본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%84%A4%EC%9D%B4%EC%B2%98+%EC%BB%A4%EB%AE%A4%EB%8B%88%EC%BC%80%EC%9D%B4%EC%85%98
최신순
조회순
박찬범, 스티브 박 교수, 혈액 기반 알츠하이머병 멀티플렉스 진단센서 개발
KAIST(총장 신성철) 신소재공학과 박찬범 교수와 스티브 박 교수 공동 연구팀이 혈액으로 알츠하이머병을 진단할 수 있는 센서를 개발하는 데 성공했다. 연구팀이 개발한 진단 센서를 활용해 혈액 내에 존재하는 베타-아밀로이드 및 타우 단백질 등 알츠하이머병과 관련한 4종의 바이오마커 농도를 측정·비교하면 민감도는 90%, 정확도 88.6%로 중증 알츠하이머 환자를 구별해 낼 수 있다. 김가영 박사과정·김민지 석사과정이 공동 1저자로 참여한 이번 연구 결과는 국제 학술지‘네이처 커뮤니케이션스(Nature communications)’1월 8일 자 온라인판에 게재됐다. (논문명: Clinically accurate diagnosis of Alzheimer’s disease via multiplexed sensing of core biomarkers in human plasma) 알츠하이머병은 치매의 약 70%를 차지하는 대표적인 치매 질환이다. 현재 전 세계 65세 이상 인구 중 10% 이상이 이 질병으로 인해 고통을 받고 있다. 하지만 현재의 진단 방법은 고가의 양전자 단층촬영(PET) 또는 자기공명영상진단(MRI) 장비를 사용해야만 하기에 많은 환자를 진단하기 위해서는 저렴하면서도 정확한 진단 기술개발의 필요성이 제기돼 왔다. 연구팀은 랑뮤어 블라젯(Langmuir-blodgett)이라는 기술을 이용해 고밀도로 정렬한 탄소 나노튜브(Carbon nanotube)를 기반으로 한 고민감성의 저항 센서를 개발했다. 탄소 나노튜브를 고밀도로 정렬하게 되면 무작위의 방향성을 가질 때 생성되는 접합 저항(Tube-to-tube junction resistance)을 최소화할 수 있어 분석물을 더 민감하게 검출할 수 있다. 실제로 고밀도로 정렬된 탄소 나노튜브를 이용한 저항 센서는 기존에 개발된 탄소 나노튜브 기반의 바이오센서들 대비 100배 이상의 높은 민감도를 보였다. 연구팀은 고밀도로 정렬된 탄소 나노튜브를 이용해 혈액에 존재하는 알츠하이머병의 바이오마커 4종류를 동시에 측정할 수 있는 저항 센서 칩을 제작했다. 알츠하이머병의 대표적인 바이오마커인 베타-아밀로이드 42 (β-amyloid42,), 베타-아밀로이드 40 (β-amyloid40), 총-타우 단백질 (Total tau proteins) 및 과인산화된 타우 단백질 (Phosphorylated tau proteins)은 그 양이 알츠하이머병의 병리와 직접적인 상관관계를 가지기 때문에 알츠하이머병 환자를 구별해 내는 데 매우 유용하다. 고밀도로 정렬된 탄소 나노튜브 기반 센서 칩을 이용해 실제 알츠하이머 환자와 정상인의 혈액 샘플 내에 존재하는 4종의 바이오마커 농도를 측정 하고 비교한 결과, 민감도와 선택성은 각각 90%, 그리고 88.6%의 정확도를 지녀 중증 알츠하이머 환자를 상당히 정확하게 진단할 수 있음을 확인했다. 연구팀이 개발한 고밀도로 정렬된 탄소 나노튜브 센서는 측정방식이 간편하고, 제작비용도 저렴하다. 박찬범 교수는“본 연구는 알츠하이머병으로 이미 확정된 중증환자들을 대상으로 진행하였다. 향후 실제 진료 환경에 활용하기 위해서는 경도인지장애 (Mild cognitive impairment) 환자의 진단 가능성을 테스트하는 것이 필요하다”며“이를 위하여 경도인지장애 코호트, 치매 코호트 등의 범국가적인 인프라 구축이 필수적이며, 국가 공공기관의 적극적인 연구 네트워크 구축 및 지원의 장기성 보장이 요구된다”고 강조했다. 한편 이번 연구는 과학기술정보통신부 리더연구자 지원사업과 충남대병원 및 충북대병원 인체자원은행의 지원을 받아 수행됐다. □ 그림 설명 그림 1. 혈액 내에 존재하는 총 4종의 바이오마커 농도를 측정해 알츠하이머병 환자를 구별하는 고밀도로 정렬된 카본 나노튜브 기반 저항 센서의 모식도 그림 2. 진단 센서 성능
2020.01.15
조회수 18306
김희탁 교수, 바나듐레독스 흐름전지용 전해액 신공정 개발
〈 김희탁 교수, 허지윤 박사과정, KIER 이신근 박사〉 우리 대학 생명화학공학과/나노융합연구소 차세대배터리센터 김희탁 교수와 한국에너지기술연구원(원장 곽병성) 에너지소재연구실 이신근 박사 공동연구팀이 생산 비용을 40% 줄인 바나듐 레독스 흐름전지용 고순도 전해액 생산 공정 개발에 성공했다. 허지윤 박사과정이 1 저자로 참여한 이번 연구 결과는 국제학술지 ‘네이처 커뮤니케이션즈 (Nature Communications)’ 9월 27일 자 온라인판에 게재됐고, 우수성을 인정받아 에디터 하이라이트(Editor’s Highlight)로 선정됐다. (논문명: Catalytic production of impurity-free V3.5+ electrolyte for vanadium redox flow batteries) 최근 리튬이온전지 기반 대용량 에너지 저장장치의 발화사고가 빈번하게 발생하면서 수계 전해질을 이용하는 비 발화성 바나듐 레독스 흐름전지에 대한 관심이 커지고 있다. 바나듐 레독스 흐름전지는 안전성뿐 아니라 내구성 및 대용량화의 장점이 있어 대용량 에너지 저장장치로의 응용이 기대되고 있으나, 리튬이온전지 대비 높은 가격으로 인해 시장 확대가 지연되고 있다. 바나듐 레독스 흐름전지의 부품 소재 중 바나듐 전해액은 전지의 용량, 수명과 성능을 결정하는 핵심 소재이며 전체 전지 가격의 50% 이상을 차지하고 있어, 바나듐 전해액의 저가격화는 바나듐 레독스 흐름전지 시장 확대의 핵심이라 할 수 있다. 상업적으로 이용되는 바나듐 전해액은 3.5 가의 산화수를 가지며, 이는 5가의 바나듐옥사이드(V2O5) 전구체를 전기분해를 이용해 환원시켜 제조된다. 그러나 전기분해 방식은 고가의 전기분해 장치가 필요하고 에너지 소비가 크며 전기분해 중 생성되는 높은 산화수의 전해액의 재처리가 필요하다. 이에 전기분해 방식을 벗어나 화학적으로 바나듐을 환원시키는 공정이 전 세계적으로 연구됐지만, 환원제의 잔류물에 의한 전해액 오염으로 인해 상업화에 성공한 사례가 없었다. 김 교수와 이 박사 공동연구팀은 유기 연료전지의 촉매 기술을 응용해 잔류물이 남지 않는 환원제인 포름산의 활성을 증대시켜 바나듐을 3.5가로 환원시키는 기술을 개발했다. 연구팀은 이 기술을 이용해 시간당 2리터(L)급 촉매 반응기를 개발했고 연속 공정을 통한 고순도의 3.5가 바나듐 전해액 생산에 성공했다. 이번 촉매반응을 이용한 제조공정은 전기분해 방식 대비 효율적인 공정 구조를 가져 생산 공정 비용을 40% 줄일 수 있다. 또한, 촉매 반응기를 통해 생산된 전해액은 기존 전기분해 방식으로 만들어지는 전해액과 동등한 성능을 보여 그 품질이 검증됐다. 나노융합연구소 차세대배터리센터장 김희탁 교수는 “촉매를 이용한 화학적 전해액 제조기술은 원천성을 가지고 있어, 비 발화성 대용량 에너지 저장장치 분야의 국가 경쟁력을 높일 수 있다”라고 말했다. 한국에너지기술연구원 에너지소재연구실 이신근 박사는 “한국에너지기술연구원에서 개발된 촉매 반응기를 통해 기술의 산업화가 촉진될 것으로 기대한다”라고 말했다. 이번 연구는 산업통상자원부 한국에너지기술평가원 ESS기술개발 사업의 지원을 받아 KAIST, 에너지기술연구원, 연세대학교, ㈜이에스가 참여한 컨소시엄을 통해 개발됐다. □ 그림 설명 그림1. 촉매반응을 통한 3.5가 바나듐 전해액의 생산 및 기존 전기분해를 이용한 3.5가 전해액 생산 비교 그림2. 연구에서 개발된 촉매반응기 및 이를 이용한 전해액 연속 제조
2019.10.28
조회수 13914
김승우, 김영진 교수, 성능 저하 없는 광주파수 초정밀 전송기술 개발
〈 김영진 교수, 양재원, 김병수 박사과정, 김승우 교수 〉 우리 대학 기계공학과 김승우, 김영진 교수 공동연구팀이 펨토초 레이저 광빗*을 대기로 전파하는 도중에 발생하는 왜곡을 실시간으로 제어하고 보정할 수 있는 다채널 광주파수의 초정밀 전송 원천기술을 개발했다. * 펨토초 레이저 광빗: 시간/주파수 표준으로 활용 가능한 광대역 펄스 레이저 연구팀은 이번 기술이 차세대 우주-지상간 광대역 초고속 광통신 구현과 차세대 항법장치 성능 개선에 이바지할 것으로 기대한다고 밝혔다. 강현재 연구원이 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature communications)’ 9월 30일 자 온라인판에 게재됐다. (논문명 : Free-space transfer of comb-rooted optical frequencies over an 18 km open-air link). 대기를 전파하는 레이저는 대기의 온도, 압력, 습도 및 바람 등의 영향을 받아 광주파수 및 위상의 안정도가 크게 떨어진다. 특히 대기가 핵심적으로 분포하는 고도 10km 이하의 대류권에서는 이와 같은 현상이 심하게 발생한다. 이러한 혹독한 대기 환경을 겪는 레이저는 고유한 특성을 잃어버려 초기에는 우수한 안정도를 갖는 레이저라도 대기를 통과한 뒤에는 우수성을 잃게 된다. 연구팀은 문제 해결을 위하여 주파수 표준에 안정화된 펨토초 레이저 광빗에서 레이저들을 추출하고 그중 하나의 파장을 이용해 대기 환경변화를 실시간으로 추적했다. 이를 음향 광학 장치를 통해 대기 환경변화를 제어함으로써 레이저의 우수한 특성이 유지될 수 있도록 했다. 연구팀은 1초 측정 시 1/1,000,000,000,000,000(천조분의 일)초의 오차를 갖는 우수한 안정도의 펨토초 레이저 광빗을 대기(18 km)에 전파시키고, 통과하는 중에 발생하는 대기의 영향을 정밀하게 측정하고 제어하는 데 성공했다. 그 결과 레이저의 성능이 대기를 통과하기 전과 후의 큰 차이가 없는, 우수한 안정도로 전송하는 다채널 광주파수 초정밀 대기전송 기술을 개발했다. 연구팀이 이용한 펨토초 레이저 광빗은 4 테라헤르츠(THz)에 이르는 광대역 주파수를 보유한 레이저로, 각각의 주파수를 하나의 레이저로 이용할 수 있어 확장성이 매우 크며 보상 채널의 한 파장으로 전체 대역을 보상해줌으로써 펨토초 레이저 광빗의 특성을 그대로 전파할 수 있다. 이 기술을 이용하면 기존의 마이크로파를 통한 지상-우주간 인공위성 통신의 통신용량 한계를 극복하고 시간 표준을 분배함으로써 항법장치의 성능을 개선할 수 있다. 또한, 빛의 직진성을 통해 에너지 효율을 획기적으로 개선하고 도청 및 감청에 대한 보안성 또한 확보할 수 있을 것으로 기대된다. 주저자인 강현재, 양재원 연구원은 “대기 중으로 전파하는 레이저가 대기 영향을 받아도 레이저의 특성을 그대로 유지해 전송될 수 있다는 것을 보여줬다. 이는 광섬유를 통해 전파하던 레이저를 공간의 제약을 뛰어넘어 활용할 수 있다는 가능성을 보여주는 결과이다”라며 “광시계 분배 및 동기화로 차세대 항법장치의 성능 개선과 인공위성-지상간 초고속 광통신 연구에도 활용될 수 있을 것으로 기대한다”라고 말했다. 이번 연구는 한국연구재단의 과학기술분야 기초연구사업-개인연구사업- 리더연구(국가과학자)지원을 받아 수행됐다. □ 그림 설명 그림1. 펨토초 레이저 광빗 기반 광파수의 초정밀 생성 및 대기 전송
2019.10.22
조회수 10950
박수형 교수, 중증열성혈소판감소증후군 예방 백신 개발
〈 박수형 교수 〉 우리 대학 의과학대학원 박수형 교수 연구팀이 일명 살인진드기병으로 불리는 중증열성혈소판감소증후군(SFTS) 바이러스 감염을 예방하는 백신을 개발했다. 충북대학교 의과대학 최영기 교수와 진원생명과학(주)이 함께 참여한 공동 연구팀은 개발한 백신이 감염 동물모델 실험을 통해 중증열성혈소판감소증후군 바이러스 감염을 완벽하게 억제할 수 있음을 증명했다. 이번 연구를 통해 예방 백신 도출 및 검증 성과뿐 아니라 면역학적 관점에서 백신의 감염 예방 효능을 극대화할 수 있는 항원을 제시함으로써, 추후 중증열성혈소판감소증후군 바이러스에 대한 대응 전략 확립 및 연구에 기여할 것으로 기대된다. 곽정은 박사과정과 충북대학교 김영일 박사가 1 저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 8월 23일 자 온라인판에 게재됐다. (논문명 : Development of a SFTSV DNA vaccine that confers complete protection against lethal infection in ferrets) 흔히 살인진드기병으로 알려진 SFTS는 SFTS 바이러스에 감염된 매개 진드기에 물려 발생하는 신종 감염병으로, 최근 발생 빈도 및 지역의 확산으로 WHO에서도 주의해야 할 10대 신, 변종 바이러스 감염병으로 지정한 질병이다. 일반적으로 6~14일의 잠복기 후 고열(38∼40℃)이 3~10일 이어지고, 혈소판 감소 및 백혈구 감소와 구토, 설사 등 소화기 증상이 발생하며, 일부 사례에서는 중증으로 진행돼 사망에 이르기도 한다. 2013년에 한국에서 처음으로 환자가 발생한 이래 발생 건수가 매년 꾸준히 증가하고 있지만, 진드기 접촉 최소화를 통한 예방이 제시될 뿐 현재까지 예방 백신이 개발되지 않았다. 연구팀은 31종의 서로 다른 SFTS 바이러스의 유전자 서열로부터 공통 서열을 도출해 백신 항원을 설계하고, 진원생명과학의 플랫폼을 이용해 DNA 백신을 제작했다. DNA 백신 기술은 기존 백신과 달리 바이러스 자체가 아닌 유전자만을 사용해 안전하고 기존 백신 대비 광범위한 면역 반응을 유도할 수 있다는 장점이 있다. 연구팀은 감염 동물모델인 패럿에서 백신이 감염을 완벽하게 억제하며 소화기 증상, 혈소판 및 백혈구 감소, 고열, 간 수치 상승 등 감염 환자에서 발생하는 임상 증상들 역시 관찰되지 않음을 확인했다. 특히 연구팀은 해당 바이러스의 전체 유전자에 대한 5종의 백신을 구상해 SFTS 예방 백신 개발에 대한 전략적 접근법을 제시했다. 연구팀은 수동전달 기법(passive transfer)을 통해 바이러스의 당단백질에 대한 항체 면역 반응이 감염억제에 주요한 역할을 함을 규명했다. 또한, 비-당단백질에 대한 T세포 면역 반응 역시 감염 예방에 기여할 수 있음을 밝혔다. 박 교수는 “이번 연구는 SFTS 바이러스 감염을 완벽하게 방어할 수 있는 백신을 최초로 개발하고, 생쥐 모델이 아닌 환자의 임상 증상과 같게 발생하는 패럿 동물모델에서 완벽한 방어효능을 증명했다는 중요한 의의가 있다”라고 말했다. 최 교수는 “이번 SFTS 바이러스 백신 개발 연구 성과는 국제적으로 SFTS 백신 개발을 위한 기술적 우위를 확보했다는 중요한 의의가 있으며, 연구결과를 바탕으로 지속적인 연구를 통해 SFTS 바이러스 백신의 상용화에 기여할 수 있을 것이다”라고 말했다. 향후 임상개발은 이번 연구에 함께 참여한 DNA 백신 개발 전문기업인 진원생명과학(주)을 통해 진행할 계획이다. 이번 연구는 보건복지부 감염병위기대응기술개발사업의 지원을 받아 수행됐다.
2019.08.28
조회수 14124
김지한 교수, 컴퓨터 설계 기반 다공성 복합재료 합성
〈 김지한 교수 연구팀 〉 우리 대학 생명화학공학과 김지한 교수와 UNIST 화학과 문회리 교수 공동연구팀이 컴퓨터 설계를 기반으로 한 이론적 디자인을 통해 새로운 다공성 복합재료를 합성하는 데 성공했다. 이러한 복합물질은 각각의 특성을 동시에 가지면서 융합된 새로운 성질을 나타낼 수 있어 촉매, 기체 저장 및 분리, 센서, 약물 전달 등 다양한 분야에 응용할 수 있을 것으로 기대된다. 권오민 박사과정과 UNIST 김진영 박사가 공동 1 저자로 참여한 이번 연구결과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature communications)’ 8월 9일 자 온라인판에 게재됐다. (논문명 : Computer-aided discovery of connected metal-organic frameworks) 이번 연구에 사용한 금속 유기 구조체(Metal-Organic Framework, MOF)는 다양한 금속 이온 집합체와 유기 리간드로 구성된 화합물의 일종으로 나노 수준의 기공을 갖는 결정성 물질이다. 금속 유기 구조체는 각 구성요소의 다양성 덕분에 지난 20년간 8만여 개 이상의 구조들이 실험으로 합성됐다. 금속 유기 구조체는 표면적이 매우 넓고 기공의 물리-화학적 특성을 세밀하게 조절할 수 있어 기존의 제올라이트를 대체할 수 있는 차세대 다공성 물질이기도 하다. 최근 금속 유기 구조체를 다른 소재와 혼합해 기능을 다양화하거나, 한가지 물질의 단점을 다른 물질의 장점으로 보완함으로써 성능을 최적화하는 연구가 진행되고 있다. 그러나 기존의 합성된 금속 유기 구조체 복합재료들은 두 물질의 경계면에서 서로 어떻게 결합하는지에 대한 정확한 정보가 없고 그 형태가 무질서해 어떻게 만들어지는지에 대한 이해가 부족했다. 8만여 개의 금속 유기 구조체 중 표면에서 서로 결합할 수 있는 조합을 일일이 눈으로 찾아내는 것은 매우 시간이 오래 걸리기 때문에, 화학자의 직관만으로 새로운 이종 금속 유기 구조체 간 단결정 복합재료를 합성하기 위해서는 수많은 시행착오를 겪어야 했다. 따라서 8만여 개 이상의 금속 유기 구조체를 사용해 복합물질을 형성할 수 있는 경우의 수가 상당히 많음에도 불구하고 지금까지 합성된 복합재료의 수는 극히 일부로 제한됐다. 문제해결을 위해 공동연구팀은 미시적인 분자구조 정보를 활용해 먼저 합성 가능성이 큰 구조들을 선별한 뒤, 이를 실험적으로 합성함으로써 실제 새로운 복합물질을 개발하고 합성하는 시간을 획기적으로 단축했다. 김지한 교수가 이끈 시뮬레이션팀은 직접 개발한 컴퓨터 알고리즘을 활용해 기존에 발표된 8만여 개의 데이터로부터 특정 구조체의 결정면과 상호 연결될 수 있는 결정면을 가진 다양한 금속 유기 구조체 쌍들을 얻는 데 성공했다. 또한, 양자역학 시뮬레이션을 통해 두 금속 유기 구조체가 연결된 경계면이 가질 수 있는 안정적인 구조를 예측해냈다. 문회리 교수의 연구팀은 시뮬레이션 결과를 바탕으로 6종류의 새로운 금속 유기 구조체 복합재료를 성공적으로 합성함으로써 시뮬레이션으로 예측된 내용이 실험적으로 합성될 수 있음을 증명했다. 또한, 금속 유기 구조체 결정면 위에 다른 구조체가 하나의 구조로 자라나는 원리를 규명했고, 두 물질의 기공이 서로 연결돼 내부까지 분자가 자유롭게 이동할 수 있음을 확인했다. 이번 연구에서 성공한 서로 다른 두 금속 유기 구조체 간 경계면을 분자 수준에서 깨끗하게 하나의 구조로 연결하는 다공성 복합재료는 지금껏 없던 새로운 개념의 물질이다. 문회리 교수는 "실험과 컴퓨터 시뮬레이션의 협력 연구를 통해 그간 합성이 어려웠던 다기능 다공성 복합재료를 설계하고 합성할 수 있음을 보여줬다. 기존 신약개발에서 활용되던 연구 방식이 거대시스템인 다공성 재료에까지 확대된 성공적 사례이다”라고 말했다. 김지한 교수는“세계 최초로 나노 다공성 복합물질을 이론적으로 디자인해 합성까지 성공한 첫 사례라는 사실에 의미가 있다”라며 “새로운 복합재료 개발을 위해 필요한 시간과 비용을 획기적으로 줄일 수 있고, 적용 분야를 MOF-나노입자, MOF-제올라이트, MOF-고분자 복합재료로 쉽게 확장할 수 있다”라고 말했다. 이 연구 결과는 삼성전자 미래기술육성센터의 지원을 받아 수행됐다. □ 그림 설명 그림1. 합성에 성공한 MOF 구조
2019.08.26
조회수 15328
박준성 연구원, 알츠하이머병의 새로운 원인 규명
〈 박준성 박사 〉 우리 대학 의과학대학원 박준성 박사(지도교수 : 이정호 교수), KISTI(한국과학기술정보연구원) 국가슈퍼컴퓨팅본부 유석종 박사 공동 연구팀이 노화 과정에서 발생하는 후천적 뇌 돌연변이가 알츠하이머병의 새 원인이 될 수 있다는 이론을 제시했다. 연구팀은 52명의 알츠하이머병 환자에게 얻은 사후 뇌 조직에서 전장 엑솜 유전체 서열(whole-exome sequencing) 데이터 분석을 통해 알츠하이머병에 존재하는 뇌 체성 유전변이를 찾아냈다. 또한, 뇌 체성 돌연변이가 알츠하이머병의 중요 원인으로 알려진 신경섬유다발 형성을 비정상적으로 증가시킴을 확인했다. 박준성 박사와 KISTI 이준학 박사가 공동 1 저자로 참여한 이번 연구는 국제 학술지 네이처 커뮤니케이션(Nature Communications) 7월 12일자 온라인판에 게재됐다. (논문명 : Brain somatic mutations observed in Alzheimer's disease associated with aging and dysregulation of tau phosphorylation) 노인성 치매의 가장 흔한 원인으로 알려진 알츠하이머병은 전 세계 GDP의 1%를 차지할 정도로 사회, 경제적 소모비용이 큰 질환이다. 하지만 여전히 알츠하이머병을 일으키는 분자 유전학적 원인은 명확하게 규명되지 않고 있다. 기존의 알츠하이머병 유전체 연구는 주로 환자의 말초조직인 혈액에서 전장유전체 연관분석(Genome-wide association study)을 하거나, 이미 가족력이 있는 환자에서 발견된 일부 유전자들(e.g., APP, PSEN1/2)에 대한 유전자 패널 분석 등이 주를 이루었다. 연구팀은 산발성 알츠하이머병 환자들에게 내후각피질에서 신경섬유다발이 공통으로 나타나는 현상에 주목해 알츠하이머병 환자의 뇌 조직에서 직접 엑솜 유전체 데이터를 생성해 알츠하이머병 뇌-특이적 체성 유전변이를 발굴했다. 연구팀은 알츠하이머병 환자와 정상인의 해마 형성체 부위를 레이저 현미 해부법을 통해 정밀하게 오려냈고, 저빈도의 체성 유전변이(Somatic mutation)를 정확하게 찾아내기 위해 대용량 고심도 엑솜 시퀀싱 데이터를 생성하고 저빈도 체성 유전변이 분석에 특화된 분석 파이프라인을 독자적으로 구축했다. 이러한 새 방법론을 통해 실제로 알츠하이머병 환자의 뇌에 체성 유전변이가 실제로 존재함을 체계적으로 규명함과 동시에 체성 유전변이의 누적속도 및 신경섬유다발 형성과의 관련성도 함께 밝혀냈다. 연구팀의 발견은 알츠하이머병의 발병에 체성 유전변이가 주요한 역할을 할 수 있음을 강력하게 시사하는 것으로, 알츠하이머병 유전체 연구에 대한 새로운 틀을 제시함과 동시에 향후 다른 신경퇴행성뇌질환의 연구에도 기여할 수 있을 것으로 기대된다. 연구팀은 이번 연구 결과를 바탕으로 교원 창업 기업(소바젠, 대표 김병태)을 통해 알츠하이머 질환의 진단과 치료제 개발에 나설 예정이다. KISTI 유석종 박사는 연구팀이 구축한 저빈도 체성 유전변이 분석 파이프라인 및 빅데이터 분석을 위한 슈퍼컴퓨팅 기술을 통해 알츠하이머병의 새로운 발병 원리를 밝혀냈다라며 타 유전체 기반 연구에 활용할 수 있는 기반을 마련했다라고 말했다. 이번 연구는 서경배 과학재단, 보건복지부 및 한국과학기술정보연구원의 지원을 받아 수행됐고, 신속한 유전체 빅데이터 분석을 위해 KISTI의 슈퍼컴퓨터 5호기 누리온 시스템이 활용됐다. □ 그림 설명 그림1. 본 연구에서 사용된 체성 유전변이 분석 파이프라인 그림2. 신경섬유성다발 형성에 관여하는 체성 유전변이 그림3. PIN1 유전자에 발생한 병원성 뇌 체성유전변이와 신경섬유다발 형성과의 관계 규명
2019.07.17
조회수 14569
윤동기 , 김형수 교수, DNA 마이크로패치 제작 기술 개발
〈 윤동기 교수, 김형수 교수, 박순모 연구원 〉 우리 대학 화학과/나노과학기술대학원 윤동기, 기계공학과 김형수 교수 공동 연구팀이 마이크로 크기의 DNA 2차원 마이크로패치 구조체를 제작하고 이를 제어, 응용하는 기술을 개발했다. 윤 교수 연구팀은 커피가 종이에 떨어지고 물이 마르면 동그랗게 환 모양이 생기는 이른바 ‘커피링 효과’라 불리는 현상을 DNA 수용액에 적용해 세계 최초로 DNA 기반의 마이크로패치를 제작했다. 차윤정 박사, 박순모 박사과정 학생이 공동 1 저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 6월 7일 자 온라인판에 게재됐다. (논문명 : Microstructure arrays of DNA using topographic control) 유전 정보를 저장하는 기능을 하는 DNA는 이중나선 구조와 나노미터 주기의 규칙적인 모양을 가져 소재 분야에서 일반적인 합성방법으로는 구현하기 힘든 정밀한 구조재료이다. 정밀한 DNA 합성과 오리가미(Origami) 기술을 이용해 스마일 패치(smile patch) 등의 재미있는 모양을 구현해 왔지만, 재료의 가격이 높아 실제 응용에 어려움을 겪었다. 윤 교수 연구팀은 이를 극복하기 위해 연어에서 추출한 DNA 물질을 이용해 기존보다 1천 배 이상 저렴한 비용으로 잘 정렬된 뜨개질(knit) 혹은 아이스크림콘 모양의 기존에 없던 마이크로패치 구조체를 대면적에서 구현했다. 연구팀은 DNA가 물에 녹으면 마치 물풀과 끈적끈적해지면서 서로 적당한 힘으로 끌어당기며 일정한 방향으로 정렬하는 액정상(liquid crystal phase)을 보인다는 점에 주목했다. 액정 표시장치(LC display 혹은 LCD)에서 액정분자들이 전기장을 통해 방향성이 제어되는 것처럼 수용액 상태의 DNA 액정상이 두 기판 사이에서 문질러지며 물의 증발이 이뤄질 때 DNA 나노 구조체들이 원하는 방향으로 정렬하게 된다. 과일 잼을 식빵에 바르면 과일 알맹이(pulp)가 한 방향으로 잘 펴 발라지면서 마르는 현상과 유사하다. 연구팀은 DNA가 한 방향으로 문질러져서 마를 때 바닥에 평평한 기판 대신 일정한 모양을 갖는 수 마이크론 크기의 기둥(혹은 요철)들이 있는 기판을 사용하면 2차원의 뜨개질 모양, 아이스크림콘 모양 등 좀 더 흥미로운 들을 제작할 수 있음을 확인했다. 또한, 금 나노막대와 같은 플라즈몬 공명(plasmon resonance)을 나타내는 소재와 결합해 디스플레이 소자에 응용을 시도했다. 플라스몬 공명은 금속으로 만들어진 기판에 빛을 쪼일 때 그 표면 위에서 전자가 일정하게 진동하면서 자신의 에너지와 일치하는 빛에만 반응하는 현상으로 특정한 색만 반사하여 선명도와 표현력을 높이는 데 사용된다. 이 방식에서 가장 중요한 점은 어떤 방향으로 금 나노막대가 정렬하는지를 나타내는 배향(orientation)이다. 즉 막대들이 한 방향으로 나란히 정렬될 때 광학·전기 특성이 극대화된다. 윤 교수 연구팀은 이러한 점에 착안해 DNA 마이크로패치를 일종의 틀로 삼아 금 나노막대들을 독특한 형태로 배향하고 플라즈몬 컬러 기판을 제작하는 데 성공했다. 연구팀이 개발한 DNA 2차원 마이크로패치 제작 기술은 DNA를 구조재료 및 전자소재로써 활용할 수 있는 단서를 마련했을 뿐 아니라 증발 현상과 DNA 액정물질이 접목될 때 나타나는 독특한 형태의 복잡한 분자 거동 해석에 대한 단서를 제공할 것으로 기대된다. 윤 교수는 “연구를 통해 밝힌 것처럼 DNA가 금 나노막대와 같은 광학 소재와 복합체를 쉽게 만들 수 있는 만큼, 자연계에 무한히 존재하는 DNA를 디스플레이 관련 분야의 신소재로서 응용할 수 있을 것으로 기대한다”라고 말했다. 이번 연구는 과학기술정보통신부-한국연구재단의 전략과제, 멀티스케일 카이랄 구조체 연구센터, 미래유망 융합기술 파이오니아사업과 신진연구 과제의 지원을 받아 수행됐다. □ 그림 설명 그림1. DNA 분자 배향 모식도 그림2. DNA-금 막대 입자 복합체의 배향 양상과 나타나는 플라즈모닉 광학 현상
2019.06.18
조회수 17256
임성갑 교수, 새로운 다층 금속 상호연결 기술 개발
우리 대학 생명화학공학과 임성갑 교수와 POSTECH(총장 김도연) 창의IT융합공학과 김재준 교수 공동 연구팀이 비아홀(via-hole, vertical interconnect access hole) 공정 없이도 금속을 다중으로 상호 연결할 수 있는 기술을 개발했고, 이를 통해 5층 이상의 3차원 고성능 유기 집적회로를 구현했다. 이번 기술은 금속의 수직 상호 연결을 위해 공간을 뚫는 작업인 비아홀 공정 대신 패턴된 절연막을 직접 쌓는 방식으로, 유기 반도체 집적회로를 형성하는데 적용할 수 있는 신개념의 공정이다. 유호천 박사와 박홍근 박사과정 학생이 공동 1 저자로 참여한 이번 연구 결과는 국제적인 학술지인 네이처 커뮤니케이션(Nature Communications) 6월 3일 자 온라인판에 게재됐다. (논문명: Highly stacked 3D organic integrated circuits with via-hole-less multilevel metal interconnects) 유기 트랜지스터는 구부리거나 접어도 그 특성을 그대로 유지할 수 있는 장점 덕분에 유연(flexible) 디스플레이 및 웨어러블 센서 등 다양한 분야에 적용할 수 있다. 그러나 이러한 유기물 반도체는 화학적 용매, 플라즈마, 고온 등에 의해 쉽게 손상되는 문제점 때문에 일반적인 식각 공정을 적용할 수 없어 유기 트랜지스터 기반 집적회로 구현의 걸림돌로 여겨졌다. 공동 연구팀은 유기물 반도체의 손상 없이 안정적인 금속 전극 접속을 위해 절연막에 비아홀을 뚫는 기존 방식에서 벗어나 패턴된 절연막을 직접 쌓는 방식을 택했다. 패턴된 절연막은 패턴 구조에 따라 반도체소자를 선택적으로 연결할 수 있도록 했다. 특히 연구팀은 ‘개시제를 이용한 화학 기상 증착법(iCVD: initiated chemical vapor deposition)’을 통해 얇고 균일한 절연막 패턴을 활용해 안정적인 트랜지스터 및 집적회로를 구현하는 데 성공했다. 공동 연구팀은 긴밀한 협력을 통해 개발한 금속 상호 연결 방법이 유기물 손상 없이 100%에 가까운 소자 수율로 유기 트랜지스터를 제작할 수 있음을 확인했다. 제작된 트랜지스터는 탁월한 소자 신뢰성 및 균일성을 보여 유기 집적회로 제작에 큰 역할을 했다. 연구팀은 수직적으로 분포된 트랜지스터들을 상호 연결해 인버터, 낸드, 노어 등 다양한 디지털 논리 회로를 구현하는 데 성공했다. 또한, 효과적인 금속 상호 연결을 위한 레이아웃 디자인 규칙을 제안했다. 이러한 성과는 향후 유기 반도체 기반 집적회로 구현 연구에 유용한 지침이 될 것으로 기대된다. 연구책임자인 POSTECH 김재준 교수는 “패턴된 절연막을 이용하는 발상의 전환이 유기 집적회로로 가기 위한 핵심 기술의 원천이 됐다”라며 “향후 유기 반도체 뿐 아니라 다양한 반도체 집적회로 구현의 핵심적인 역할을 할 것으로 기대한다”라고 말했다. 본 연구는 과학기술정보통신부, 한국연구재단과 삼성전자 미래기술육성센터의 지원을 받아 수행됐다. □ 그림 설명 그림1. 제안된 금속 상호 연결 기술 모식도 그림2. 수직 집적된 디지털 회로 공정 모식도 및 이미지
2019.06.11
조회수 15444
김희탁 교수, 이론용량 92% 구현한 리튬-황 전지 개발
〈 추현원 석사과정, 김희탁 교수 〉 우리 대학 생명화학공학과/나노융합연구소 차세대배터리센터 김희탁 교수 연구팀이 이론용량의 92%를 구현하고 높은 용량 밀도 (4mAh/cm2)를 가지는 고성능, 고용량 리튬-황 전지를 개발했다. 추현원 석사과정과 노형준 박사과정이 1 저자로 참여한 이번 연구는 국제학술지 ‘네이처 커뮤니케이션즈 (Nature Communications)’ 1월 14일 자 온라인판에 게재됐고 우수성을 인정받아 에디터스하이라이트에 선정됐다. (논문명 : Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions) ( https://www.nature.com/ncomms/editorshighlights ) 리튬-황 전지는 리튬-이온 전지보다 약 6~7배 높은 이론 에너지밀도를 갖고 원료 물질인 황의 가격이 저렴해 리튬-이온 전지를 대체할 차세대 리튬 이차전지로 주목받고 있다. 그러나 리튬-황 전지는 구동 중 방전 생성물인 황화 리튬이 전극 표면에 쌓이고 전극 표면에서 전자전달을 차단해 리튬-황 전지의 이론용량 구현이 불가능하다는 한계를 갖는다. 이러한 전극 부동화의 문제를 완화하기 위해 과량의 도전제를 전극에 도입해 왔으나 이는 리튬-황 전지의 에너지 밀도를 크게 낮추는 문제를 발생시키며, 이론용량 구현이 70%를 넘지 못하는 한계를 보였다. 연구팀은 문제 해결을 위해 기존 리튬-황 전지의 전해질에 사용하던 리튬 염을 대체해 높은 전자기여도를 가지는 음이온 염을 이용했다. 이 전해질 염은 전지 내부의 황화리튬의 용해도를 높여 전극 표면에 3차원 구조의 황화리튬 성장을 유도하고 이는 전극의 부동화를 효율적으로 억제해 높은 용량을 구현할 수 있게 한다. 연구팀은 이 전해액 기술을 바탕으로 기존 리튬-이온 전지와 동등한 수준의 면적당 용량 밀도를 갖는(4mAh/cm2) 고용량 황 전극에 대해 이론용량 92%인 수준을 구현해 기존 리튬-황 전지 기술의 한계를 넘었다. 또한 리튬 음극 표면에 안정한 부동피막을 형성해 100 사이클 이상 구동 시에도 안정적인 수명을 구현했다. 특히 새로운 전해질 설계를 통한 황화리튬의 구조 제어 기술은 다양한 구조의 황 전극 및 구동 조건에서 적용 가능해 산업적으로도 큰 의미를 지닐 것으로 보인다. 김희탁 교수는 “리튬-황 전지의 한계를 돌파하기 위한 새로운 물리 화학적 원리를 제시했다”라며 “리튬-황 전지의 이론용량의 90% 이상을 100 사이클 이상 돌리면서도 용량 저하 없이 구현했다는 점에서 새로운 이정표가 될 것으로 기대한다”라고 말했다. 이번 연구는 나노융합연구소, 한국연구재단 및 LG화학의 지원을 받아 수행됐다. □ 그림 설명 그림1. 전해질에 따른 전극 위 리튬 설파이드 성장 구조 및 축적 메커니즘 그림2. 리튬황전지의 사이클 용량 및 수명 특성
2019.01.31
조회수 14507
허원도 교수, 빛만 비춰도 유전자 발현 조절하는 효소 개발
〈 허 원 도 교수 〉 우리 대학 생명과학과 허원도 교수 연구팀(기초과학연구원 인지 및 사회성 연구단)이 살아있는 생쥐의 머리에 빛만 비춰도 생쥐 뇌 유전자 발현을 제어할 수 있는 시스템을 개발했다. 매우 약한 빛에도 반응하도록 유전자 재조합 효소를 설계해 원하는 위치와 타이밍에 효소를 활성화할 수 있다. 많은 시간과 재원이 소요되는 유전자 변형 실험 모델을 만들지 않아도 특정 유전자 발현을 유도할 수 있어 활용이 매우 클 것으로 기대된다. 이번 연구결과는 국제 학술지인 ‘네이처 커뮤니케이션즈(Nature Communications)’ 1월 19일자 온라인 판에 게재됐다. 연구팀이 개발한 Flp 유전자 재조합 효소는 빛에 민감하게 반응해 활성화된다. 수술이 아닌 LED 빛을 쏘는 비침습성(non-invasive) 방식만으로도 유전자의 발현을 유도할 수 있어 물리적․화학적 손상에 의한 부작용도 최소화할 수 있다. Flp 유전자 재조합 효소는 말 그대로 유전자를 자르고 재조합하는 기능을 지녀 유전자 형질 전환 실험모델을 만드는 등 다방면으로 활용됐다. 광유전학 기술에 응용하려는 시도가 있었으나 빛 없이도 스스로 조립(auto-assembly)돼버려 제어가 어려웠다. 뇌 속으로 빛을 직접 전달하려면 광섬유를 집어넣는 수술 과정도 필요했다. 연구팀이 개발한 광활성 Flp 유전자 재조합 효소(이하 PA-Flp 단백질)는 비활성화 상태에서도 빛을 받으면 결합되면서 활성화된다. 연구진은 단백질 공학을 통해 기존에는 잘 알려지지 않았던 Flp 재조합 효소를 활성화하는 위치를 찾는 힌트를 얻어 PA-Flp 단백질을 설계했다. PA-Flp 단백질의 발현 정도는 적색 형광단백질을 붙여 쉽게 알아볼 수 있도록 만들었다. PA-Flp 단백질은 매우 적은 양으로도 반응하는 민감도를 지녔다. 연구진은 기억을 관장하는 쥐의 뇌 해마 부위에 PA-Flp 단백질을 넣은 뒤 약 30초 동안 LED를 머리 부분에 비추는 실험을 진행했다. 그 결과 생쥐 뇌의 깊은 조직 영역에 도달하는 매우 적은 양의 빛으로도 PA-Flp 단백질이 활성화된 것을 확인했다. 생쥐에게 쏜 빛은 1-2mW/mm2로 실생활에서 사용하는 휴대폰의 손전등 혹은 발표 시 이용하는 레이저 포인터 정도의 세기다. 연구진은 물리적 손상을 전혀 일으키지 않는 비침습성 방식으로도 유전자 발현을 조절하는데 성공한 것이다. 또한 연구진은 행동을 재현하고 검증하는 실험에 나섰다. 해마보다 더 깊숙한 곳에 있는 내측 중격(~3.5mm) 뇌 내측 중격(medial septum): 기억의 중추 역할을 담당하는 해마와 연결된 부위에는 칼슘 채널이 존재하는데 이 칼슘 채널의 발현이 억제되면 물체를 탐색하는 능력이 증가한다는 기존의 연구에 착안하여 실험을 설계했다. 연구진은 내측 중격에 PA-Flp 단백질을 도입하고 LED 빛을 쏘자 칼슘 채널의 발현이 억제됨을 확인했다. 실제 PA-Flp 단백질이 활성화된 실험군은 물체를 탐색하는 능력이 대조군에 비해 훨씬 커져 물체 주변으로 더 많은 움직임을 기록했다. 이번 연구는 빛으로 원하는 타이밍에 유전자를 자르고 재조합하는 효소를 개발해 향후 광유전학에 응용가치가 클 것으로 기대된다. 특정 유전자가 변형된 실험모델을 제작하는데 오랜 시일과 연구비가 투입되는데 반해 이 기술을 활용하면 빛만 쏘는 방식으로도 원하는 유전자를 쉽고 빠르게 조절할 수 있기 때문이다. 또한 광섬유를 심는 별도의 수술 없이도 연구자가 사용하기 간편하고 비용도 저렴하다. 허원도 교수는 “실험쥐의 생리학적 현상에 영향을 줄 수 있는 물리적, 화학적 자극이 거의 없이 LED로 원하는 특정 유전자 발현을 조절할 수 있는 것이 큰 장점이다”라며 “향후 다양한 뇌 영역을 탐구하는데 널리 활용될 것으로 기대한다”고 밝혔다. □ 그림 설명 그림1. PA-Flp 단백질 작동원리 및 발현 그림2. 물체 탐색 능력이 증가함을 실험으로 확인
2019.01.21
조회수 8635
유승협 교수, 무기LED 상응하는 고효율 OLED 구현
〈 유승협 교수, 송진욱 박사과정 〉 우리 대학 전기및전자공학부 유승협 교수 연구팀이 무기 LED에 상응하는 높은 효율의 유기발광다이오드(OLED)를 구현하는 데 성공했다. 이번 연구는 서울대학교 재료공학부 김장주 교수, 경상대 화학과 김윤희 교수 연구팀과의 협력을 통해 이뤄진 것으로 이 기술을 통해 OLED 조명의 대중화 및 시장 성장에 이바지할 수 있을 것으로 기대된다. 송진욱 박사과정이 1저자로 참여한 이번 연구는 ‘네이처 커뮤니케이션즈(Nature Communications)’ 8월 10일자 온라인 판에 게재됐다. OLED는 수많은 모바일 기기와 고품질 TV 등의 디스플레이 기술에 광원으로 활용되고 있는 소자로, 두께가 얇고 유연 소자 제작이 가능하다는 장점을 갖고 있다. 최근에는 조명, 차량용 광원에도 OLED를 활용하기 위한 노력이 계속되고 있다. 이러한 응용에는 광원의 효율이 매우 중요하다. 최근 지속적인 연구 개발에 의해 OLED의 효율이 꾸준히 상승했고 일부는 기존 고효율 무기 LED 수준에 준하는 결과들이 보고되고 있다. 그러나 이러한 고효율 OLED의 연구 결과들은 OLED가 갖는 면광원(面光源)의 장점을 해치는 반구형 렌즈가 쓰이거나 소자 내부에 빛을 추출하는 나노 구조가 도입돼 안정적인 동작을 방해하는 등의 문제로 상용화에 한계가 있었다. 연구팀은 OLED의 광 추출용으로 개발됐던 여러 방법 중 실용화 가능성이 가장 큰 기술인 나노입자 기반의 광 산란층을 소자 외부에 도입하는 방법에 주목했다. 특히 광 산란을 이용한 기존 OLED 광 추출 향상 연구가 반복적인 실험을 통해 경험적인 방식으로 이뤄졌던 것과는 다르게 연구팀은 종합적이고 분석적 방법론을 정립해 최대 효율을 이끌어낼 수 있는 구조를 이론적으로 예측했다. OLED에 광 추출 구조를 적용해 가능한 최대의 효율에 도달하기 위해선 광 추출 구조와 OLED 구조를 각각이 아닌 전체로 보고 최적화를 이뤄야 한다. 연구팀은 산란 현상을 수학적으로 기술하는 이론을 OLED 발광 특성 예측 모델과 최초로 결합해 여러 구조를 가지는 수많은 소자들의 특성을 짧은 시간에 예측했고, 이를 기반으로 최대 효율을 갖는 최적 구조를 이론적으로 예측하는 데 성공했다. 연구진은 이론적으로 예측된 최적의 광 산란 필름을 실험적으로 구현하고 이를 고효율 유기 발광소재를 이용한 소자 구조에 접목해 56%의 외부 양자 효율 및 221lm/W의 전력 효율을 이끌어내는데 성공했다. 이는 큰 렌즈나 내부 광 추출구조 없이 구현된 OLED 단위 소자 효율로는 최고의 결과이다. 유승협 교수는 “다양한 OLED 광 추출 효율 향상 기술이 개발됐지만 실용화 가능성은 높지 않은 경우가 많았다. 이번 연구는 상용화 가능성에서 가장 의미가 큰 기술을 활용하면서 고효율 LED의 효율에 상응하는 OLED 구현 방법을 체계적으로 제시했다는데 의의가 있다”며 “낮은 전력소모가 특히 중요한 조명용 광원이나 웨어러블 기기의 센서용 광원에 OLED가 활용되는 데 기여할 것이다”고 말했다. 이번 연구는 한국연구재단의 중견연구자지원사업 및 나노소재원천기술개발사업, 한국전자통신연구원(ETRI)의 초저가플렉서블 Lightning Surface 기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 외부 산란층과 결합된 OLED 구조 모식도
2018.08.21
조회수 15512
조광현 교수, 섬유아세포 과활성 유발 분자피드백 회로 규명
〈 조 광 현 교수 〉 우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 삼성병원 김석형 교수 연구팀과 공동연구를 통해 섬유증 및 암 악성화의 원인이 되는 섬유아세포 과활성을 유발하는 분자피드백 회로를 최초로 규명했다. 신동관 박사와 안수균 학생 등이 함께 참여한 이번 연구는 ‘네이처 커뮤니케이션즈(Nature Communications)’ 8월 1일자 온라인 판에 게재됐다. ( https://www.nature.com/articles/s41467-018-05274-6 ) 인간의 섬유아세포는 대부분의 정상조직에 비활성화된 상태로 존재하다가 상처회복을 위해 필요할 때 급진적으로 활성화된다. 하지만 이러한 급진적 활성화가 유발되는 원리는 아직 밝혀지지 않았다. 조광현 교수 연구팀은 삼성병원 김석형 교수팀과 공동연구를 통해 Twist1, Prrx1, TNC 분자들이 연쇄적으로 활성을 유발하는 양성피드백회로를 구성함으로서 그와 같은 급진적인 섬유아세포의 활성을 유발한다는 것을 분자생물학실험과 수학모델링, 컴퓨터시뮬레이션 분석, 그리고 동물실험과 임상데이터 분석을 통해 밝혔다. 활성화된 섬유아세포는 상처가 치유된 뒤 다시 비활성화된 상태로 전환돼야 하는데 이 때 피드백회로가 계속 작동하면 섬유증의 발생이나 암 악성화의 원인이 된다. 따라서 이번에 밝혀낸 Twist1-Prrx1-TNC 분자피드백회로는 섬유증과 암의 새로운 치료 타겟으로 활용될 수 있을 것으로 기대된다. □ 그림 설명 그림1. 섬유아세포의 급진적 활성화를 유발하는 Twist1-Prrx1-TNC 분자피드백회로 규명 과정 그림2. 정상적인 섬유아세포의 활성화 조절과 피드백회로의 비가역적 활성화에 따른 비정상적인 섬유아세포 활성화 조절과정의 비교
2018.08.10
조회수 10856
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
>
다음 페이지
>>
마지막 페이지 8