-
박병국 교수, 열로 스핀전류를 얻는 소재기술 개발
〈 박병국 교수, 김동준 박사 〉
우리 대학 신소재공학과 박병국 교수 연구팀이 자성메모리(MRAM)의 새로운 동작 원리인 열로 스핀전류를 생성하는 소재기술을 개발했다.
이 연구는 고려대 이경진 교수, 충남대 정종율 교수와 공동으로 수행했고 ‘네이쳐 커뮤니케이션즈(Nature Communications)’ 11월 9일자에 게재됐다.
- 논문명: Observation of transverse spin Nernst magnetoresistance induced by thermal spin current in ferromagnet/non-magnet bilayers - 저자 정보 : 김동준(제1저자, 한국과학기술원 박사과정), 전철연, 최종국, 이재욱(한국과학기술원), Srivathsava Surabhi, 정종율 교수(충남대학교), 이경진 교수(고려대학교), 박병국 교수(교신저자, 한국과학기술원) 포함 총 8명
자성메모리는 실리콘 기반의 기존 반도체 메모리와 달리 얇은 자성 박막으로 만들어진 비휘발성 메모리 소자다.
외부 전원 공급이 없는 상태에서 정보를 유지할 수 있으며 집적도가 높고 고속동작이 가능한 장점이 있어 차세대 메모리 기술로 경쟁적으로 개발되고 있다.
자성메모리의 동작은 자성소재에 스핀전류를 주어 자성의 방향을 제어하는 방식으로 이루어진다. 기존 자성메모리에서는 스핀전류를 전기로 생성하는데, 본 연구에서 열로 스핀전류를 발생시키는 소재기술을 개발했다.
그동안 열에 의해 스핀전류가 생성되는 현상, 즉 스핀너런스트 효과(spin Nernst effect)가 이론적으로 발표됐으나 최근까지 기술적 한계로 실험적으로 증명되지 못하였다.
하지만 이번 연구에서 스핀궤도결합이 큰 텅스텐(W)과 백금(Pt) 소재를 활용하고 스핀너른스트 자기저항 측정방식을 도입해 스핀너른스트 효과를 실험적으로 규명했고 열에 의한 스핀전류의 생성효율이 기존의 전기에 의한 스핀전류의 생성효율과 유사함을 밝혔다.
박병국 교수는 “본 연구는 열에 의한 스핀전류 생성이라는 새로운 물리현상을 실험적으로 규명한 것에 의미가 크고, 추가 연구를 통하여 자성메모리의 새로운 동작방식으로 개발할 예정이다.” 라고 밝혔다.
열에 의해 동작하는 자성메모리의 개발은 전력소모를 획기적으로 낮출 수 있어 웨어러블, 모바일 및 사물인터넷 등 저전력 동작이 요구되는 전자기기의 발전에 기여할 것으로 기대된다.
이 연구성과는 과기정통부 미래소재디스커버리사업과 중견연구자사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 스핀너른스트 현상을 이용한 열인가 자성메모리의 개념도
그림2. 스핀너른스트 기반 열인가 스핀전류 생성에 관한 주요 연구 결과
2017.11.27
조회수 17037
-
유승협 교수, 일회용 전자기기에 쓰일 유연 플래시메모리 개발
〈 문 한 얼 박사, 유 승 협 교수 〉
우리 대학 전기및전자공학부 유승협 교수, 생명화학공학과 임성갑 교수 공동 연구팀이 유기물 기반의 유연하면서도 우수한 성능을 갖는 플래시 메모리를 개발했다.
이 기술을 통해 본격적인 웨어러블 전자기기 및 스마트 전자종이 등의 개발에 기여할 수 있을 것으로 기대된다.
문한얼 박사, 이승원 박사가 주도한 이번 연구는 ‘네이처 커뮤니케이션즈(Nature Communications)’ 9월 28일자 온라인 판에 게재됐다.
플래시 메모리는 태블릿, 스마트폰, USB 드라이브 등 대부분의 IT 기기에서 사용되는 정보 저장을 위한 필수 소자이다. 웨어러블 및 유연 스마트 기기를 제작하기 위해서는 기기에 들어갈 메모리도 매우 우수한 유연성을 갖게 하는 것이 중요하다.
하지만 소재의 제약으로 인해 유연성과 성능을 동시에 갖춘 유연 플래시 메모리의 구현은 사실상 이뤄지지 못했다.
연구팀은 문제 해결을 위해 ‘개시제를 이용한 화학 기상 증착법(initiated chemical vapor deposition, iCVD)’을 이용해 유연하면서도 우수한 절연 특성을 갖는 고성능의 고분자 절연막 군(群)을 제작했다. 그리고 이를 이용해 최적의 플래시 메모리 동작이 가능하도록 설계했다.
기존의 고분자 절연막을 사용한 메모리는 일정 정도의 성능을 내기 위해서 100V(volt) 이상의 높은 전압이 필요했다. 만약 낮은 전압으로 구동하도록 제작하면 한 달 미만의 짧은 유지기간을 갖는 문제점이 있었다.
연구팀이 제작한 플래시 메모리는 10V 이하의 프로그래밍 전압과 10년 이상의 데이터 유지시간을 갖는 동시에 2.8%의 기계적 변형률에도 메모리 성능을 유지했다. 이는 기존의 무기물 절연층 기반 플래시 메모리가 1% 수준의 변형률만을 허용하던 것을 대폭 향상시킨 것이다.
연구팀은 개발한 플래시 메모리를 6 마이크로미터 두께의 플라스틱 필름에 제작해 실제 접을 수 있는 메모리를 시연했다. 또한 인쇄용 종이 위에도 제작에 성공해 종이 재질의 전자신문, 전자명함 등 일회용 스마트 전자제품에도 활용할 수 있는 길을 열었다.
유 교수는 “유연 트랜지스터 연구는 많은 진보가 있었지만 유연 플래시 메모리는 상대적으로 발전이 느렸다. 메모리 소자의 구성요소가 갖는 만족요건이 까다롭기 때문이다”며 “이번 연구로 고유연성, 고성능의 플래시 메모리의 가능성이 확인돼 본격적인 웨어러블 전자기기, 스마트 전자종이 등에 기여할 것이다”고 말했다.
이번 연구 결과는 삼성전자 미래기술육성센터의 지원을 받아 수행됐다.
□ 사진 설명
사진1. 유연 플레쉬 메모리의 구조
사진2. 폴더블 플래시 메모리
사진3. 종이에 제작된 플래시 메모리
2017.10.26
조회수 16458
-
이현주 교수, 백금 사용량 10분의1로 줄인 단일원자 촉매 개발
〈 이 현 주 교수, 김 지 환 학생 〉
우리 대학 생명화학공학과 이현주 교수와 서울시립대 한정우 교수 공동 연구팀이 기존 촉매의 백금 사용량을 10분의 1로 줄일 수 있는 백금 단일원자 촉매를 개발했다.
이는 매우 안정적인 고함량의 백금 단일원자 촉매로 연구팀은 ‘직접 포름산 연료전지(Direct formic acid fuel cells)’에 적용하는 데 성공했다.
김지환 학생이 1저자로 참여한 이번 연구 결과는 재료 과학분야의 국제 학술지 ‘어드밴스드 에너지 머티리얼즈(Advanced Energy Materials)’ 9월 11일자 온라인 판에 게재됐다.
백금 기반의 축매는 활성과 안정성이 높아 다양한 촉매 반응에 적용되지만 가격이 비싸고 희귀하기 때문에 백금의 사용량을 최대한 줄이는 것이 중요하다.
그 중 단일원자 촉매는 백금 입자 크기를 원자 단위로 줄여 모든 원자가 반응에 참여하기 때문에 백금 촉매의 가격을 획기적으로 낮출 수 있다. 또한 두 개 이상의 원자들이 붙어 있는 앙상블 자리(ensemble site)가 없기 때문에 원하는 생성물을 선택적으로 얻을 수 있다.
이러한 장점에도 불구하고 단일원자 촉매는 낮은 배위수(coordination number)와 높은 표면자유에너지로 인해 쉽게 뭉치고 안정성이 떨어져 실제 장치에 적용이 어렵다는 한계를 갖는다.
연구팀은 백금 단일원자 촉매의 안정성을 높이기 위해 금속 원소인 안티몬이 첨가된 주석 산화물(Antimony-doped tin oxide, ATO) 위에 백금 단일원자가 주석과의 합금 형태로 존재하는 구조를 개발했다.
연구팀은 이러한 구조가 백금 단일원자가 안티몬-주석 합금 구조에서 안티몬의 자리를 대신해 열역학적으로 안정적인 형태로 존재함을 계산을 통해 증명했다.
연구팀이 개발한 촉매는 포름산 산화반응에서 일반적으로 사용되는 촉매인 상용백금촉매(Pt/C)보다 최대 50배 높은 활성을 보였고 장기안정성 또한 월등하게 높았다.
또한 연구팀은 이 촉매를 막과 전극으로 구성된 직접 포름산 연료전지에 적용했다. 단일원자 촉매를 완전지 형태의 연료전지에 적용한 것은 최초의 시도로, 기존 촉매에 비해 10분의 1 정도만의 백금을 사용해도 비슷한 출력을 얻을 수 있다.
이현주 교수는 “귀금속 단일원자 촉매의 가장 큰 문제점인 낮은 함량과 낮은 안정성을 높일 수 있었고 최초로 직접 포름산 연료전지에 적용했다”며 “연료전지에 적용 가능한 고함량 및 고안정성 귀금속 단일원자 촉매의 개발에 기여할 수 있을 것이다”고 말했다.
이번 연구는 삼성전자 미래기술육성센터의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 백금 단일 원자 촉매의 개념도
그림2. 관찰한 촉매 및 백금 단일 원자 (흰색 원으로 표시된 밝은 점)
2017.10.24
조회수 16300
-
최인성 교수, 농산물 장기보존 가능한 나노코팅기술 개발
〈 최 인 성 교수 〉
우리 대학 화학과 최인성 교수 연구팀이 친환경 나노코팅 기법을 이용해 과일의 부패 기간을 늦출 수 있는 기술을 개발했다.
이 기술은 식물 기반의 폴리페놀 물질을 이용해 코팅 시료의 종류에 관계없이 사용할 수 있는 범용 스프레이 나노코팅기술이다.
이번 연구결과는 국제학술지 ‘사이언티픽 리포트(Scientific Reports)’ 8월 1일자 온라인 판에 게재됐다.
폴리페놀 물질은 다량의 수산기(-OH)를 갖는 식물의 광합성 대사산물 중 하나로 뛰어난 항산화 작용을 수행하는 식물 기반의 천연물질이다. 잠재적 항암효과와 높은 항균성을 가져 식품 첨가물 등에 사용되고 있다.
폴리페놀은 철 이온과 화학적으로 강하게 결합해 복합체를 형성한다는 특성도 갖는다. 연구팀은 폴리페놀-철이온 복합체의 형성반응과 분사 기술을 접목해 나노코팅기술을 개발했다.
이 스프레이 코팅 기술은 코팅물질을 코팅용액에 담가 코팅하는 침지법에 비해 코팅 시간이 짧고(5초 이내) 원하는 영역에만 선택적 코팅이 가능하다. 또한 침지법에서 발생하는 시료의 변형과 코팅용액의 상호 오염을 막을 수 있다.
연구팀은 개발된 기술을 과일 표면에 적용해 가식성(edible) 항균 코팅으로의 응용이 가능함을 입증했다.
코팅된 귤과 딸기를 각각 28일, 58시간 이후에 상태를 측정했고 코팅되지 않은 과일에 비해 상당수가 모양과 품질을 유지했다.
반면 코딩되지 않은 귤과 딸기는 박테리아 및 곰팡이 균의 번식으로 부패 및 변형이 발생했다.
연구팀은 과일 뿐 아니라 금속표면, 플라스틱, 유리, 섬유시료에도 손쉽게 코팅할 수 있음을 확인했다. 특히 안경알, 신발 밑창 등 생활용품 표면에도 코팅이 가능해 각각 흐림방지, 무좀균 생장을 억제하는 항균 기능도 가능함을 증명했다.
개발된 나노코팅기술은 국내 특허로 등록됐고 현재 과일 신선도 유지 코팅법의 상용화를 진행 중이다.
최 교수는 “나노코팅기술은 큰 잠재력과 응용성을 가진 첨단기술이다”며 “개발된 나노코팅기술은 다양한 목적으로 쉽게 적용가능하고 기존 코팅 기술 및 나노물질과 결합돼 더 큰 시너지를 일으킬 것이다”고 말했다.
이번 연구는 미래창조과학부와 한국연구재단이 추진하는 리더연구자지원사업의 일환으로 수행됐다.
□ 그림 설명
그림1. (a-I, II) 나노코팅된 귤과 코팅되지 않은 귤을 14일, 28일 동안 상온에서 보관하였을 때 비교사진. (b-I, b-II) 나노코팅된 딸기와 코팅되지 않은 딸기를 58시간 동안 상온에서 보관하였을 때 비교사진 및 식품 변질 검사결과
2017.08.10
조회수 16199
-
김일두 교수, 동물 단백질 촉매로 활용한 질병진단센서 개발
〈 김 일 두 교수 〉
우리 대학 신소재공학과 김일두 교수 연구팀이 동물의 단백질을 촉매로 활용해 호흡으로 질병을 진단할 수 있는 센서를 개발했다.
이는 사람의 날숨에 포함된 다양한 질병과 관련된 바이오마커 가스들에 대한 패턴 인식을 통해 질병을 조기 모니터링 할 수 있는 기술이다.
이번 기술은 다양한 단일 금속입자 뿐만 아니라 어떠한 조합의 이종입자도 2 nm 크기로 합성할 수 있는 장점을 갖는다. 연구팀은 기존에도 호흡으로 질병을 진단하는 센서를 개발했으나 이번 기술은 더욱 정확하고 높은 감도를 갖는다는 특징이 있다.
김상준, 최선진 박사가 1저자로 참여한 이번 연구 결과는 미국 화학회의 화학분야 국제 학술지 ‘어카운트 오브 케미칼 리서치(Accounts of Chemical Research)’ 7월호 표지논문으로 선정됐고, 독일 와일리 국제 학술지인 ‘어드밴스드 머터리얼즈(Advanced Materials)’에도 게재가 확정됐다.
혈액 체취나 영상 촬영 없이 내뱉는 숨(호기)만으로 각종 질병 여부를 파악하는 호흡 지문 센서 기술은 핵심 미래 기술이다. 호기 속 특정 가스들의 농도변화를 체크해 건강 이상 여부를 판단할 수 있다.
호기가스 성분에는 수분 외에도 수소, 아세톤, 톨루엔, 암모니아, 황화수소, 일산화질소 등이 포함된다. 이 가스들은 천식, 폐암, 1형 당뇨병, 구취 등 특정 질병 환자에게서 높은 농도로 배출되는 바이오마커 가스이다.
호흡을 이용한 질병 진단은 마치 음주측정기처럼 테들라(Tedlar) 백에 포집된 날숨 가스를 소형 센서 장치로 주입한 후 빠른 속도로 분석되기 때문에 쉽고 간편하게 질병을 진단할 수 있다. 또한 질병 대사가 일어나는 시점에서 검출이 가능해 조기 진단이 가능하다.
하지만 매우 경미한 수준인 10억분의 1(ppb)에서 100만분의 1(ppm) 수준으로 발생하는 가스를 호흡 속에서 정확히 분석하기 위해서는 기술의 진보가 필요하다. 특히 수분을 포함한 수백 종의 방해 가스는 특정 질병 관련 바이오마커 가스를 선택적으로 분석하는 저항 변화식 센서의 취약점으로 남아 있다.
기존의 가스 센서는 백금, 팔라듐 등 특정 촉매를 결합해 감지 특성을 높이려고 시도했으나 ppb 농도에서는 생체지표 가스 감지 특성이 높지 않다는 한계가 있었다.
연구팀은 기존 센서의 한계 극복을 위해 동물의 조직에 존재하는 나노크기의 단백질을 희생층으로 이용해 속이 비어있는 단백질 껍질 안에 석출된 이종촉매(Heterogeneous catalyst) 입자를 합성하는데 성공했다.
이번 연구에 사용된 나노크기의 단백질은 주기율표에 존재하는 원소물질을 조합해 어떠한 형태의 이종촉매도 다양하게 구현할 수 있다는 큰 장점을 갖는다.
특히 이종 원소간 조성비를 쉽게 조절할 수 있고 금속간화합물도 제조할 수 있어 신조성을 갖는 촉매 합성 측면에서 매우 획기적인 방법이다.
예를 들어 백금이 기준 촉매일 때 백금팔라듐(PtPd), 백금니켈(PtNi), 백금루테늄(PdRu), 백금이트륨(PtY3) 등 다양한 이종 합금촉매로 확장할 수 있다.
연구팀은 개발된 이종촉매 입자를 넓은 비표면적과 다공성 구조를 갖는 금속산화물 나노섬유에 결착시켜 특정 생체지표 기체에만 선택적으로 반응하는 감지소재를 개발했다. 이종촉매가 결착된 나노섬유 센서는 기존에 촉매 활성이 가장 뛰어나다고 알려진 백금이나 팔라듐 촉매보다 약 3~4배 이상 감지 특성이 향상됨을 확인했다.
특히 아세톤이나 황화수소 가스는 1ppm에서 감도가 100배 수준으로 바뀌는 최고 수준의 감도 특성이 관찰됐다.
연구팀은 다양한 종류의 감지 소재가 적용된 복합 센서 배치(sensor array) 시스템을 이용해 사람의 지문을 인식하듯 개개인의 호흡을 패턴 인식해 일반인도 쉽게 건강 이상을 판별할 수 있는 질병진단 플랫폼을 개발했다.
16종의 다른 선택성을 갖는 센서를 어레이화하는데 성공했으며, 환자의 건강상태에 따라 날숨 농도변화가 다르게 나타나기 때문에 날숨 속 가스 정보를 지문처럼 패턴화하여 개인의 건강 변화를 지속적으로 모니터링 하는 헬스케어 기기에 적용할 수 있다.
김 교수는 “기존에 센서에 사용된 적이 없는 2 nm 크기의 이종촉매를 단백질을 이용하여 적용함으로써, 질병과 연관된 생체지표 가스에 고감도 및 고 선택성으로 반응하는 센서소재 라이브러리를 구현할 수 있다”며 “앞으로 다양한 촉매 군을 확보하면 수많은 질병을 진단할 수 있는 센서를 개발할 수 있다”고 말했다.
또한 “호흡으로 질병을 진단하는 센서는 누구나 손쉽게 스스로 진단할 수 있는 자가 진단 기기의 시작으로 의료비 지출 상승을 막고 지속적 건강관리에 큰 도움이 될 것이다”고 말했다.
이번 기술과 관련된 특허들은 지난 3월과 6월 각각 벤처기업과 중소기업에 기술이전 됐다.
본 연구는 미래창조 과학부 웨어러블 플랫폼소재 기술센터 과제와 바이오의료기술개발사업 과제의 지원으로 이루어졌다.
□ 그림 설명
그림1. 어카운트 오브 케미칼 리서치 표지 이미지
그림2. 다종 입자 촉매
그림3. 함금촉매 합성
그림4. 다종센서 어레이_날숨 분석 센서
2017.07.18
조회수 29076
-
김호민 교수, 뇌의 시냅스 구조 및 기능 조절 단백질 구조 규명
< 김 호 민 교수 〉
우리 대학 의과학대학원 김호민 교수와 DGIST 고재원 교수 공동 연구팀이 신경세포 연결을 조절하는 핵심단백질인 MDGA1의 3차원 구조를 최초로 규명해 시냅스 발달을 조절하는 원리를 제시했다.
이번 연구 내용은 신경생물학 분야 국제학술지 ‘뉴런(Neuron)’ 6월 21일자 Issue Highlight에 게재됐다.
뇌는 많은 신경세포로 이뤄져 있고 두 신경세포가 연접하면서 형성되는 시냅스라는 구조를 통해 신호를 전달하면서 그 기능을 수행한다.
대표적인 시냅스 접착 단백질로 알려진 뉴롤리진(Neuroligin)과 뉴렉신(Neurexin)은 상호작용을 통해 흥분성 시냅스(excitatory synapse)와 억제성 시냅스(inhibitory synapse)의 발달 및 기능을 유지한다.
연구팀은 뉴롤리진(Neuroligin)과 뉴렉신(Neurexin)의 결합을 조절하는 MDGA1의 3차원 구조와 억제성시냅스(inhibitory synapse)의 형성을 저해하는 원리를 최초로 규명했다.
김 교수는 “단백질 구조생물학과 신경생물학의 유기적인 협력 연구를 통해 시냅스 발달 조절에 핵심적인 MDGA1의 구조와 작용 메커니즘을 규명했다는데 의미가 있다”며 “시냅스 단백질들의 기능 이상으로 나타나는 다양한 뇌정신질환의 발병 메커니즘을 폭넓게 이해하는 밑거름이 될 것이다. 향후 뇌신경·뇌정신질환 치료제 개발에 활용될 수 있을 것으로 기대된다.”고 말했다.
이번 연구는 미래창조과학부 기초연구지원사업(개인연구)의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 시냅스 조절하는 핵심단백질 구조 최초 규명
그림2. 시냅스 단백질 MDGA1에 의해 조절되는 억제성 시냅스 형성 분자 메커니즘
2017.07.11
조회수 16976
-
김용훈 교수, 단일 분자 소자의 전극 계면 특성 규명
〈 김 용 훈 교수와 김후성 박사과정, 김한슬 박사 〉
우리 대학 EEWS 대학원 김용훈 교수 연구팀이 10년 이상 나노 분야 주요 난제로 남아있던 단일분자 전자소자의 금속전극-분자 계면 원자구조와 소자특성 간 상관관계를 규명했다.
이번 연구 성과는 국제 과학 학술지인 ‘미국 화학회지(Journal of the American Chemical Society)’ 6월 21일자에 게재됐다.
단일분자 전자소자는 OLED 등을 통해 알려진 유기소자로서 2003년 미국에서 처음 구현됐다. 분자전자소자(molecular electronics)는 차세대 반도체 소자의 후보군으로 관련 연구들이 활발히 수행되고 있다.
분자를 전자소자로 활용하기 위해선 분자-전극 형태의 원자구조가 구체적으로 어떻게 형성되는지 이해하는 것이 중요하다. 분자 전자소자는 크게 분자, 전극, 둘을 잇는 연결자로 구성된다.
2006년 미국 애리조나 대학의 타오(Nongjian Tao) 교수를 포함한 연구팀은 한 종류의 분자에서 여러 개의 전류 값이 나올 수 있음을 규명했으나 그 전류 값의 크기와 개수, 원인 등은 명확히 밝혀지지 않았다.
특히 그 원인에 대해서는 관련된 분자와 금속전극 간 계면의 원자구조가 여러 가지 형태를 띠고 있기 때문이라는 추측만 있었고 명확히 밝혀지지는 않았다.
김 교수 연구팀은 주사탐침현미경 등을 이용해 단분자 소자가 구현되는 과정을 슈퍼컴퓨터를 활용해 재현했다.
접합 구조의 여러 가지 형태를 찾는 것은 결국 황(S) 원자 주변의 금(Au) 원자 몇 개가 어떤 형태로 배열되는지 확인하는 것인데 이것을 배위수(coordination number)라고 부른다.
〈 김 용 훈 교수와 연구팀 〉
연구팀은 분자와 금속 전극 간 결합의 원자구조 배위수에 따라 금속전극 사이에서 전류 값이 변화하는 것을 확인했다. 또한 분자가 당겨질 때 단순히 금속과 분자 사이 결합이 끊어지는 게 아니라 금속전극의 원자구조가 쉽게 변형돼 결국은 금속과 금속 사이의 결합의 끊어지는 것을 규명했다.
일본 오사카 대학의 카와이(T, Kawai) 교수는 위와 같은 김 교수의 이론을 뒷받침하기 위해 소자 인장에 따른 전류의 증가를 포함하는 실험을 수행했다.
한, 일 공동연구팀은 슈퍼컴퓨터를 이용한 제1원리 계산과 첨단 나노소자 제조 및 측정을 통해 유기 소자의 계면 특성을 원자 수준에서 성공적으로 규명했다. 연구팀은 나노과학-나노기술 분야에서 10년 이상 풀리지 않던 난제를 해결했다.
이번 성과는 향후 OLED, 바이오센서, 유기태양전지 등 다양한 유기소자 분야에 활용 가능할 것으로 기대된다.
김 교수는 “이번 연구는 나노 분야에서 이론 연구가 실험을 선도하는 역할을 성공적으로 수행함을 보여주는 예가 될 것이다”고 말했다.
이번 연구는 미래창조과학부의 중견연구자지원사업, 글로벌프론티어사업, 나노소재기술사업과 KISTI 슈퍼컴퓨터의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 분자 전기전도도 실험 측정방법의 개념도
그림2. 대표적인 세 가지 분자-금속전극 접합 원자구조와 이에 상응하는 외력에 따른 전도도 변화 패턴
2017.07.04
조회수 17830
-
이의진 교수, 스마트폰으로 문서 촬영 시 발생하는 회전 오류 문제 해결
〈 이의진 교수(좌)와 오정민 박사과정(우) 〉
우리 대학 산업및시스템공학과 이의진 교수 연구팀이 스마트폰 카메라로 문서를 촬영할 때 자동으로 발생하는 불규칙적인 회전 오류 현상의 원인을 밝히고 해결책을 개발했다.
연구팀은 스마트폰의 방위 추적 알고리즘의 한계가 회전 오류의 원인임을 규명했다.
이번 연구 결과는 인간-컴퓨터 상호작용 학회의 국제 학술지인 ‘인터내셔널 저널 오브 휴먼 컴퓨터 스터디(International Journal of Human-Computer Studies)’ 4월 4일자 온라인 판에 게재됐고 8월호 저널에 게재될 예정이다.
스마트폰을 통해 책자, 문서 등을 촬영해 업무에 활용하는 것은 자연스러운 일상이 됐다. 하지만 촬영한 문서가 자동으로 90도 회전하는 현상으로 인해 불편을 겪는 사람들이 많다.
특히 여러 장의 사진을 찍었을 때 각기 다른 방향으로 회전돼 일일이 스마트폰을 돌리거나 파일을 편집해야 하는 현상이 발생한다.
스마트폰으로 문서를 촬영할 때는 대부분 스마트폰과 책상 위 문서가 평행 상태이다.
이 때 스마트폰을 회전시키면 스마트폰의 방위 추적 알고리즘이 작동하지 않는다. 방위 추적 알고리즘은 기본적으로 사용자가 스마트폰을 세워서 사용한다는 가정 하에 한 방향으로 가해지는 중력가속도를 측정해 현재 방위를 추정하는 방식으로 설계됐기 때문이다.
연구팀은 실험을 통해 오류 발생 수치를 측정했다. 실험 결과 문서를 가로로 촬영 시 방위 추적 오류가 93%의 높은 확률로 발생함을 확인했다.
일반 사용자는 오류의 원인을 파악하기 어렵다. 대부분의 카메라 앱은 셔터 버튼에 있는 카메라 모양의 아이콘 방향을 통해 실시간 방위를 표시하고 있지만 이러한 기능에 대해서도 사용자들은 인지하지 못한 것으로 파악됐다.
연구팀은 스마트폰의 모션센서 데이터를 활용해 문서 촬영 중에 방위를 정확하게 추적해 문제를 해결했다.
모션센서 데이터의 핵심 기술은 두 가지로 구분할 수 있다. 일반적으로 스마트폰으로 문서를 촬영할 때는 스마트폰이 지면과 평행을 이루기 때문에 스마트폰에 장착된 중력 가속도 센서를 관측해 이러한 문서 촬영 의도를 쉽게 알 수 있다.
두 번째로 문서 촬영 중에 발생하는 스마트폰 회전은 회전 각속도를 측정하는 센서를 활용해 추적할 수 있다. 카메라 앱 실행 후에 문서 촬영을 위해 스마트폰을 회전시키기 때문에 이를 측정해 회전각이 일정 임계치를 넘으면 방위를 변경하는 것으로 파악할 수 있고 이를 통해 방향을 알 수 있는 것이다.
또한 연구팀은 문서 촬영 시 촬영자 쪽으로 스마트폰이 미세하게 기울어지는 마이크로 틸트(micro-tilt) 현상을 발견했다.
이 현상으로 인해 스마트폰으로 가해지는 중력가속도가 스마트폰 측면으로 분산된다. 눈에는 잘 보이지 않을 정도로 작은 기울기지만 모션센서 데이터를 활용해 마이크로 틸트 행동 패턴의 기계학습 알고리즘을 훈련시킬 수 있다. 이를 통해 정확한 방위 추적이 가능하다.
연구 팀의 실험 결과에 따르면 모션센서 데이터를 활용한 방위 추적 방식의 정확도는 93%로 매우 높아 안드로이드 및 iOS등 상용 스마트폰에도 적용 가능하다.
이 기술들은 기존 방위 추적 알고리즘의 사각지대였던 수평 촬영 상황에서 작동하기 때문에 기존 방위 추적 알고리즘과 겹치는 부분 없이 상호 보완적으로 작동할 수 있다.
이 교수는 “스마트폰을 활용한 문서 촬영은 필수가 됐지만 회전 오류의 원인 규명과 해결책이 어려워 불편함이 많았다”며 “모션센서 데이터를 통해 촬영의 의도를 파악하고 자동으로 오류를 바로잡는 기술은 사용자의 불편을 해결하고 문서 촬영에 특화된 다양한 응용서비스 개발의 기초가 될 것이다”고 말했다.
미래창조과학부의 지원을 통해 수행된 이번 기술 중 국내 특허 2건이 등록이 완료됐고 미국 특허가 3월 1일에 수락됐다.
□ 그림 설명
그림1. 방위 오류 발생으로 인해 생기는 불편함
그림2. 평면촬영시 발생하는 방위 오류 상태
그림3. 자이로스코프를 활용한 스마트폰 회전 추적 모식도
그림4. 마이크로틸트현상
2017.06.27
조회수 12620
-
이상엽 특훈교수, 병원균이 항생제에 내성을 갖는 원리 규명
〈 이 상 엽 교수 〉
우리 대학 생명화학공학과 이상엽 교수와 덴마크 공대(DTU) 노보 노르디스크 바이오지속가능센터(Novo Nordist Foundation Center for Biosustainability) 공동 연구팀이 박테리아 병원균이 항생제에 대한 내성을 획득하는 작동 원리를 밝혔다.
이번 연구결과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 7일자 온라인 판에 게재됐다.
항생제 남용 등으로 인해 항생제 내성균이 점점 더 늘어나고 있다. 이는 인류의 생존을 위협하는 문제로 그 심각성이 전 세계적으로 점점 커지고 있다.
인체 감염균이 항생제 내성을 갖는 방식에는 항생제를 분해하는 효소를 갖거나 다시 뱉어내는 등 다양한 방식이 있다. 그 중 대표적인 것은 항생제 내성 유전자를 획득해 항생제를 무용지물로 만드는 것이다.
내성 유전자는 보통 항생제를 생산하는 곰팡이나 악티노박테리아에서 발견된다. 이는 해당 항생제를 만드는 곰팡이와 박테리아가 자기 스스로를 항생제로부터 보호하기 위해 갖고 있는 것이다.
이 내성 유전자를 인체 감염균이 획득하면 항생제 내성을 갖게 된다. 이러한 사실은 게놈 정보 등을 통해 이미 알려져 있는 사실이다.
그러나 어떤 방식으로 항생제 내성 유전자들이 인체 감염균에 전달되는지는 밝혀지지 않았다.
이상엽 교수와 덴마크 공대 공동 연구팀은 항생제 내성 유전자가 직접적으로 인체 감염균에 전달되는 것이 아니라 연구팀이 캐리백(carry-back)이라고 이름 지은 복잡한 과정을 통해 이뤄지는 것을 규명했다.
우선 인체 감염균과 방선균이 박테리아간의 성교에 해당하는 접합(conjugation)에 의해 인체 감염균의 DNA 일부가 방선균으로 들어간다.
그 와중에 항생제 내성 유전자 양쪽 주위에도 감염균의 DNA가 들어가는경우가 생긴다. 이 상태에서 방선균이 죽어 세포가 깨지면 항생제 내성 유전자와 감염균의 DNA 조각이 포함된 DNA들도 함께 나오게 된다.
이렇게 배출된 항생제 내성 유전자에는 인체 감염균의 일부 DNA가 양쪽에 공존하고 있다. 이 때문에 인체 감염균은 자신의 게놈에 재삽입이 가능해지고 이를 통해 항생제 내성을 획득한다.
연구팀은 생물정보학적 분석과 실제 실험을 통해 이를 증명했다.
이 교수는 “이번 연구결과는 인체 감염 유해균들이 항생제 내성을 획득하는 방식 중 한 가지를 제시한 것이다”며 “병원 내, 외부의 감염과 예방 관리시스템, 항생제의 올바른 사용에 대해 다시 한 번 생각할 수 있는 기회를 제공할 것이다”고 말했다.
이번 연구는 노보 노르디스크 재단과 미래창조과학부 원천기술과(바이오리파이너리를 위한 시스템대사공학 연구사업)의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 항생제 내성 유전자가 전달되는 캐리백 현상의 모식도
2017.06.19
조회수 18074
-
윤동기 교수, 액정 결함의 변이 과정 관찰에 성공
우리 대학 나노과학기술대학원 윤동기 교수 연구팀이 액정의 결함이 온도에 따라 변화하는 과정을 규명했다.
액정 결함에 관한 연구는 20세기 초반부터 약 100여 년 간 위상기하학을 연구하는 물리, 수학자들에 의해 연구됐지만 결함의 형태 전이를 세밀하게 직접적으로 관찰한 것은 이번 연구가 처음이다.
이 액정에서의 결함은 위상학적(topology)으로 우주에서 발생하는 블랙홀과 같은 위상학적 현상과 비슷한 구조를 갖기 때문에 우주의 원리를 연구하는 데 도움이 될 것으로 기대된다.
김민준 박사가 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications) 5월 30일자 온라인 판에 게재됐다. (논문명 : Morphogenesis of liquid crystal topological defects during the nematic-smectic A phase transition)
일반적으로 액정 재료는 손쉬운 배향 제어, 빠른 반응속도, 이방적(anisotropic)인 광학 특성을 갖고 있어 액정표시장치(LCD)나 광학 센서 등에 사용된다. 이 때 액정의 결함을 최소화하는 것이 성능 측면에서 유리한 것으로 알려져 있으나 물질 특성 상 액정의 결함은 불가피하게 발생한다.
윤 교수 연구팀은 이 결함을 단순히 없애는 데만 집중하지 않고 결함의 구조를 이해하고 형성 원리를 명확하게 규명하는 기초연구에 집중했다.
이러한 노력을 바탕으로 액정재료의 위상학적 결함이 안정적으로 발생하는 플랫폼을 구성해 온도 변화에 따른 상전이(phase transition)를 직접적으로 관찰했다.
위상학적 결함의 상전이는 2016년도 노벨물리학상의 주제이기도 할 만큼 기초과학 분야에서 중요하다. 우주 은하의 위상학적 구조적 원리도 이에 바탕하고 있어 많은 연구자들이 집중하고 있는 분야이다.
우주 은하의 위상학적 결함을 관찰하기에는 너무 범위가 크고 시간이 오래 걸린다. 하지만 윤 교수팀이 고안한 플랫폼의 위상학적 결함 구조는 광학 현미경으로 관찰이 가능한 수준의 크기이다. 또한 결함의 상전이가 일어나는 시간도 수초에서 수분 단위이기 때문에 관찰이 용이하다.
여기서 액정 재료들이 형성하는 결함 구조는 하나의 특이점(singularity)을 중심으로 방사형, 원형, 나선형 등의 형태를 갖는다. 특이점은 영화 ‘인터스텔라’에서도 나온 것처럼 우주의 블랙홀의 중심부 부분에 해당한다.
이 액정 재료는 일반적으로 딱딱한 두 유리판 사이에 모세관 현상을 통해 주입해 그 시료를 준비하게 된다. 그러나 이 과정에서 유리판처럼 단단한 기판은 표면효과 때문에 액정 물질의 움직임을 제한시키고 이는 결함의 상전이를 관찰하는 장애물이었다.
연구팀은 물 위에 기름이 떠다니는 현상을 이용해 물 위에 얇은 액정재료 막을 형성함으로써 액정 분자들의 움직임이 제한적이지 않은 환경을 조성했다.
이런 환경에서 온도를 변화시키면 그 구조체를 구성하는 분자와 분자 사이의 미세한 상호작용이 기판에 의한 표면효과보다 훨씬 크기 때문에 위상학적 결함의 상전이를 연속적, 직접적으로 관찰할 수 있다.
이 연구 방식은 온도 변화를 통해 위상학적 결함의 형성과정을 순서대로 혹은 역으로 조절할 수 있다. 따라서 전이과정을 면밀하게 관찰하면 중간 상태의 결함구조를 통해 최초의 그 결함 형태와 구성 분자들의 배열을 정확히 역추적 할 수 있다.
이는 위상학적 결함의 형성 원리를 근본적으로 이해할 수 있는 연구 수단이 될 것으로 기대된다.
윤 교수는 이번 연구에 대해 “연구에 대한 발상의 전환을 통해 남들이 보지 못한 것을 볼 수 있었다”며 “액정 결함에 대한 이번 연구 결과는 산업적 측면 뿐 아니라 기초 학문에 세계적 공헌을 할 수 있을 것이다”고 말했다.
또한 “우리나라가 액정 디스플레이 산업의 강국이지만 액정에 대한 기초연구는 세계적 수준에 비해 높지 않다”며 “이번 연구를 계기로 국내 관련 기초연구에 대한 관심을 촉발시키는 계기가 되길 바란다”고 말했다.
이번 연구는 미래창조과학부와 한국연구재단이 추진하는 미래유망융합기술파이오니어사업과 신진연구지원사업의 지원으로 수행됐다.
□ 그림 설명
그림1. 물 위에 형성된 액정 결함의 냉각에 의한 위상학적 결함의 상전이 현상의 편광현미경 사진
그림 2. 액정 분자들이 모이는 위상학적 결함의 편광현미경 이미지와 그에 대한 모식도와 액정 분자들이 퍼지는 위상학적 결함의 편광현미경 이미지와 그에 대한 모식도
2017.06.01
조회수 16687
-
류호진 교수, 금속 칵테일로 핵융합에 사용가능한 신소재 개발
우리 대학 원자력 및 양자공학과 류호진 교수 연구팀이 칵테일처럼 여러 원소를 혼합하는 방식을 통해 핵융합 플라즈마의 대면재로 적용 가능한 신소재 합금을 개발했다.
이번 연구를 통해 핵융합 발전과 같은 극한적 환경에서 사용되는 금속의 범위가 다양하게 확장될 것으로 기대된다.
오와이스 왓심 박사과정이 1저자로 참여한 이번 연구는 온라인 국제 학술지 ‘사이언티픽 리포트(Scientific Report)’ 5월 16일자에 게재됐다.
미래 에너지원으로 여겨지는 핵융합 발전을 실현하기 위해서는 고온의 플라즈마를 가두고 있는 토카막(tokamak) 용기의 내구성이 중요하다. 도넛 모양의 토카막은 강력한 자기장을 통해 1억℃가 넘는 플라즈마를 안정적으로 유지시켜주는 역할을 한다.
그럼에도 불구하고 플라즈마의 고온에 따른 열부하, 플라즈마 이온, 중성자 등으로 인해 토카막 용기는 손상이 발생한다. 이 토카막 용기를 보호하기 위한 대면재로 텅스텐 등의 금속이 쓰이고 있으나 완벽한 핵융합 발전을 위해서는 고성능 신소재의 개발이 필수적이다.
류 교수 연구팀은 텅스텐에 소량의 금속을 첨가해 물성을 개량하는 기존 방법들보다 한 발 더 나아가 다량의 금속을 동시에 혼합하는 기술을 활용했다.
이는 마치 칵테일처럼 여러 금속 분말을 혼합한 후 소결하는 분말야금 기술로 이를 통해 텅스텐보다 경도와 강도가 2배 이상 향상된 신소재 합금을 제조하는 데 성공했다.
핵융합에서는 다양한 물질을 함께 혼합하는 위와 같은 방식이 역효과를 발생시키기도 한다. 몰리브덴, 니오븀 등은 핵융합을 하면서 발생하는 중성자와 반응을 해 방사성이 높은 원소로 탈바꿈하는 방사화 현상이 발생해 방사능을 발산하기도 한다.
류 교수 연구팀은 이러한 제약들을 고려해 크롬, 티타늄 등을 첨가했고 이는 경도 향상 뿐 아니라 제조 공정의 촉진, 방사화 방지 등의 효과도 얻어냈다.
연구팀은 고온 기계적 특성과 더불어 열전도도, 플라즈마 상호작용, 중성자 조사취화, 트리튬 흡수 억제, 고온 내산화 특성 등을 최적화하는 합금 조성을 찾기 위한 연구를 계속 진행할 예정이다.
류 교수는 “핵융합 플라즈마 대면재는 열 충격과 플라즈마 및 중성자로 인한 손상이 극심해 이를 견딜만한 금속이 없을 정도로 극한적 환경에 노출된다”며 “이번 연구결과로 핵융합 및 원자력용 고융점 저 방사화 금속을 개발하고자 하는 시도가 전 세계적으로 활발해질 것으로 예상된다”고 말했다.
이번 연구는 미래창조과학부와 한국연구재단의 핵융합기초연구사업과 전략구조소재 신공정설계 연구센터의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 연구를 통해 제조된 텅스텐 기반 고강도 신합금
그림2. 고융점 금속 혼합 공정을 통한 핵융합 플라즈마 대면재 개발 개요
2017.05.24
조회수 14333
-
김세윤 교수, 이노시톨 대사효소에 의한 패혈증 유발 염증전달신호 규명
우리 대학 생명과학과 김세윤 교수 연구팀이 이노시톨 생합성 대사의 핵심효소인 IPMK (Inositol polyphosphate multikinase)에 의해 패혈증 등의 선천성 면역반응을 매개하는 신호전달네트워크가 정교하게 조절되는 현상을 규명했다.
김은하 박사과정이 제1저자로 참여한 이번 연구 결과는 서울대학교 성노현 교수 연구팀과 공동으로 진행됐고 사이언스 어드밴시스(Science Advances)지 4월 21일자에 게재됐다.
김세윤 교수 연구팀은 이노시톨 대사체 및 생합성 대사를 수 년 간 연구했고 이노시톨 다인산 멀티키나아제 효소(IPMK)에 의한 세포 성장 및 에너지 대사조절 기능을 다각적으로 규명한 바 있다.
이번 연구에서는 대식세포(macrophage) 특이적으로 IPMK 효소가 결핍된 생쥐에서 패혈성 쇼크를 유발시켰을 때 염증수준이 현저히 저하되고 또한 높은 생존율을 보이는 것을 확인했다. 이는 선천성 면역의 핵심인 염증반응이 강력히 저해되는 것을 의미한다.
IPMK 효소가 면역신호조절물질인 TRAF6 단백질과 직접 결합해 TRAF6 단백질의 분해를 조절하는 유비퀴틴화를 억제함을 규명했고, IPMK효소와 TRAF6단백질간 결합력을 저해할 수 있는 펩타이드를 활용함으로써 내독소에 의한 염증반응을 낮출 수 있음을 다각적으로 검증했다.
이번 연구는 미생물 감염 등에 의한 패혈증 발병의 원리를 규명함과 동시에 최근 급증하는 선천 면역 질환 (ex. 신경계 염증질환 및 당뇨)에 대한 이해를 넓히고 새로운 치료기술개발에 필요한 학문적 토대를 제공했다는 의의를 갖는다.
이번 연구는 미래창조과학부 뇌과학원천기술개발사업의 지원을 받아 이뤄졌다.
□ 그림 설명
그림1. IPMK 효소의 선천성 면역조절 모식도
2017.04.25
조회수 18534