욱 증가하고 있으며, 이에 데이터 센터 및 클라우드 서비스를 위한 주요 저장장치인 고성능 SSD(Solid State Drive, 반도체 기억소자를 사용하는 저장장치) 제품의 필요성이 높아지고 있다. 하지만, 고성능 SSD 제품일수록 SSD 내부의 구성요소들이 서로의 성능에 크게 영향을 미치는 상호-결합형(tightly-coupled) 구조의 한계에 부딪혀 성능을 극대화하기 어려웠다. 우리 대학 전기및전자공학부 김동준 교수 연구팀이 고성능 조립형 SSD 시스템 개발을 통해 차세대 SSD의 읽기/쓰기 성능을 비약적으로 높일 뿐 아니라 SSD 수명연장에도 적용 가능한 SSD 시스템 반도체 구조를 세계 최초로 개발했다고 15일 밝혔다. 김동준 교수 연구팀은 기존 SSD 설계가 갖는 상호-결합형 구조의 한계를 밝히고, CPU, GPU 등의 비메모리 시스템 반도체 설계에서 주로 활용되는 칩 내부에서 패킷-기반 데이터를 자유롭게 전송하는 온-칩 네트워크 기술을 바탕으로 SSD 내부에 플래시 메모리 전용 온-칩 네트워크를 구성함으로써 성능을 극대화하는 상호-분리형(de-coupled) 구조를 제안했으며, 이를 통해 SSD의 프론트-엔드 설계와 백-엔드 설계의 상호 의존도를 줄여 독립적으로 설계하고 조립 가능한 ‘조립형 SSD’를 개발했다. ※온-칩 네트워크(on-chip network): CPU/GPU등의 시스템 반도체 설계에 쓰이는 칩 내부의 요소에 대한 패킷-기반 연결구조를 말한다. 온-칩 네트워크는 고성능 시스템 반도체를 위한 필수적인 설계 요소중 하나로서 반도체칩의 규모가 증가할수록 더욱 중요해지는 특징이 있다. 김동준 교수팀이 개발한 조립형 SSD 시스템 구조는 내부 구성요소 중 SSD 컨트롤러 내부, 플래시 메모리 인터페이스를 기점으로 CPU에 가까운 부분을 프론트-엔드(front-end), 플래시 메모리에 가까운 부분을 백-엔드(back-end)로 구분하고, 백-엔드의 플래시 컨트롤러 사이 간 데이터 이동이 가능한 플래시 메모리 전용 온-칩 네트워크를 새롭게 구성해, 성능 감소를 최소화하는 상호-분리형 구조를 제안했다. SSD를 구동하는 핵심 요소인 플래시 변환 계층의 일부 기능을 하드웨어로 가속하여 플래시 메모리가 갖는 한계를 능동적으로 극복할 수 있는 계기를 마련하였고 상호-분리형 구조는 플래시 변환 계층이 특정 플래시 메모리의 특성에 국한되지 않고, 프론트-엔드 설계와 백-엔드 설계를 독립적으로 수행하는 설계의 용이성을 가지는 점이 ‘조립형’ SSD 구조의 장점이라고 밝혔다. 이를 통해, 기존 시스템 대비 응답시간을 31배 줄일 수 있었고 SSD 불량 블록 관리기법에도 적용해 약 23%의 SSD 수명을 연장할 수 있다고 연구팀 관계자는 설명했다. 전기및전자공학부 김지호 박사과정이 제1 저자, 전기및전자공학부 정명수 교수가 공동 저자로 참여한 이번 연구는 미국 플로리다주 올랜도에서 열리는 컴퓨터 구조 분야 최우수 국제 학술대회인 `제50회 국제 컴퓨터 구조 심포지엄(50th IEEE/ACM International Symposium on Computer Architecture, ISCA 2023)'에서 6월 19일 발표될 예정이다. (논문명: Decoupled SSD: Rethinking SSD Architecture through Network-based Flash Controllers). 연구를 주도한 김동준 교수는 “이번 연구는 기존의 SSD가 가지는 구조적 한계를 규명했다는 점과 CPU와 같은 시스템 메모리 반도체 중심의 온-칩 네트워크 기술을 적용해 하드웨어가 능동적으로 필요한 일을 수행할 수 있다는 점에서 의의가 있으며 차세대 고성능 SSD 시장에 기여할 것으로 보인다”며, “상호-분리형 구조는 수명연장을 위해서도 능동적으로 동작하는 SSD 구조로써 그 가치가 성능에만 국한되지 않아 다양한 쓰임새를 가진다며”연구의 의의를 설명했다. 이번 연구는 컴퓨터 시스템 저장장치 분야의 저명한 연구자인 KAIST 정명수 교수와 컴퓨터 구조 및 인터커넥션 네트워크(Interconnection Network) 분야의 권위자인 김동준 교수, 두 세계적인 연구자의 융합연구를 통해 이루어낸 연구라는 의미가 있다고 관계자는 설명했다. 한편 이번 연구는 한국연구재단, 삼성전자, 반도체설계교육센터(IDEC), 정보통신기획평가원 차세대지능형반도체기술개발사업의 지원을 받아 수행됐다.
2023.06.15
조회수 4656
111배 빠른 검색엔진용 CXL 3.0 기반 AI반도체 세계 최초 개발
최근 각광받고 있는 이미지 검색, 데이터베이스, 추천 시스템, 광고 등의 서비스들은 마이크로소프트, 메타, 알리바바 등의 글로벌 IT 기업들에서 활발히 제공되고 있다. 하지만 실제 서비스에서 사용되는 데이터 셋은 크기가 매우 커, 많은 양의 메모리를 요구하여 기존 시스템에서는 추가할 수 있는 메모리 용량에 제한이 있어 이러한 요구사항을 만족할 수 없었다. 우리 대학 전기및전자공학부 정명수 교수 연구팀(컴퓨터 아키텍처 및 메모리 시스템 연구실)에서 대용량으로 메모리 확장이 가능한 컴퓨트 익스프레스 링크 3.0 기술(Compute eXpress Link, 이하 CXL)을 활용해 검색 엔진을 위한 AI 반도체를 세계 최초로 개발했다고 25일 밝혔다. 최근 검색 서비스에서 사용되는 알고리즘은 근사 근접 이웃 탐색(Approximate Nearest Neighbor Search, ANNS)으로 어떤 데이터든지 특징 벡터로 표현할 수 있다. 특징 벡터란 데이터가 가지는 특징들 각각을 숫자로 표현해 나열한 것으로, 이들 사이의 거리를 통해 우리는 데이터 간의 유사도를 구할 수 있다. 하지만 벡터 데이터 용량이 매우 커서 이를 압축해 메모리에 적재하는 압축 방식과 메모리보다 큰 용량과 느린 속도를 가지는 저장 장치를 사용하는 스토리지 방식(마이크로소프트에서 사용 중)이 사용되어 왔다. 하지만 이들 각각은 낮은 정확도와 성능을 가지는 문제가 있었다. 이에 정명수 교수 연구팀은 메모리 확장의 제한이라는 근본적인 문제를 해결하기 위해 CXL이라는 기술에 주목했다. CXL은 CPU-장치 간 연결을 위한 프로토콜로, 가속기 및 메모리 확장기의 고속 연결을 제공한다. 또한 CXL 스위치를 통해 여러 대의 메모리 확장기를 하나의 포트에 연결할 수 있는 확장성을 제공한다. 하지만 CXL을 통한 메모리 확장은 로컬 메모리와 비교해 메모리 접근 시간이 증가하는 단점을 가지고 있다. 데이터를 책으로 비유하자면 기존 시스템은 집에 해당하는 CPU 크기의 제한으로 서재(메모리 용량)를 무한정 늘릴 수 없어, 보관할 수 있는 책 개수에 제한이 있는 것이다. 이에 압축 방식은 책의 내용을 압축하여 더 많은 책을 보관하는 방법이고, 스토리지 방식은 필요한 책들을 거리가 먼 도서관에서 구해오는 것과 비슷하다. CXL을 통한 메모리 확장은 집 옆에 창고를 지어 책을 보관하는 것으로 이해될 수 있다. 연구진이 개발한 AI 반도체(CXL-ANNS)는 CXL 스위치와 CXL 메모리 확장기를 사용해 근사 근접 이웃 탐색에서 필요한 모든 데이터를 메모리에 적재할 수 있어 정확도를 높이고 성능 감소를 없앴다. 또한 근사 근접 이웃 탐색의 특징을 활용해 데이터 근처 처리 기법과 지역성을 활용한 데이터 배치 기법으로 CXL-ANNS의 성능을 한 단계 향상했다. 이는 마치 창고 스스로가 필요한 책들의 내용을 요약하고 정리해 전달하고, 자주 보는 책들은 서재에 배치해 집과 창고를 오가는 시간을 줄이는 것과 유사하다. 연구진은 CXL-ANNS의 프로토타입을 자체 제작해 실효성을 확인하고, CXL-ANNS 성능을 기존 연구들과 비교했다. 마이크로소프트, 메타, 얀덱스 등의 글로벌 IT 기업에서 공개한 검색 데이터 셋을 사용한 근사 근접 이웃 탐색의 성능 비교에서 CXL-ANNS는 기존 연구들 대비 평균 111배 성능 향상이 있었다. 특히, 마이크로소프트의 상용화된 서비스에서 사용되는 방식과 비교하였을 때 92배의 성능 향상을 보여줬다. 정명수 교수는 "이번에 개발한 CXL-ANNS는 기존 검색 엔진의 문제였던 메모리 용량 제한 문제를 해결하고, CXL 기반의 메모리 확장이 실제 적용될 때 발생하는 메모리 접근 시간 지연 문제를 해결했다ˮ며, “제안하는 CXL 기반 메모리 확장과 데이터 근처 처리 가속의 패러다임은 검색 엔진뿐만 아니라 빅 데이터가 필요한 고성능 컴퓨팅, 유전자 탐색, 영상 처리 등의 다양한 분야에도 적용할 수 있다ˮ라고 말했다. 이번 연구는 미국 보스턴에서 오는 7월에 열릴 시스템 분야 최우수 학술대회인 유즈닉스 연례 회의 `USENIX Annual Technical Conference, 2023'에 ‘CXL-ANNS’이라는 이름으로 발표된 예정이다. (논문명: CXL-ANNS: Software-Hardware Collaborative Memory Disaggregation and Computation for Billion-Scale Approximate Nearest Neighbor Search) 한편 해당 연구는 파네시아(http://panmnesia.com)의 지원을 받아 진행됐다.
2023.05.25
조회수 5193
무선으로 심혈관 모니터링 실시간 가능
실시간 혈역학(Hemodynamic) 모니터링은 심혈관 질환을 앓는 환자의 수술 전후 관리에 도움을 준다. 이에 일상에서 실시간으로 심혈관 내 압력, 유량 및 온도 측정을 제공할 수 있는 무선 인체이식형 의료기술에 대한 수요가 증가하고 있다. 우리 대학 전기및전자공학부 권경하 교수가 배터리 없이 실시간으로 심혈관 내 압력, 유량, 온도를 측정해 심혈관 기능을 진단하는 무선 심혈관 임플란트를 개발했다고 24일 밝혔다. 권경하 교수 연구팀과 미국 노스웨스턴대학교 김종욱 박사가 공동연구를 통해 개발한 이 기술은 국제 학술지 네이처 바이오메디컬 엔지니어링(Nature Biomedical Engineering)에 4월 11일 발표됐다 (논문명 : A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature; URL: https://www.nature.com/articles/s41551-023-01022-4) 현재는 침상 모니터에 연결된 유선 테더(tether)와 함께 센서를 동맥에 삽입해 동맥압과 혈류 속도 측정이 가능하지만, 유선 인터페이스가 심혈관 손상 및 감염이나 측정 정확도 저하로 이어질 수 있으므로 병원에서 움직이지 않는 환자를 위해 일시적으로 사용하는 것으로 제한된다. 전문 의료 시설에 접근하지 않고 언제 어디서나 환자의 수술 후 모니터링을 지원하기 위해, 배터리 없이 무선으로 작동하는 임플란트 시스템을 개발하는 것이 핵심 과제다. 이에 연구팀은 무선 통신 및 무선 전력 전송 기술을 이용해 심혈관 내에서 배터리 없이 실시간으로 압력, 유속 및 온도를 측정할 수 있는 이식형 무선 측정 시스템을 개발했다. 연구팀은 배터리 없이 무선으로 동작하는 압력, 유속 및 온도를 측정하는 임플란트 기기를 실제로 제작해, 돼지의 폐동맥 및 양의 대동맥과 좌심실에서 기존 임상 기기와 유사한 성능을 보이는 데 성공했다. 이러한 기술은 혈역학 기능을 객관적이고 정확하게 측정해 심장 환자의 치료와 삶의 질을 개선할 수 있는 잠재력을 가지고 있으며, 가정 또는 병원에서 환자의 행동 제약 없이 언제든지 모바일 모니터링이 가능해진다. 연구를 주도한 권경하 교수는 “앞으로 심장판막 대동맥 이식술(TAVI) 후 경사도 및 기타 유출 검사, 뇌동맥류용 흐름 전환기 내부의 압력 및 유량 측정, 흉부 내 대동맥 내시경적 수술(TEVAR) 및 복부 대동맥류 내시경적 수술(EVAR) - 엔돌릭 감시 등 다양한 임상 분야에서 사용될 수 있을 것으로 기대된다”고 말했다. 한편 이번 연구는 한국연구재단(NRF) 기본연구, 우수신진연구, 지역혁신 선도연구센터 과제의 지원을 받아 수행됐다.
2023.04.24
조회수 4417
드림워커, 안 보고도 계단을 성큼성큼 걷다
연기가 자욱해 앞이 안보이는 재난 상황에서 별도의 시각이나 촉각 센서의 도움 없이 계단을 오르내리고 나무뿌리와 같은 울퉁불퉁한 환경 등에서 넘어지지 않고 움직이는 사족보행 로봇 기술이 국내 연구진에 의해 개발됐다. 우리 대학 전기및전자공학부 명현 교수 연구팀(미래도시 로봇연구실)이 다양한 비정형 환경에서도 강인한 `블라인드 보행(blind locomotion)'을 가능케 하는 보행 로봇 제어 기술을 개발했다고 29일 밝혔다. 연구팀은 사람이 수면 중 깨어서 깜깜한 상태에서 화장실을 갈 때 시각적인 도움이 거의 없이 보행이 가능한 것처럼, 블라인드 보행이 가능하다고 해서 붙여진 ‘드림워크(DreamWaQ)’기술을 개발하였고 이 기술이 적용된 로봇을 ‘드림워커(DreamWaQer)’라고 명명했다. 즉 이 기술을 탑재하면 다양한 형태의 사족보행 로봇 드림워커를 만들어낼 수 있게 되는 것이다. 기존 보행 로봇 제어기는 기구학 또는 동역학 모델을 기반으로 한다. 이를 모델 기반 제어 방식이라고 표현하는데, 특히 야지와 같은 비정형 환경에서 안정적인 보행을 하기 위해서는 모델의 특징 정보를 더욱 빠르게 얻을 수 있어야 한다. 그러나 이는 주변 환경의 인지 능력에 많이 의존하는 모습을 보여 왔다. 이에 비해, 명현 교수 연구팀이 개발한 인공지능 학습 방법 중 하나인 심층 강화학습 기반의 제어기는 시뮬레이터로부터 얻어진 다양한 환경의 데이터를 통해 보행 로봇의 각 모터에 적절한 제어 명령을 빠르게 계산해 줄 수 있다. 시뮬레이션에서 학습된 제어기가 실제 로봇에서 잘 작동하려면 별도의 튜닝 과정이 필요했다면, 연구팀이 개발한 제어기는 별도의 튜닝을 요구하지 않는다는 장점도 있어 다양한 보행 로봇에 쉽게 적용될 수 있을 것으로 기대된다. 연구팀이 개발한 제어기인 드림워크는 크게 지면과 로봇의 정보를 추정하는 상황(context) 추정 네트워크와 제어 명령을 산출하는 정책(policy) 네트워크로 구성된다. 상황추정 네트워크는 관성 정보와 관절 정보들을 통해 암시적으로 지면의 정보를, 명시적으로 로봇의 상태를 추정한다. 이 정보는 정책 네트워크에 입력돼 최적의 제어 명령을 산출하는 데 사용된다. 두 네트워크는 시뮬레이션에서 함께 학습된다. 상황추정 네트워크는 지도학습을 통해 학습되는 반면, 정책 네트워크는 심층 강화학습 방법론인 행동자-비평자(actor-critic) 방식을 통해 학습된다. 행동자 네트워크는 주변 지형 정보를 오직 암시적으로 추정할 수 있다. 시뮬레이션에서는 주변 지형 정보를 알 수 있는데, 지형 정보를 알고 있는 비평자 네트워크가 행동자 네트워크의 정책을 평가한다. 이 모든 학습 과정에는 단 1시간 정도만 소요되며, 실제 로봇에는 학습된 행동자 네트워크만 탑재된다. 주변 지형을 보지 않고도, 오직 로봇 내부의 관성 센서(IMU)와 관절 각도의 측정치를 활용해 시뮬레이션에서 학습한 다양한 환경 중 어느 환경과 유사한지 상상하는 과정을 거친다. 갑자기 계단과 같은 단차를 맞이하는 경우, 발이 단차에 닿기 전까지는 알 수 없지만 발이 닿는 순간 빠르게 지형 정보를 상상한다. 그리고 이렇게 추측된 지형 정보에 알맞은 제어 명령을 각 모터에 전달해 재빠른 적응 보행이 가능하다. 드림워커(DreamWaQer) 로봇은 실험실 환경뿐 아니라, 연석과 과속방지턱이 많은 대학 캠퍼스 환경, 나무뿌리와 자갈이 많은 야지 환경 등에서 보행 시 지면으로부터 몸체까지 높이의 3분의 2 (2/3) 정도의 계단 등을 극복함으로써 강인한 성능을 입증했다. 또한 환경과 무관하게, 0.3m/s의 느린 속도부터 1.0m/s의 다소 빠른 속도까지도 안정적인 보행이 가능함을 연구팀은 확인했다. 이번 연구 결과는 이 마데 아스윈 나렌드라(I Made Aswin Nahrendra) 박사과정이 제1 저자로, 유병호 박사과정이 공동 저자로 참여했으며, 오는 5월 말 영국 런던에서 개최되는 로보틱스 분야의 세계 최고 권위 학회인 ICRA(IEEE International Conference on Robotics and Automation)에 채택되어 발표될 예정이다. (논문명: DreamWaQ: Learning Robust Quadrupedal Locomotion With Implicit Terrain Imagination via Deep Reinforcement Learning) 개발된 드림워크를 탑재한 보행 로봇 드림워커의 구동 및 보행 영상은 아래 주소에서 확인할 수 있다. 메인 영상: https://youtu.be/JC1_bnTxPiQ 쿠키 영상: https://youtu.be/mhUUZVbeDA0 한편, 이번 연구는 산업통상자원부 로봇산업핵심기술개발 사업의 지원을 받아 수행되었다. (과제명: 동적, 비정형 환경에서의 보행 로봇의 자율이동을 위한 이동지능 SW 개발 및 실현장 적용)
2023.03.29
조회수 7525
발열 40% 낮춘 초고해상도 마이크로 LED 기술 구현
디지털화된 현대인 생활 속에는 웨어러블, 롤러블 디스플레이 등 다양한 형태의 미래 디스플레이가 요구되는데 특히 증강현실 및 가상현실을 위한 스마트 글라스 등 디바이스의 경우에 완벽하게 유저들을 몰입시키는데 요구되는 4K 이상의 해상도가 필요하다. 하지만 디바이스에 요구되는 작은 소비전력 및 제한된 면적에 많은 픽셀을 구현해야 하는 기술적 한계에 봉착하여 완벽하게 구현되지 못하고 있는 실정이다. 우리 대학 전기및전자공학부 김상현 교수 연구팀이 소자의 크기가 마이크로미터(μm, 백만분의 1미터) 정도의 크기를 갖는 마이크로 LED의 소형화될 때 소자 효율이 저하되는 현상을 재규명하고 이를 에피택시 구조 변경으로 근본적인 해결이 가능함을 제시했다고 22일 밝혔다. 에피택시 기술이란 마이크로 LED로 사용되고 있는 초순수 규소 (Silicon) 혹은 사파이어 (Sapphire) 기판을 매개체로 삼아 그 위에 발광체로 쓰이는 질화갈륨 결정체를 쌓아 올리는 공정을 말한다. 마이크로 LED는 OLED 대비 우수한 밝기, 명암비, 수명이라는 장점이 있어 활발히 연구되고 있으며, 삼성전자는 지난 2018년에 ‘The Wall’이라는 마이크로 LED를 탑재한 제품을 상용화했고, 애플은 2025년에 마이크로 LED를 탑재한 제품이 상용화될 것이라는 전망이 있다. 마이크로 LED를 제작하기 위해선 웨이퍼 위에 성장된 에피택시 구조를 식각 공정을 통해 원기둥 혹은 직육면체의 모양으로 깎아서 픽셀들을 형성하는데, 이 식각 과정에는 플라즈마 기반의 공정이 동반된다. 그러나, 이러한 플라즈마들은 픽셀 형성 과정에서 픽셀의 측면에 결함들을 발생시킨다. 따라서, 픽셀 사이즈가 작아지고 해상도가 높아질수록 픽셀의 표면적 대 부피의 비율이 상승해 공정 중 발생하는 소자 측면 결함이 마이크로 LED의 소자 효율을 더 크게 감소시킨다. 이에 따라, 측면 결함을 완화 혹은 제거하는 것에 많이 연구가 진행됐지만 이러한 방식은 에피택시 구조를 성장한 뒤 후공정으로 진행해야 하는 만큼 개선의 정도에 한계가 존재한다. 연구팀은 마이크로 LED 소자 동작 시 에피택시 구조에 따라 마이크로 LED의 측벽으로 이동하는 전류의 차이가 발생한다는 것을 규명했고, 이를 기반으로 측벽 결함에 민감하지 않는 구조를 설계하여 마이크로 LED 소자 소형화에 따른 효율 저하 문제를 해결하였다. 또한, 제시된 구조는 디스플레이 구동 시 발생하게 되는 열을 기존 대비 40% 정도 낮출 수 있어 초고해상도 마이크로 LED 디스플레이 상용화를 위한 연구로써 큰 의미를 갖는다. 우리 대학 전기및전자공학부 김상현 교수 연구팀의 백우진 박사과정이 제 1 저자로 주도하고 김상현 교수와 충북대학교 금대명 교수(KAIST 박사 후 연구원 재직 당시) 가 교신저자로 지도한 이번 연구는 국제학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’에 3월 17일 字 출판됐다 (논문명: Ultra-Low-Current Driven InGaN Blue Micro Light-Emitting Diodes for Electrically Efficient and Self-Heating Relaxed Microdisplay). 김상현 교수는 “이번 기술 개발은 마이크로LED의 소형화의 걸림돌이었던 효율 저하의 원인을 규명하고 이를 에피택시 구조의 설계로 해결한 데에 큰 의미가 있고 앞으로 초고해상도 디스플레이에 활용될 것이 기대된다”라고 말했다. 한편 이번 연구는 삼성미래기술육성센터의 지원을 받아 수행됐다.
2023.03.22
조회수 7404
보이스피싱 심박스 탐지 원천 기술 개발
보이스피싱에 심박스가 악용될 경우 해외에서 온 인터넷전화가 한국 내의 번호로 인식되는 발신 번호 조작에 활용될 수 있다. 우리 대학 전기및전자공학부 김용대 교수 연구팀이 이동통신사가 보이스피싱에 사용되는 심박스를 식별할 수 있는 원천기술을 개발했다고 21일 밝혔다. 휴대전화 등 모든 단말기는 이동통신망에 접속할 때 지원 가능한 기능을 이동통신망에 전달한다. 김용대 교수 연구팀은 이러한 기능 중 1,000여 개를 이용해 이동통신 단말 기종을 구분하는 방법을 제안했고 100여 개의 이동통신 단말들의 기종을 분류할 수 있음을 입증했다. 또한, 이 기술을 보이스피싱에 사용되는 심박스에 적용했을 때 일반 휴대전화와 심박스를 명확히 구분할 수 있음을 확인했다. 현재 이동통신사들은 단말기 구분 및 단말 기종의 식별을 위해 모든 단말에 부여된 고유한 15자리 숫자인 단말기고유식별번호(이하 IMEI: International Mobile Equipment Identity)를 사용한다. IMEI는 이동통신망에서 단말 기종을 나타내기 위해 사용되는 8자리 숫자인 TAC(Type Allocation Code, 타입 할당 코드)를 포함한다. 이번 기술의 특징은 일반적인 단말뿐 아니라 악의적인 목적을 가진 다른 기종의 TAC로 변조한 단말들도 이동통신망에서 그 기종을 식별할 수 있다는 것이다. 이러한 특징은 현재 보이스피싱에 악용되고 있는 심박스들을 탐지하기에 유용하다. 심박스들은 IMEI 변조 기능을 지원하기 때문에 이동통신사가 심박스를 휴대전화로 오분류하도록 만들 수 있는데, 기존과 같이 TAC만을 이용해서는 이러한 심박스들을 탐지할 수 없기 때문이다. 이번 기술에서는 단말 기종 식별을 위해 TAC를 사용하지 않기 때문에, 그러므로 심박스가 이를 변조해 이동통신망에 접속하더라도 효과적으로 식별할 수 있다. 휴대전화와 심박스는 개발 과정에서 큰 차이를 보인다. 퀄컴, 삼성 같은 이동통신 칩 개발사는 매년 새로운 기능을 갖는 최신 사양의 칩셋을 제작하고, 이는 최신 휴대전화 제작에 사용된다. 반면 심박스의 경우 전화 기능을 위주로 한 장비이기 때문에, 비교적 저사양의 칩셋을 사용한다. 또한 일반적으로 휴대전화 제조사들은 심박스 제조사들과 달리 칩셋에 존재하는 다양한 기능들을 단말기에 구현한다. 이러한 개발 과정의 차이는 곧 휴대전화와 심박스가 지원하는 기능들의 차이로 이어진다. 연구팀이 개발한 기술에서는 이러한 단말들의 기능 정보들을 기기별 고유정보로 이용해 단말 기종을 분류했다. 그 시험 결과, 100여 종의 휴대전화 모델들이 잘 구분되는 것을 확인했고, 나아가 휴대전화와 심박스 또한 명확히 구분되는 것을 확인했다. 따라서 이번 기술이 이동통신사에 적용되더라도 심박스 탐지에 충분히 사용될 수 있을 것으로 보인다. 전기및전자공학부 오범석, 안준호 연구원이 공동 제1 저자로 참여하고 배상욱, 손민철, 이용화 연구원과 우리 대학 강민석 교수가 함께 참여한 이번 연구는 보안 최우수학회 중 하나인 `NDSS(Network and Distributed System Security)' 심포지움 2023에 채택됐다. (논문명 : Preventing SIM Box Fraud Using Device Model Fingerprinting) 한편 김용대 교수 연구팀은 2012년부터 현재까지 이동통신 보안 분야에서 다양한 연구를 진행했다. 2015년에는 상용 VoLTE 서비스의 10가지 구현 취약점들을 발견해 미국 컴퓨터 침해 사고 대응반(CERT)에 제보했고, 2019년에는 LTE 이동통신 취약점 자동분석 시스템을 개발, 51개의 새로운 취약점을 발견해 통신사 및 제조사들에 해당 문제들을 보고했다. 2022년에는 43개의 휴대전화 이동통신 칩에서 26개의 보안 취약점을 찾아 휴대전화 제조사들에게 보고했다. 공동 제1 저자인 오범석 연구원은 "100여 개의 이동통신 단말들을 이용해 휴대전화와 심박스가 잘 구분되는 것을 확인한 상태다ˮ며, "실제 보이스피싱 기술에 적용하기 위해서는 이동통신사와의 협력을 통해 상용 데이터를 활용한 검증과 기술 고도화가 필요하다ˮ 라고 말했다. 김용대 교수는 "합법적으로 심박스를 사용하는 사업 또한 존재하며 이동통신사에서 심박스를 탐지하는 것도 중요하지만 이 중 불법적으로 이용되는 심박스를 골라내는 것이 더 중요하다”며, "이 기술을 효과적으로 적용하기 위해서는 심박스 등록제가 필요한데 보이스피싱 목적이 아닌 합법적으로 사용되고 있는 심박스들은 사업 목적에 대해 등록을 하면 되고 그렇지 않은 심박스는 미등록 심박스이므로 적발이 가능하다”라고 말했다. 이번 연구는 경찰청 국가개발연구사업 <네트워크 기반 보이스피싱 탐지 및 추적 기술 개발>과 정보통신기획평가원 <정형 및 비교 분석을 통한 자동화된 이동통신 프로토콜 보안성 진단 기술> 사업 그리고 융합보안대학원 사업의 지원을 받아 수행됐다. 아울러, 현재 연구팀은 실제 고객의 피해 방지로 이어질 수 있도록 SK Telecom과 협업 중에 있다.
2023.03.21
조회수 4728
생생한 3차원 실사 이미지 구현하는 ‘메타브레인’ 개발
우리 대학 전기및전자공학부 유회준 교수 연구팀이 실사에 가까운 이미지를 렌더링할 수 있는 인공지능 기반 3D 렌더링을 모바일 기기에서 구현, 고속, 저전력 인공지능(AI: Artificial Intelligent) 반도체*인 메타브레인(MetaVRain)’을 세계 최초로 개발했다고 7일 밝혔다. * 인공지능 반도체 : 인식·추론·학습·판단 등 인공지능 처리 기능을 탑재하고, 초지능·초저전력·초신뢰 기반의 최적화된 기술로 구현한 반도체 연구팀이 개발한 인공지능 반도체는 GPU로 구동되는 기존 레이 트레이싱 (ray-tracing)* 기반 3D 렌더링을 새로 제작된 AI 반도체 상에서 인공지능 기반 3차원으로 만들어, 기존의 막대한 비용이 들어가는 3차원 영상 캡쳐 스튜디오가 필요없게 되므로 3D 모델 제작에 드는 비용을 크게 줄이고, 사용되는 메모리를 180배 이상 줄일 수 있다. 특히 블렌더(Blender) 등의 복잡한 소프트웨어를 사용하던 기존 3D 그래픽 편집과 디자인을 간단한 인공지능 학습만으로 대체하여, 일반인도 손쉽게 원하는 스타일을 입히고 편집할 수 있다는 장점이 있다. *레이 트레이싱 (ray-tracing): 광원, 물체의 형태, 질감에 따라 바뀌는 모든 광선의 궤적을 추적함으로써 실사에 가까운 이미지를 얻도록 하는 기술 한동현 박사과정이 제1 저자로 참여한 이번 연구는 지난 2월 18일부터 22일까지 전 세계 반도체 연구자들이 미국 샌프란시스코에 모여 개최한 국제고체회로설계학회(ISSCC)에서 발표됐다. (논문번호 2.7, 논문명: 메타브레인: A 133mW Real-time Hyper-realistic 3D NeRF Processor with 1D-2D Hybrid Neural Engines for Metaverse on Mobile Devices (저자: 한동현, 류준하, 김상엽, 김상진, 유회준)) 유 교수팀은 인공지능을 통해 3D 렌더링을 구현할 때 발생하는 비효율적인 연산들을 발견하고 이를 줄이기 위해 사람의 시각적 인식 방식을 결합한 새로운 컨셉의 반도체를 개발했다. 사람은 사물을 기억할 때, 대략적인 윤곽에서 시작하여, 점점 그 형태를 구체화하는 과정과 바로 직전에 보았던 물체라면 이를 토대로 현재의 물체가 어떻게 생겼는지 바로 추측하는 인지능을 가지고 있다. 이러한 사람의 인지 과정을 모방하여, 새롭게 개발한 반도체는 저해상도 복셀을 통해 미리 사물의 대략적인 형태를 파악하고, 과거 렌더링했던 결과를 토대로, 현재 렌더링할 때 필요한 연산량을 최소화하는 연산 방식을 채택하였다. 유 교수팀이 개발한 메타브레인은 사람의 시각적 인식 과정을 모방한 하드웨어 아키텍처뿐만 아니라 최첨단 CMOS 칩을 함께 개발하여, 세계 최고의 성능을 달성하였다. 메타브레인은 인공지능 기반 3D 렌더링 기술에 최적화되어, 최대 100 FPS 이상의 렌더링 속도를 달성하였으며, 이는 기존 GPU보다 911배 빠른 속도다. 뿐만아니라, 1개 영상화면 처리 당 소모에너지를 나타내는 에너지효율 역시 GPU 대비 26,400배 높인 연구 결과로 VR/AR 헤드셋, 모바일 기기에서도 인공지능 기반 실시간 렌더링의 가능성을 열었다. 연구팀은 메타브레인의 활용 예시를 보여주고자, 스마트 3D 렌더링 응용시스템을 함께 개발하였으며, 사용자가 선호하는 스타일에 맞춰, 3D 모델의 스타일을 바꾸는 예제를 보여주었다. 인공지능에게 원하는 스타일의 이미지를 주고 재학습만 수행하면 되기 때문에, 복잡한 소프트웨어의 도움 없이도 손쉽게 3D 모델의 스타일을 손쉽게 바꿀 수 있다. 유 교수팀이 구현한 응용시스템의 예시 이외에도, 사용자의 얼굴을 본떠 만든 실제에 가까운 3D 아바타를 만들거나, 각종 구조물들의 3D 모델을 만들고 영화 제작 환경에 맞춰 날씨를 바꾸는 등 다양한 응용 예시가 가능할 것으로 기대된다. 연구팀은 메타브레인을 시작으로, 앞으로의 3D 그래픽스 분야 역시 인공지능으로 대체되기 시작할 것으로 기대한다며, 인공지능과 3D 그래픽스의 결합은 메타버스 실현을 위한 큰 기술적 혁신이라는 점을 밝혔다. 연구를 주도한 KAIST 전기및전자공학부 유회준 교수는 “현재 3D 그래픽스는 사람이 사물을 어떻게 보고 있는지가 아니라, 사물이 어떻게 생겼는지를 묘사하는데 집중하고 있다”라며 “이번 연구는 인공지능이 사람의 공간 인지 능력을 모방하여 사람이 사물을 인식하고 표현하는 방법을 차용함으로써 효율적인 3D 그래픽스를 가능케 한 연구”라고 본 연구의 의의를 밝혔다. 또한 “메타버스의 실현은 본 연구에서 보인 것처럼 인공지능 기술의 혁신과 인공지능 반도체의 혁신이 함께 이루어질 것”이라 미래를 전망하였다. 데모 동영상 유튜브 주소: https://www.youtube.com/watch?v=m-aqnZhALv0
2023.03.07
조회수 6041
방사선에도 문제없는 초저에너지 메모리 최초 개발
지상에서 잘 동작하던 반도체 메모리가 우주나 비행기 안에서 갑자기 오동작을 일으키는 일이 있는데, 이는 고고도에 존재하는 방사선 때문이다. 이 뿐만 아니라, 최근 자율 주행 운송 수단과 같이 사람의 안전이 중요한 장치에 사용되는 반도체 메모리도 대기 방사선에 의해 오동작할 확률이 있다는 연구 결과들이 보고되면서 방사선에 대해 높은 안정성을 갖는 메모리 소자의 중요성이 점차 증가하고 있다. 우리 대학 전기및전자공학부 윤준보 교수 연구팀이 나노종합기술원(원장 이조원) 강민호 박사와의 협업을 통해 우주 부품 수준의 내방사선 특성을 가지면서도 일반적인 비휘발성 플래시 메모리보다 30,000배 이상 프로그래밍 에너지가 낮은 나노 전자 기계식 비휘발성 메모리 소자를 세계 최초로 개발했다고 28일 밝혔다. 전기및전자공학부 이용복 박사과정이 제1 저자로 수행한 이번 연구는 저명 국제 학술지 `네이처 커뮤니케이션즈 (Nature Communications)' 2023년 1월호에 출판됐다. (논문명: Sub-10 fJ/bit radiation-hard nanoelectromechanical non-volatile memory). (Impact Factor : 17.690). (https://www.nature.com/articles/s41467-023-36076-0) 반도체 메모리 소자들은 동작 원리상 근본적으로 방사선에 취약해, 이를 보완하기 위해서는 복잡한 회로나 추가적인 데이터 프로세싱을 수반하는데 그 과정에서 많은 에너지가 소모된다. 즉, 일반적인 반도체 메모리 소자들은 내방사선과 낮은 동작 에너지를 동시에 만족하는 것이 매우 어렵다는 것을 의미한다. 윤준보 교수 연구팀은 방사선에 원천적으로 강인한 특성을 가진 나노 전자 기계 기술(Nano Electro Mechanical System, NEMS)을 활용해 고에너지 방사선에도 강인할 뿐만 아니라 매우 낮은 프로그래밍 에너지를 가지고, 전원이 공급되지 않아도 저장된 정보를 유지할 수 있는 비휘발성 메모리 소자를 세계 최초로 개발했다. 연구팀은 반도체 메모리를 사용하는 대신, 나노 크기의 매우 작은 기계 구조에 전기 신호를 가함으로써 나노 기계 구조체가 실제로 움직여서 하부 전극에 붙고 떨어지는 방식을 사용하였다. 또한, 매우 낮은 프로그래밍 에너지를 달성하기 위해 파이프-클립 스프링 구조와 구부러진 외팔보 구조로 구성된 상부 전극을 도입했으며, 특히 파이프-클립 모양의 나노 기계 구조에 전류를 가해 열을 내는 구동 방식을 통해 프로그램된 구조체가 초기 상태로 복구할 수 있도록 하여 반복적인 프로그램 동작에도 낮은 프로그래밍 에너지를 유지할 수 있도록 하였다. 연구진은 나노종합기술원의 반도체 장비·시설 인프라를 활용해 8인치 웨이퍼 수준의 대면적 기판에 신뢰적으로 소자를 제작했고, 제작한 나노 전자 기계식 비휘발성 메모리의 프로그래밍 에너지는 차세대 메모리들과 비교했을 때도 매우 낮은 수준이었다. 또한, 기계적인 움직임을 기반으로 하는 동작 방식 덕분에 고에너지 방사선 조사 후에도 누설 전류 증가, 동작 전압 변화, 비트 오작동 등의 성능 저하 없이 우수한 내방사선 특성을 보였다. 연구개발에 주도적으로 참여한 이용복 박사과정은 “이번 연구 결과는 연구팀이 보유한 나노 전자 기계 설계 기술과 나노종합기술원의 첨단 공정 기술이 만나 내방사선 특성과 낮은 동작 에너지 소모를 동시에 만족하는 비휘발성 메모리를 세계 최초로 구현했다는 점에서 중요한 의미를 가지고, 해당 기술은 우주 환경에서의 인공지능, 초안정성 자율주행 시스템 등 내방사선과 높은 에너지 효율성이 필요한 다양한 미래 응용 분야에서 핵심 기술이 될 것” 이라고 말했다. 또한, “세계 차세대 반도체 시장에서 우리나라가 메모리 원천 기술을 선도할 수 있도록 기여하고 싶다”며 앞으로의 계획을 밝혔다. 해당 기술과 관련해 미국, 중국, 대만, 한국 등에 6건의 특허가 출원돼 있다. 한편, 이번 연구는 한국연구재단의 차세대지능형반도체기술개발사업과 삼성전자의 지원을 받아 수행됐다.
2023.02.28
조회수 5996
도심에서 무력화 가능한 안티드론 기술 개발
최근 각국 정부는 공항과 국가 중요 시설에서 무인 항공기를 이용한 테러를 방지하기 위해 다양한 안티드론 시스템을 구축하고 있다. 드론을 추락시키거나 원하는 방향으로 제어하는 안티드론 기술은 드론의 다양한 보안 취약점을 이용하여 구현이 가능하다. 우크라이나-러시아 전쟁은 안티드론 기술의 평가장이 되고 있다. 우리 대학 전기및전자공학부 김용대 교수 연구팀이 도심에서 사용이 가능한 협대역 전자기파*를 원격에서 드론의 회로에 주입해 드론을 즉각적으로 무력화하는 안티드론 기술을 개발했다고 31일 밝혔다. * 기존에 사용되는 광대역 전자기파을 이용한 안티드론 기술은 주변의 전자·전기 장치에 피해를 일으켜, 도심사용이 어렵다는 점을 개선하여 매우 좁은 대역의 협대역전자기파를 이용한 안티드론 기술은 목표 드론 기종에만 그 효과를 한정할 수 있게 해준다. 김 교수 연구팀은 드론 제조사의 제어 유닛 보드가 전자파 주입에 따른 민감도가 다르다는 것을 발견하였고 각 제조사별 수집된 민감도를 극대화한 주파수를 분석하였다. 이를 통하여 매우 좁은 대역의 협대역전자파를 주입하더라도 원격에서 드론을 즉각적으로 무력화시킬 수 있음을 입증했다. 이번 기술의 특징은 이렇게 좁은 대역으로 특정 주파수로 전자파 주입을 할 경우 기존의 안티드론 기술과 달리, 주변 전자 장치에 미치는 영향을 최소화할 수 있어, 도심에서도 적용 가능한 안티드론 기술이라고 할 수 있다. 뿐만 아니라 같은 제어 유닛 보드를 사용하는 드론들을 이용한 군집 드론 공격 시 이들 드론을 동시에 추락시킬 수 있다. 즉, A 기종을 사용하는 100개의 적 드론과 B 기종을 사용하는 100개의 아군 드론이 동시에 비행하고 있을 때 아군 드론은 전혀 영향을 받지 않으면서 100개의 적 드론을 모두 격추시킬 수 있는 기술로 평가된다. 우리 대학 장준하 연구원과 조만기 연구원이 공동 제1 저자로 참여한 이번 연구는 보안최우수학회 중 하나인 `NDSS (Network and Distributed System Security)' 심포지움 2023에 채택됐다. (논문명 : Paralyzing Drones via EMI Signal Injection on Sensory Communication Channels) 드론의 구동을 위하여 관성 계측 장치(IMU)는 다양한 센서값들을 제어 유닛 보드에 전달을 한다. 제어 유닛 보드는 이 센서값들을 제어 알고리즘에 적용하여 다음 번 드론의 움직임, 즉 로터의 회전수나 드론의 자세를 계산한다. 이 연구의 핵심 아이디어는 이 관성 계측 장치와 제어 유닛 보드 간의 통신을 방해시키면 제대로된 센서값을 받을 수 없고, 이 경우 다음 번 드론의 제어가 불가능해 진다는 것이다. 이 통신을 방해하기 위한 기술로 연구팀은 전자파 간섭(EMI) 취약점을 갖는 제어 유닛 보드에 대한 전자파 주입을 선택했다. 실험을 통하여 동종의 제어 유닛 보드는 같은 주파수의 전자파에 민감하다는 것을 발견하였고, 이를 이용하여 협대역의 전자기파를 주입할 경우, 주변 전자 장치에 영향을 끼치지 않을 뿐 아니라, 군집 드론 공격에 효과적으로 대응할 수 있는 점을 발견하였다. 한편 김용대 교수 연구팀은 2015년 소리를 관성 계측 장치에 포함된 평형센서인 자이로스코프(Gyroscope) 센서에 주입하여 드론을 떨어뜨릴 수 있는 기술을 개발했었다. 2015년 연구와 이번 연구는 깊은 연관을 가지고 있다. 2015년 연구는 달팽이관(정확히는 세반고리관)에 문제가 생길 경우 인간이 평형을 유지하기 힘들다는 것과 유사한 원리라고 할 수 있다. 이번 연구는 달팽이관에 문제를 일으키는 것이 아니라 달팽이관에서 뇌로 연결되는 신경망을 잠시 막을 경우에도 인간이 평형을 유지하기 힘든 것과 비슷한 원리라고 할 수 있다. 연구팀은 실내 전자파 차폐 시설을 이용해 10m 거리에서 호버링 비행 중인 드론을 즉각적으로 추락시킬 수 있음을 확인했으며, 공격 거리와 요구 전력 간의 관계를 도출했다. 10m 이상의 거리에 대해선 시뮬레이션을 통해 가능함을 확인했다. 공동 제1 저자인 장준하 연구원은 "드론 제어 유닛 보드의 전자파 간섭(EMI) 취약성을 이용하면 특정 영역의 드론들을 즉시 무력화하는 안티드론 기술로 활용할 수 있음을 보였다ˮ며, "또한 이는 기존의 안티드론 기술이 가지는 주변 전자 장치에 대한 영향을 문제를 해결한 도심에서 적용 가능한 안티드론 기술이며 고도화 연구를 통해 자폭 드론, 집단 드론 공격 등으로부터 국민을 보호하는 기술로 활용할 수 있을 것이다ˮ 라고 말했다. 김용대 교수는 “원천 연구가 이제 끝난 시점이고 실용화 연구를 통해 실제 제품 개발까지 이어질 수 있을지 확인이 필요하다”며, “추가로 제어 유닛 보드와 IMU 센서 간의 통신 회로 뿐 아니라 다른 회로의 취약점에 대한 연구도 필요한 시점이다”라고 말했다. 이번 연구는 한국연구재단 무인이동체 보안을 위한 항재밍 및 무허가 무인이동체 탐지대응 기술 개발 사업과 정보통신기술기획원 융합보안 핵심인재 양성사업 그리고 미 공군과학연구실의 지원을 받아 수행됐다.
2023.01.31
조회수 4950
획기적 음의 정전용량 플래시 메모리 최초 개발
우리 대학 전기및전자공학부 전상훈 교수 연구팀이 `음의 정전용량 효과(Negative Capacitance Effect, 이하 NC 효과)*'를 활용해 기존 플래시 메모리의 물리적 성능 한계를 뛰어넘는 음의 정전용량 플래시 메모리 (NC-Flash Memory)를 세계 최초로 개발했다고 18일 밝혔다. *음의 정전용량 효과: 음의 정전용량 현상은 인가되는 전압이 증가하면 전하량이 감소함을 의미한다. 음의 정전용량 특성을 가지는 유전체 사용시, 트랜지스터에 인가되는 전압을 내부적으로 증폭하여 상대적으로 낮은 동작전압을 사용할 수 있어, 파워소모를 줄일 수 있다. 전기및전자공학부 김태호 박사과정과 김기욱 박사과정이 공동 제1 저자로 수행한 이번 연구는 저명 국제 학술지 `어드밴스드 펑셔널 머터리얼즈(Advanced Functional Materials)' 2022년 12월호에 출판됐다. (논문명 : The Opportunity of Negative Capacitance Behavior in Flash Memory for High-Density and Energy-Efficient In-Memory Computing Applications) 이 국제학술지는 독일 와일리 출판사(Wiley-VCH)에서 발행하는 피어리뷰 과학 저널이다. (Impact Factor : 19.924) 현대 전자 소자에서 축전기(Capacitor)는 매우 중요한 구성 요소의 하나로, 전자 소자가 소형화되고 수직 방향으로 적층 되면서 축전기에 저장되는 전하량(Charge, Q)이 감소하는 문제가 생기므로 높은 정전용량(Capacitance, C)을 가진 유전체 물질이 필수적으로 요구되고 있다. 여기에 일반적인 축전기와 다르게 정전용량이 음의 값을 갖는(Negative Capacitance) 축전기를 활용한다면 다층의 축전기의 전체 정전용량을 오히려 더 증가시킬 수 있고, 차세대 소자에 적합한 높은 정전용량 소자 개발 난제를 해결할 수 있을 것이라는 가설이 제안되었다. 최근 메모리 공급업체들은 데이터의 폭발적 증가와 더 높은 용량의 솔리드 스테이트 드라이브(SSD) 및 더 빠른 액세스 시간에 대한 요구로 인해 기술 경쟁을 치열하게 하고 있다. 스토리지의 핵심 기술인 3D 낸드 플래시는 지속적으로 더 높은 층을 적층할 수 있는 기술을 요구하고 있고, 2028년에는 1,000단 이상의 메모리 적층이 필요할 것으로 예상되고 있다. 한편, 강유전체* 물질에서 보이는 `음의 정전용량 효과(NC 효과)'은 전자 소자에 인가된 외부 전압을 내부적으로 증폭해 전력 소모를 줄이는 특성이 있어, 전자 소자의 물리적 성능 한계를 극복할 수 있다는 가능성이 제시됐다. 최근 페로브스카이트 강유전체에서 NC 효과를 실험적으로 관찰했으나, 페로브스카이트 강유전체의 소형화 한계 및 CMOS 공정과의 부적합성으로 인해 NC 효과를 활용한 전자 소자의 구현에 대해 상당한 회의론을 불러일으켰다. *강유전체: 전기적으로는 절연체이지만 자연상태에서 외부 전기장이 없어도 전기 편극을 지닐 수 있는 특이한 물리적 성질을 가진 물질 전상훈 교수 연구팀은 기존 플래시 메모리의 물리적 성능 한계를 극복하고 동작전압을 낮추기 위해, 반도체 공정에 사용되는 하프늄옥사이드(HfO2) 강유전체 박막의 NC 효과를 안정화해 저전압 구동이 가능한 강유전체 소재의 NC-플래시 메모리를 세계 최초로 개발했다. 개발된 NC-플래시 메모리는 기존 플래시 메모리 대비 전력 소모가 10,000배 이상 낮은 저전력 고성능 특성을 달성했다. 연구팀은 그뿐만 아니라 기존 컴퓨팅 구조인 폰노이만 아키텍처를 대체하여 새롭게 지향하는 인메모리 컴퓨팅을 NC-플래시 메모리를 기반으로 구현해 세계 최고 수준의 에너지 효율 또한 달성했다. 이번 연구 결과는 빠른 스토리지를 필요로 하는 최신 컴퓨팅과 네트워킹의 요구를 충족하는 차세대 낸드 플래시 메모리 개발에 있어 핵심 역할을 할 것이다. 한편, 이번 연구는 연세대학교와 협업을 통해서 이루어졌고, 한국 연구재단 지능형 반도체 기술개발사업의 지원을 받아 수행됐다.
2023.01.18
조회수 5885
3D 프린팅 기반의 뇌 이식용 뉴럴 프로브 공정 기술 개발
우리 대학 전기 및 전자공학부 정재웅 교수 연구팀이 미국 워싱턴 대학교(Washington University in St. Louis) 연구팀과의 공동 연구를 통해 3D 프린팅 기반의 광유전학 뉴럴 프로브 공정 기술을 개발했다고 밝혔다. 광유전학은 빛을 사용해 목표로 하는 특정 신경세포를 선택적으로 정교하게 조절할 수 있는 기술로서 뇌 연구 및 뇌질환 치료분야에서 많은 각광을 받고 있다. 뇌에 광유전학을 적용하기 위해서는 빛을 목표 신경회로에 정확히 전달할 수 있는 장치가 요구된다. 따라서 서로 다른 광유전학 기반 뇌 연구 실험을 진행할 때마다 실험 대상 동물과 목표 신경회로의 위치에 최적화된 디자인을 갖는 뇌 이식용 뉴럴 프로브가 필요하다. 반도체 공정 기반의 광전자 뉴럴 프로브는 실험 목적에 맞게 길이와 형태를 설정하여 제작할 수 있어 광유전학 연구에서 널리 사용되고 있다. 하지만 반도체 공정은 많은 기반 시설과 전문성이 요구되어 신경과학자가 직접 접근하기 힘들다. 또한 공정에 많은 시간과 비용이 필요하여 새로운 디자인의 프로브를 빠르고 저렴하게 개발하기 어렵다. 연구팀은 뉴럴 프로브 공정에 3D 프린팅을 도입하여 이러한 문제를 극복했다. 개발된 공정은 단순하고 소요 시간이 짧으며, 비싼 반도체 공정 장비와 재료가 전혀 사용되지 않아 개당 약 1000원의 가격으로 생산이 가능하다 (참고: 상용 실리콘 프로브: 약 50000원 이상). 본 공정기술을 이용하면 3D 구조 설계 소프트웨어를 활용하여 누구나 손쉽게 뉴럴 프로브의 디자인을 수정하고 제작할 수 있어 다양한 동물의 목표 뇌신경회로에 최적화된 디바이스를 빠르게 구현할 수 있다. 3D 프린팅으로 제작된 프로브는 소형 무선 통신 모듈과 결합하여 무선 광유전학을 구현할 수 있도록 개발되었다. 무선 통신 모듈을 제어하는 스마트폰 앱도 개발하여 사용자의 편의성을 도모하였다. 연구팀은 본 기술이 신경과학 커뮤니티에서 누구나 활용할 수 있도록 개발 프로토콜을 제시했다. 프로토콜에는 광유전학 뉴럴 프로브와 무선 통신 모듈의 제작 과정뿐만 아니라 스마트폰 앱 사용법과 프로브 이식 수술 방법이 포함되어 있다. 3D 프린팅 기반의 본 제작기술은 광유전학 프로브 제작의 접근성, 용이성 및 활용성을 크게 높일 수 있어 다양한 뇌과학 및 신경과학 연구에 크게 기여할 수 있을 것으로 기대된다. 전기및전자공학부 이주현 박사과정 학생이 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 프로토콜스 (Nature Protocols)' 1월 字 표지 논문으로 게재됐다. (논문명 : Customizable, wireless and implantable neural probe design and fabrication via 3D printing). 이번 연구는 KAIST 글로벌 특이점 연구사업, 한국연구재단의 중견연구자지원사업 및 바이오의료기술개발사업, 미국 국립보건원 및 뇌&행동 연구재단의 지원을 받아 수행됐다.
2023.01.18
조회수 5726
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 14