본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%B0%98%EB%8F%84%EC%B2%B4
최신순
조회순
인간의 뇌를 모방한 뉴로모픽 반도체 개발
우리 대학 전기및전자공학부 최양규, 최성율 교수 공동연구팀이 인간의 뇌를 모방한 고집적 뉴로모픽 반도체를 개발했다고 5일 밝혔다. 뉴로모픽(neuromorphic) 하드웨어는, 인간의 뇌가 매우 복잡한 기능을 수행하지만 소비하는 에너지는 20와트(W) 밖에 되지 않는다는 것에 착안해, 인간의 뇌를 모방해 인공지능 기능을 하드웨어로 구현하는 방식이다. 뉴로모픽 하드웨어는 기존의 폰 노이만(von Neumann) 방식과 다르게 인공지능 기능을 초저전력으로 수행할 수 있어 많은 주목을 받고 있다. 공동연구팀은 단일 트랜지스터를 이용해 인간의 뇌를 모방한 뉴런과 시냅스로 구성된 뉴로모픽 반도체를 구현했다. 이 반도체는 상용화된 실리콘 표준 공정으로 제작되어, 뉴로모픽 하드웨어 시스템의 상용화 가능성을 획기적으로 높였다. 우리 대학 전기및전자공학부 한준규 박사과정이 제1 저자로, 같은 학부 오정엽 박사과정이 제2 저자로 참여한 이번 연구는 저명 국제 학술지 `사이언스 어드벤시스(Science Advances)' 8월 온라인판에 출판됐다. (논문명 : Co-integration of single transistor neurons and synapses by nanoscale CMOS fabrication for highly scalable neuromorphic hardware). 뉴로모픽 하드웨어를 구현하기 위해서는, 생물학적 뇌와 동일하게 일정 신호가 통합되었을 때 스파이크를 발생하는 뉴런과 두 뉴런 사이의 연결성을 기억하는 시냅스가 필요하다. 하지만, 디지털 또는 아날로그 회로를 기반으로 구성된 뉴런과 시냅스는 큰 면적을 차지하기 때문에 집적도 측면에서 한계가 있다. 인간의 뇌가 약 천억 개(1011)의 뉴런과 백조 개(1014)의 시냅스로 구성된다는 점에서, 실제 모바일 및 사물인터넷(IoT) 장치에 사용되기 위해서는 집적도를 개선할 필요가 있다. 이를 개선하기 위해 다양한 소재 및 구조 기반의 뉴런과 시냅스가 제안되었지만, 대부분 표준 실리콘 미세 공정 기술로 제작될 수 없어 상용화가 어렵고 양산 적용에 문제가 많았다. 연구팀은 문제 해결을 위해 이미 널리 쓰이고 있는 표준 실리콘 미세 공정 기술로 제작될 수 있는 단일 트랜지스터로 생물학적 뉴런과 시냅스의 동작을 모방했으며, 이를 동일 웨이퍼(8 인치) 상에 동시 집적해 뉴로모픽 반도체를 제작했다. 제작된 뉴로모픽 트랜지스터는 현재 양산되고 있는 메모리 및 시스템 반도체용 트랜지스터와 같은 구조로, 트랜지스터가 메모리 기능 및 논리 연산을 수행하는 것은 물론, 새로운 뉴로모픽 동작이 가능함을 실험적으로 보여 준 것에 가장 큰 의미가 있다. 기존 양산 트랜지스터에 새로운 동작원리를 적용해, 구조는 같으나 기능이 전혀 다른 뉴로모픽 트랜지스터를 제작했다. 뉴로모픽 트랜지스터는 마치 동전에 앞면과 뒷면이 동시에 있는 것처럼, 뉴런 기능도 하고 시냅스 기능도 수행하는 야누스(Janus) 구조로 구현 가능함을 세계 최초로 입증했다. 연구팀의 기술은 복잡한 디지털 및 아날로그 회로를 기반으로 구성되던 뉴런을 단일 트랜지스터로 대체 구현해 집적도를 획기적으로 높였고, 더 나아가 같은 구조의 시냅스와 함께 집적해 공정 단순화에 따른 비용 절감을 할 수 있는 신기술이다. 기존 뉴런 회로 구성에 필요한 평면적이 21,000 단위인 반면, 새로 개발된 뉴로모픽 트랜지스터는 6 단위 이하이므로 집적도가 약 3,500 배 이상 높다. 연구팀은 제작된 뉴로모픽 반도체를 바탕으로 증폭 이득 조절, 동시성 판단 등의 뇌의 기능을 일부 모방했고, 글자 이미지 및 얼굴 이미지 인식이 가능함을 보였다. 연구팀이 개발한 뉴로모픽 반도체는 집적도 개선과 비용 절감 등에 이바지하며, 뉴로모픽 하드웨어의 상용화를 앞당길 수 있을 것으로 기대된다. 한준규 박사과정은 "상보성 금속 산화막 반도체(CMOS) 기반 단일 트랜지스터를 이용해 뉴런과 시냅스 동작이 가능함을 보였다ˮ 라며 "상용화된 CMOS 공정을 이용해 뉴런, 시냅스, 그리고 부가적인 신호 처리 회로를 동일 웨이퍼 상에 동시에 집적함으로써, 뉴로모픽 반도체의 집적도를 개선했고, 이는 뉴로모픽 하드웨어의 상용화를 한 단계 앞당길 수 있을 것이다ˮ 라고 말했다. 한편 이번 연구는 한국연구재단 차세대지능형반도체기술개발사업, 중견연구사업, 미래반도체사업 및 반도체설계교육센터의 지원을 받아 수행됐다.
2021.08.06
조회수 10958
날숨 속 황화수소 가스 검출을 통한 구취 센서 개발
우리 대학 신소재공학과 김일두 교수 연구팀이 삼성전자 종합기술원과 공동연구를 통해 극소량의 나트륨과 백금 촉매를 금속산화물에 기능화하여 호흡으로 질병을 진단할 수 있는 가스 센서 플랫폼을 개발했다고 28일 밝혔다. 이 가스 센서 플랫폼은 사람의 날숨에 포함된 다양한 질병과 관련된 미량의 생체지표(biomarker) 가스를 선택적으로 감지해 관련된 특정 질병을 실시간 모니터링할 수 있는 기술이다. 혈액 채취나 영상 촬영 없이 내뱉는 숨(호기)만으로 각종 질병 여부를 파악하는 비침습적 호흡 지문 센서 기술은 핵심 미래 기술이다. 호기 속 특정 가스들의 농도변화를 검사해 건강 이상 여부를 판단할 수 있다. 이번 기술은 구취의 생체지표 가스인 황화수소 가스와 높은 반응성을 갖는 나트륨 촉매를 금속산화물 나노섬유 감지 소재 층에 도입해 가스 선택성을 극도로 향상하고, 활성도가 좋은 백금 촉매를 추가로 기능화해 세계 최고 수준의 황화수소 감지 성능을 구현한 기술이다. 호기 가스의 성분에는 수분 외에도 아세톤, 톨루엔, 암모니아, 수소뿐만 아니라 구취의 생체지표 가스인 황화수소(hydrogen sulfide), 메틸머캅탄(methyl mercaptan), 디메틸설파이드(dimethyl sulfide)의 3종 황 화합물이 포함된다. 그중에서 황화수소 가스는 구취 환자에게서 높은 농도로 배출되는 생체지표 가스로서 상기 3종 황화합물 가스 중에서 선택적으로 감지하는 것이 매우 중요하다. 호흡을 이용한 질병 진단은 테들라(Tedlar) 백에 포집된 날숨 가스를 소형 센서 장치로 주입한 후 수분 이내의 빠른 속도로 분석할 수 있는 비침습 진단 방법으로 최근 조명을 받고 있다. 또한, 질병 대사가 일어나는 시점에서 검출할 수 있어 조기 진단이 용이하다. 하지만 생체지표 가스들은 매우 미량의 농도인 10억분의 1(ppb)에서 100만분의 1(ppm) 수준으로 호흡 속에서 배출되기 때문에 정확한 분석을 위해서는 기술의 진보가 필요하다. 호기 속 수백 종 이상의 방해 가스들 속에서 목표 가스만을 선택적으로 분석하는 것은 저항 변화식 센서의 취약점으로 남아있다. 기존 가스 센서는 산화물 감지 소재 표면에 백금, 팔라듐 등 특정 촉매를 결합하거나 n-형 반도체식 금속산화물과 p-형 반도체식 금속산화물의 헤테로 접합 구조를 도입해 감지 특성을 높이려는 등의 시도가 있었으나 여전히 ppb 농도에서 생체지표 가스 감지 특성이 높지 않다는 한계가 있다. 연구팀은 미량의 염화 나트륨(NaCl)과 백금 촉매를 전기방사를 통해 넓은 비표면적과 다공성 구조를 갖는 금속산화물 나노섬유에 결착시켜 특정 생체지표 가스에 선택적으로 반응하는 감지 소재를 개발했다. 나트륨과 백금의 복합촉매가 결착된 나노섬유 센서는 백금 촉매만 결착되거나 촉매가 결착되지 않은 센서 대비 각각 10배 및 200배 이상 감지 특성이 향상됨을 확인했다. 특히 1 ppm의 황화수소 가스에 대해 감도가 780배 수준으로 바뀌는 세계 최고 수준의 감도 특성을 확인했고, 호기 속 방해 가스 중 반응성이 좋다고 알려진 에탄올 가스 대비 약 277배 수준의 선택도가 관찰됐다. 연구팀은 기존에도 호흡으로 질병을 진단하는 센서를 개발했으나 이번 기술은 가스 감지 성능 및 정확도와 신뢰도가 큰 폭으로 향상됐다는 특징이 있다. 또한, 연구팀은 이번에 개발한 초고성능의 가스 센서를 상용화된 압력센서, 온도센서, 습도센서와 결합해 간단하게 날숨을 불어넣는 것(호기 가스 직접 측정)만으로도 개개인의 호흡을 분석해 일반인도 쉽게 건강 이상을 판별할 수 있는 휴대용 복합센서 디바이스 플랫폼을 개발했다. 연구팀은 가스 크로마토그래피-질량분석법 기반 상용 구취 진단기를 활용한 호기 가스의 정성적 정량적 비교분석을 바탕으로 80건의 날숨 분석을 진행한 결과, 이번 복합센서 플랫폼이 86.3%의 정확도로 구취 유무를 판별할 수 있음을 확인했다. 이번 기술은 구취 유무를 지속적으로 모니터링하는 헬스케어 기기에 손쉽게 적용할 수 있다. 김일두 교수는 "기존 센서에 사용되지 않은 알칼리 금속 기반 촉매를 잘 알려진 백금 촉매와 함께 도입함으로써, 질병과 연관된 생체지표 가스에 초고감도 및 고 선택성으로 반응하는 센서 소재를 구현할 수 있었다ˮ며 "감지 소재 개발에 머물지 않고 실제 센서 디바이스 구현 및 호기 가스 임상시험을 통해 높은 정확도로 구취 유무를 판별할 수 있다는 측면에서 매우 의미가 있는 연구 결과다. 누구나 손쉽게 스스로 진단할 수 있는 자가 진단 기기의 진보는 의료비 지출 상승을 막고 지속적인 건강관리에 큰 도움이 될 것이다ˮ고 밝혔다. 이번 연구는 공동 제1 저자인 신하민, 김동하 박사과정(KAIST 신소재)과 정원종 전문연구원(삼성전자 종합기술원)의 주도하에 진행됐으며, 남궁각 전문연구원(삼성전자 종합기술원)과 김일두 교수(KAIST 신소재)가 교신저자로 참여했다. 연구 결과는 나노과학 분야의 권위적인 학술지 `에이씨에스 나노(ACS Nano)' 8월호 표지 논문으로 발행될 예정이며, `미국화학학회(ACS) 위클리 프레스팩(Weekly PressPac)'에 7월 21일 자로 소개되어 전 세계 수천 명의 기자단에게 홍보됐다. 또한, 관련 기술은 국내를 포함해 유럽, 미국, 중국에 특허로 출원됐다.
2021.07.29
조회수 11305
3차원 적층형 화합물 반도체 소자 제작 성공
우리 대학 전기및전자공학부 김상현 교수 연구팀이 *모놀리식 3차원 집적의 장점을 극대화해 기존의 통신 소자의 단점을 극복하는 화합물 반도체 소자 집적 기술을 개발했다고 14일 밝혔다. ☞ 모놀리식 3차원 집적: 하부 소자 공정 후, 상부의 박막층을 형성하고 상부 소자 공정을 순차적으로 진행함으로써 상하부 소자 간의 정렬도를 극대화할 수 있는 기술로 궁극적 3차원 집적 기술로 불린다. 우리 대학 전기및전자공학부 정재용 박사과정이 제1 저자로 주도하고 한국나노기술원 김종민 박사, 광주과학기술원 장재형 교수 연구팀과의 협업으로 진행한 이번 연구는 반도체 올림픽이라 불리는 ‘VLSI 기술 심포지엄(Symposium on VLSI Technology)’에서 발표됐다. (논문명 : High-performance InGaAs-On-Insulator HEMTs on Si CMOS for Substrate Coupling Noise-free Monolithic 3D Mixed-Signal IC). VLSI 기술 심포지엄은 국제전자소자학회(International Electron Device Meetings, IEDM)와 더불어 대학 논문의 채택비율이 25%가 되지 않는 저명한 반도체 소자 분야 최고 권위 학회다. 반도체 소자는 4차 산업 혁명의 특징인 초연결성 구현을 위한 핵심 통신 소재 및 부품으로서 주목받고 있다. 특히 통신 신호, 양자 신호는 아날로그 형태의 신호이고 신호전달 과정에서 신호의 크기가 약해지거나 잡음이 생겨 신호의 왜곡이 생기기도 한다. 따라서 이러한 신호를 주고받을 때 고속으로 신호의 증폭이 필요한데 이러한 증폭 소자에서는 초고속, 고출력, 저전력, 저잡음 등의 특성이 매우 중요하다. 또한 통신 기술이 발전함에 따라 이를 구성하는 시스템은 점점 더 복잡해져 고집적 소자 제작기술이 매우 중요하다. 통신 소자는 통상적으로 두 가지 방식으로 구현된다. 실리콘(Si)을 사용해 집적도 높은 Si CMOS를 이용해 증폭 소자를 구현하는 방법과 *III-V 화합물 반도체를 증폭 소자로 제작하고 기타 소자들을 Si CMOS로 제작해 패키징 하는 방식이 있다. 그러나 각각의 방식은 단점이 존재한다. 기존의 실리콘(Si) 기술은 물성적 한계로 인해 차단주파수 특성 등 통신 소자에 중요한 소자 성능 향상이 어려우며 기판 커플링 잡음 등 복잡한 신호 간섭에 의한 잡음 증가 문제가 존재한다. 반면, III-V 화합물 반도체 기술은 소자 자체의 잡음 특성은 우수하지만 다른 부품과의 집적/패키징 공정이 복잡하고 이러한 패키징 공정으로 인해 신호의 손실이 발생하는 문제가 존재한다. ☞ III-V 화합물 반도체: 주기율표 III족 원소와 V족 원소가 화합물을 이루고 있는 반도체로 전하 수송 특성 및 광 특성이 매우 우수한 소재 연구팀은 이러한 문제 해결을 위해 증폭 소자 이외의 소자 및 디지털 회로에서 좋은 성능을 낼 수 있는 Si CMOS 기판 위에 아날로그 신호 증폭 성능이 매우 우수한 III-V 화합물 반도체 *HEMT를 3차원 집적해 Si CMOS와 III-V HEMT의 장점을 극대화하는 공정 및 소자 구조를 제시했다. 3층으로 소자를 쌓아나감으로써 같은 기판 위에 집적할 수 있는 방식이다. 이와 동시에 기판 신호 간섭에 의한 잡음을 제거할 수 있음을 증명했다. ☞ HEMT: High-Electron Mobility Transistor 연구팀은 하부 Si CMOS의 성능 저하 방지를 위해 300oC 이하에서 상부 III-V 소자를 집적하는 웨이퍼 본딩 등의 초저온 공정을 활용해 상부 소자 집적 후에도 하부 Si CMOS의 성능을 그대로 유지할 수 있었다. 또한 고성능 상부 III-V 소자 제작을 위해서 InGaAs/InAs/InGaAs의 양자우물 구조를 도입해 높은 전자 수송 특성을 실현했으며 100 나노미터(nm) 노드 공정 수준으로도 세계 최고 수준의 차단 주파수 특성을 달성했다. 이는 10 나노미터(nm) 이하 급의 최첨단 공정을 사용하지 않고도 그 이상의 우수한 성능을 낼 수 있는 융합 기술로 향후 기존과 다른 형태의 파운드리 비즈니스 방식의 도입 가능성을 증명했다고 할 수 있다. 더불어 연구진은 이러한 3차원 집적 형태로 소자를 제작함으로써 기존에 SI CMOS에서 존재하는 기판 간섭에 의한 잡음을 해결할 수 있음을 실험을 통해 최초로 증명했다. 김상현 교수는 “디지털 회로 및 다양한 수동소자 제작에 최적화된 Si CMOS 기판 위에 증폭기 등의 능동소자 특성이 현존하는 어떤 물질보다 우수한 III-V 화합물 반도체 소자를 동시 집적할 가능성을 최초로 입증한 연구로, 향후 통신 소자 등에 응용이 가능할 것으로 생각한다”라며 “이번 기술은 향후 양자 큐빗의 해독 회로에도 응용할 수 있어 그 확장성이 매우 큰 기술이다. 다양한 분야에서 활용할 수 있도록 후속 연구에 힘쓰겠다”라고 말했다. 한편 이번 연구는 한국연구재단 지능형반도체기술개발사업, 경기도 시스템반도체 국산화 연구지원 사업 등의 지원을 받아 수행됐다.
2021.06.14
조회수 52123
차세대 양자광원을 위한 반도체 양자점 대칭성 제어기술 개발
우리 대학 물리학과 조용훈 교수 연구팀이 LED에 널리 사용되는 질소화합물 반도체를 이용해 대칭성이 매우 높은 삼각형 형태의 양자점(퀀텀닷)을 형성하고 제어하는 데 성공, 광자들 사이에 얽힘을 발생시키는 차세대 양자광원 개발에 핵심적인 양자점 제어 기술을 갖추게 됐다고 13일 밝혔다. ‘얽힘(entanglement)’은 입자들이 쌍으로 상관관계를 가져 거리에 상관없이 얽혀 있는 쌍의 한쪽 특성을 측정하면 나머지 한쪽의 특성을 즉시 알게 되는 현상으로, 전문가들은 얽힘이라는 양자역학적인 현상을 활용하면 양자통신과 양자컴퓨팅과 같은 양자정보에 필요한 기술 개발과 함께 물리학적으로 새로운 주제들이 개척될 것으로 기대하고 있다. 반도체 양자점(Quantum Dot)은 원하는 순간에 광자를 한 개씩 방출하는 대표적인 고체 기반의 양자광 방출 소자로써 널리 연구되고 있다. 특히, 반도체 양자점의 대칭성을 제어해 양자점 내부의 미세 에너지 구조를 정교하게 조절할 수 있다면, 두 개의 광자를 양자얽힘 상태로 만드는 편광얽힘 광자쌍 방출이 원리적으로 가능하므로 이를 이용한 양자통신 및 양자컴퓨팅 분야에서 주목받고 있다. 격자구조를 갖는 반도체는 일반적으로 원자들을 한 층씩 천천히 쌓아 올리는 박막 증착기술을 통해 제작된다. 이때 발광층을 형성하기 위해 격자크기가 다른 층을 쌓게 돼 반도체 내부에 응력이 발생하게 되는데, 발광층이 갖는 응력을 에너지로 사용해 양자점이 무작위적으로 형성되므로 양자점의 크기의 균질성과 대칭성이 떨어지고 근본적으로 양자점의 위치와 모양을 제어할 수 없는 한계를 가진다. 따라서 얽힘 광자쌍 방출소자를 제작하기 위해서는 제작단계에서 위치와 대칭성을 제어할 수 있는 기술이 필수적이다. 한편, 청⦁녹색 LED에 사용되는 물질로 잘 알려진 질소화합물 반도체는 상온에서도 양자적인 특성을 유지할 수 있어 상온에서 안정적으로 구현할 수 있는 양자광원 소자의 후보 물질로도 주목받고 있다. 그러나, 이 물질계는 양자점의 대칭성이 조금만 무너져도 양자역학적 얽힘 특성을 쉽게 잃어버리게 되므로 높은 수준의 대칭성 제어 기술을 확보하지 않고는 실질적으로 구현이 쉽지 않은 한계가 있었다. 조용훈 교수 연구팀은 양자점의 위치와 대칭성을 높은 수준으로 제어하기 위해, 삼각형 형태의 나노 배열 패턴을 갖는 기판 위에 삼각 피라미드 형태를 갖는 질소화합물 반도체 나노 구조를 우선 제작했다. 이후 양자점을 성장하는 단계에서 나노 피라미드 꼭지점 부분의 기하학적 형태를 조절하면서, 열역학적 안정성에 의해 자체적으로 성장 방식이 조절되는 자기제한적 성장메커니즘을 적용했다. 그 결과 육각형 결정구조를 갖는 질소화합물 반도체에서 일반적으로 나타나는 육각 대칭성을 갖는 비균일한 양자점 대신, 삼각 대칭성을 갖는 고품위의 양자점을 최초로 구현함으로써 질소화합물 반도체 양자점의 대칭성을 정교하게 제어하는 데 성공했다. 연구팀은 제작된 나노 구조체의 발광을 분석하기 위해 공간분해능이 수 나노미터 수준으로 좋은 주사전자현미경을 이용해 발광을 측정, 삼각 피라미드의 꼭지점에 양자점이 안정적으로 형성되었음을 확인했고, 시간에 따른 광자 간 상관관계 측정을 통해 양자광이 방출되는 것을 실험적으로 관측했다. 또한, 성장된 양자점의 비대칭성 정도를 가늠할 수 있는 양자광의 편광도와 미세구조 분리 정도를 측정해 높은 대칭성을 갖는 삼각 양자점이 형성되었음을 실험적으로 확인했으며, 이를 이론적 계산 결과와 비교함으로써 측정 결과의 타당성을 확보했다. 이번 연구에서는 기존에 질화물 반도체 양자점의 비대칭성과 높은 편광도를 이용해 상온 단일광자 방출기 제작에 집중해 오던 방식에서 벗어나, 양자점의 대칭성을 정밀하게 조절해 편광얽힘 광자쌍 방출기로도 응용 가능함을 제안했다. 또한 범용 반도체 박막 증착장비와 미세 패턴 기술을 사용했기 때문에 산업적인 측면에서 확장성이 높을 것으로 기대된다. 연구를 주도한 조용훈 교수는 "반도체 양자점을 제작하는 과정에서 발생하는 양자점의 비대칭성을 효과적으로 제어하여 양자점 내부의 미세 에너지 구조를 정교하게 조절할 수 있음을 보여준 결과”라며, “상온에서도 동작이 가능한 질소화합물 반도체 양자점을 이용해 편광얽힘 광자쌍 방출소자와 같은 차세대 양자광원 개발에 활용될 수 있을 것”이라고 의미를 말했다. 우리 대학 물리학과 여환섭 박사가 제1 저자로 참여한 이번 연구 결과는 삼성미래기술육성사업 등의 지원을 받아 수행됐으며, 나노분야 국제 학술지인 `나노 레터스(Nano Letters)' 12월 9일 字에 보충 표지와 함께 정식 출간됐다. (논문명: Control of 3-fold symmetric shape of group III-nitride quantum dots: Suppression of fine structure splitting / 질소화합물 반도체 양자점의 삼각 대칭적 모양 제어: 미세구조 분리현상의 완화)
2020.12.14
조회수 47238
메모리-중심 인공지능 가속기 시스템 개발
삼성미래기술육성재단이 지원한 우리 대학 연구진이 세계 최초로 `프로세싱-인-메모리(Processing-In-Memory, 이하 PIM)' 기술을 기반으로 한 인공지능 추천시스템 학습 알고리즘 가속에 최적화된 지능형 반도체 시스템 개발에 성공했다. 전기및전자공학부 유민수 교수 연구팀은 PIM 기술 기반의 메모리-중심 인공지능 가속기 반도체 시스템을 개발했다고 16일 밝혔다. 유 교수는 관련 분야에서 그동안의 탁월한 연구 성과를 인정받아 올해 아시아에서 유일하게 페이스북 패컬티 리서치 어워드(Facebook Faculty Research Award)를 수상했다. 인공지능 기술을 기반으로 고안된 추천시스템 알고리즘은 구글(Google), 페이스북(Facebook), 유튜브(YouTube), 아마존(Amazon) 등 빅테크 기업들이 콘텐츠 추천 및 개인 맞춤형 광고를 제작하는데 기반이 되는 핵심 인공지능 (AI) 기술이다. 온라인 광고를 통한 수입은 구글과 페이스북과 같은 실리콘밸리의 빅테크 기업의 주 수익 모델인 만큼 고도화된 추천 인공지능 기술에 대한 수요는 최근 들어 급상승하는 추세다. 페이스북이 최근 공개한 자료에 따르면 페이스북 데이터센터에서 처리되는 인공지능 연산의 70%가 추천 알고리즘을 처리하는 데에 사용되며, 인공지능 알고리즘 학습을 위한 컴퓨팅 자원의 50%를 추천 알고리즘을 학습하는 데 사용하고 있다. 유민수 교수 연구팀은 최근 메모리 반도체에 인공지능 연산 기능이 추가된 프로세싱-인-메모리(PIM) 기술 기반의 지능형 반도체 시스템을 개발하는 데 성공했다. 유 교수팀이 개발한 이 시스템은 인공지능 추천시스템 알고리즘의 학습 과정을 엔비디아(NVIDIA)의 그래픽카드(GPU)를 사용하는 기존 인공지능 가속 시스템 대비 최대 21배까지 빠르다고 연구팀 관계자는 설명했다. 지능형 메모리 반도체 기술은 우리나라의 AI 반도체 세계시장 공략을 위한 핵심기술로 주목받고 있다. 특히 정부에서도 `AI 종합 반도체 강국 실현'이라는 비전 아래 막대한 국가적 투자를 아끼지 않는 핵심 투자 분야다. 따라서 유 교수팀의 연구 성과는 향후 막대한 수요와 급성장이 예상되는 세계 AI 반도체 시장에서 메모리-중심으로 설계된 PIM 기술의 상용화 및 성공 가능성을 시사한다는 점에서 의미가 크다고 전문가들은 평가하고 있다. 유민수 교수는 서강대와 KAIST에서 각각 학사와 석사를 거쳐 미국 텍사스 오스틴 주립대에서 박사학위를 취득한 후 지난 2014년 인공지능 컴퓨팅 기술 기업인 미국 엔비디아(NVIDIA) 본사에 입사했다. 엔비디아에 입사한 이후 줄곧 인공지능 컴퓨팅 가속을 위한 다양한 하드웨어 및 소프트웨어 시스템 연구를 주도했으며 지난 2018년부터 우리 대학 전기및전자공학부 교수로 재직 중이다. 전기및전자공학부 권영은 박사과정이 제1 저자, 이윤재 석사과정이 제2 저자로 참여한 이번 연구 결과는 세계 최초의 추천시스템 학습용 가속기 시스템 개발 성과라는 학술 가치를 인정받아 컴퓨터 시스템 구조 분야 최우수 국제 학술대회인 IEEE International Symposium on High-Performance Computer Architecture(HPCA)에서 `Tensor Casting: Co-Designing Algorithm-Architecture for Personalized Recommendation Training' 이라는 논문 제목으로 내년 2월에 발표된다.
2020.11.16
조회수 32741
MOSFET보다 빠른 저전력 트랜지스터 개발
우리 대학 물리학과 조성재 교수 연구팀이 기존의 금속 산화물 반도체 전계효과 트랜지스터(metal-oxide-semiconductor field-effect transistor, MOSFET) 대비 작동 전력 소모량이 10배 이상 낮고 동작 속도가 2배 이상 빠른 저전력, 고속 터널 트랜지스터를 개발했다. 이제까지 구현된 저전력 트랜지스터 중 MOSFET보다 빠른 트랜지스터의 개발은 최초이다. 조 교수 연구팀은 흑린(black phosphorus)의 두께에 따라 밴드갭이 변하는 독특한 성질을 이용해 트랜지스터 채널을 구성함으로써 전력소모를 줄이고, 단층 붕화 질소 (hexagonal boron nitride)를 트랜지스터의 drain 접합에 이용해 터널 트랜지스터의 작동 상태 전류를 높이는데 성공했다. 이제까지의 저전력 트랜지스터는 전력 소모는 낮지만, 작동 상태 전류가 기존 MOSFET에 비해 현저히 작아서 작동 속도가 느린 문제점이 있었다. 김성호 연구원이 1 저자로 참여한 이번 연구는 국제 학술지 ‘나노 레터스 (Nano Letters)’ 4월 24일 자 온라인판에 게재됐다. (논문명 : Monolayer Hexagonal Boron Nitride Tunnel Barrier Contact for Low-Power Black Phosphorus Heterojunction Tunnel Field-Effect Transistors) 트랜지스터의 전력 소모를 감소시키기 위해서는 트랜지스터의 작동 전압과 대기 상태 전류를 동시에 낮추는 것이 필수적이다. 이를 위해서는 subthreshold swing (SS, 전류를 10배 증가시키는데 필요한 전압값, 단위: mV/decade = mV/dec)을 낮추는 것이 필요한데, 기존의 MOSFET은 thermal carrier injection mechanism 때문에 SS 값이 상온에서 60 mV/dec 이하로 낮아질 수 없다는 한계를 지닌다. band-to-band-tunneling을 carrier injection mechanism으로 가지는 터널 트랜지스터는 상온에서 SS 값이 60 mV/dec 미만으로 낮아질 수 있기 때문에 MOSFET을 대체할 수 있는 저전력 소자로 제안되어왔다. 지난 1월 조교수 연구팀은 흑린을 사용하여 60 mV/dec미만의 SS를 가지는 저전력 트랜지스터를 개발하는데 성공하여 Nature Nanotechnology에 결과를 보고하였다. 하지만, 그 결과 또한 여전히 작동 상태 전류, 특히 SS = 60 mV/dec인 지점에서의 전류가 0.6 μA/μm로 MOSFET의 threshold에서의 전류값 1-10μA/μm보다 낮은 한계가 있었다. 조 교수 연구팀은 본 연구에서 단층 붕화 질소를 활용하여 지난 연구의 한계를 극복하고 SS = 60mV/dec 지점에서의 작동 상태 전류를 Nature Nanotechnology에 보고한 저전력 흑린 트랜지스터에서의 결과보다 10배 이상 크고, MOSFET의 threshold에서의 전류값보다도 큰 20 μA/μm을 달성했다. 흑린(black phosphorus)의 두께에 따라 밴드갭이 변하는 독특한 성질을 이용해 트랜지스터 채널을 구성함으로써 전력소모를 줄이고, 단층 hexagonal boron nitride를 트랜지스터의 drain 접합에 이용해 터널 트랜지스터의 작동 속도를 높이는데 성공하여 저전력 고속 트랜지스터의 구성 요건을 완성했다는 점에서 큰 의의가 있다. 조성재 교수는 “흑린 이종접합 트랜지스터가 기존의 어떤 트랜지스터보다 저전력, 고속으로 작동하는 것을 확인했다. 이는 기존 실리콘 기반의 MOSFET을 대체할 수 있는 새로운 트랜지스터의 가능성을 보여주는 결과이다.”라며 “이번 연구 결과를 바탕으로 기초 반도체 물리학 및 비메모리 반도체 산업에 다양한 응용이 가능할 것으로 기대한다.”라고 말했다. 이번 연구는 한국연구재단 미래반도체신소자원천기술개발사업의 지원을 받아 수행됐다.
2020.05.06
조회수 12900
70년 만에 준-페르미 준위 분리 현상 제1 원리적으로 규명
국내 연구진이 70년 난제로 꼽히던 준-페르미 준위 분리 현상의 원자 수준 규명에 성공했다. 우리 대학 전기및전자공학부 김용훈 교수 연구팀이 반도체 소자 동작의 기원인 준-페르미 준위(quasi-Fermi level) 분리 현상을 제1 원리적으로 기술하는 데 최초로 성공했다고 27일 밝혔다. 제1 원리적인 방법이란 실험적 데이터나 경험적 모델을 사용하지 않고 슈뢰딩거 방정식을 직접 푸는 양자역학적 물질 시뮬레이션 방법이다. 김용훈 교수 연구팀의 연구 결과는 특히 비평형 상태의 나노 소자 내에서 발생하는 복잡한 전압 강하의 기원을 새로운 이론 체계와 슈퍼컴퓨터를 통해 규명함으로써, 다양한 첨단 반도체 소자의 분석 및 차세대 나노 소자 개발을 위한 이론적 틀을 제공할 것으로 기대되고 있다. 이주호 박사과정 학생이 제1 저자로 참여한 이번 연구 성과는 국제학술지 미국‘국립과학원회보(Proceedings of the National Academy of Sciences)’ 4월 23일 字 온라인판에 게재됐다. (논문명: Quasi-Fermi level splitting in nanoscale junctions from ab initio) 반도체 관련 교과서에도 소개되고 있는 준-페르미 준위 개념은 반도체 소자 내 전압인가 상황을 기술하는 표준적인 이론 도구로서 그동안 트랜지스터, 태양전지, 발광다이오드(LED) 등 다양한 반도체 소자들의 구동 원리를 이해하거나 성능을 결정하는데 경험적으로 사용돼왔다. 하지만 준-페르미 준위 분포 현상은 1956년 노벨 물리학상 수상자 윌리엄 쇼클리(William B. Shockley)가 제시한 지 70년이 지난 현재에도 전압 인가 상황의 반도체 소자 채널 내에서 측정을 하거나 계산을 해야 하는 어려움 때문에 원자 수준에서는 이해되지 못한 상황이 계속돼왔다. 연구팀은 차세대 반도체 소자의 후보군으로 주목을 받는 단일분자 소자에서, 나노미터 길이에서 발생하는 복잡한 전압 강하 현상을 최초로 규명해냈다. 특히 전도성이 강한 특정 나노 전자소자에 대해 비 선형적 전압 강하 현상이 일어나는 원인이 준-페르미 준위 분리 현상임을 밝혔다. 이러한 연구 성과는 김 교수 연구팀이 다년간에 걸쳐 새로운 반도체 소자 제1 원리 계산 이론을 확립하고 이를 소프트웨어적으로 구현했기에 가능했다. 이는 외산 소프트웨어에만 의존하던 반도체 설계 분야에서 세계적으로 경쟁력 있는 차세대 나노소자 전산 설계 원천기술을 확보했다는 점에서 큰 의미를 부여할 수 있다. 한편 이번 연구는 과학기술정보통신부 중견연구자지원사업, 나노소재원천기술개발사업, 기초연구실지원사업, 글로벌프론티어사업의 지원을 받아 수행됐다.
2020.04.27
조회수 15278
스스로 그림 그리는 인공지능 반도체 칩 개발
전기및전자공학부 유회준 교수 연구팀이 생성적 적대 신경망(GAN: Generative Adversarial Network)을 저전력, 효율적으로 처리하는 인공지능(AI: Artificial Intelligent) 반도체를 개발했다. 연구팀이 개발한 인공지능 반도체는 다중-심층 신경망을 처리할 수 있고 이를 저전력의 모바일 기기에서도 학습할 수 있다. 연구팀은 이번 반도체 칩 개발을 통해 이미지 합성, 스타일 변환, 손상 이미지 복원 등의 생성형 인공지능 기술을 모바일 기기에서 구현하는 데 성공했다. 강상훈 박사과정이 1 저자로 참여한 이번 연구결과는 지난 2월 17일 3천여 명 반도체 연구자들이 미국 샌프란시스코에 모여 개최한 국제고체회로설계학회(ISSCC)에서 발표됐다. (논문명 : GANPU: A 135TFLOPS/W Multi-DNN Training Processor for GANs with Speculative Dual-Sparsity Exploitation) 기존에 많이 연구된 인공지능 기술인 분류형 모델(Discriminative Model)은 주어진 질문에 답을 하도록 학습된 인공지능 모델로 물체 인식 및 추적, 음성인식, 얼굴인식 등에 활용된다. 이와 달리 생성적 적대 신경망(GAN)은 새로운 이미지를 생성·재생성할 수 있어 이미지 스타일 변환, 영상 합성, 손상된 이미지 복원 등 광범위한 분야에 활용된다. 또한, 모바일 기기의 다양한 응용 프로그램(영상·이미지 내 사용자의 얼굴 합성)에도 사용돼 학계뿐만 아니라 산업계에서도 주목을 받고 있다. 그러나 생성적 적대 신경망은 기존의 딥러닝 네트워크와는 달리 여러 개의 심층 신경망으로 이루어진 구조로, 개별 심층 신경망마다 다른 요구 조건으로 최적화된 가속을 하는 것이 어렵다. 또한, 고해상도 이미지를 생성하기 위해 기존 심층 신경망 모델보다 수십 배 많은 연산량을 요구한다. 즉, 적대적 생성 신경망은 연산 능력이 제한적이고 사용되는 메모리가 작은 모바일 장치(스마트폰, 태블릿 등)에서는 소프트웨어만으로 구현할 수 없었다. 최근 모바일 기기에서 인공지능을 구현하기 위해 다양한 가속기 개발이 이뤄지고 있지만, 기존 연구들은 추론 단계만 지원하거나 단일-심층 신경망 학습에 한정돼 있다. 연구팀은 단일-심층 신경망뿐만 아니라 생성적 적대 신경망과 같은 다중-심층 신경망을 처리할 수 있으면서 모바일에서 학습도 가능한 인공지능 반도체 GANPU(Generative Adversarial Networks Processing Unit)를 개발해 모바일 장치의 인공지능 활용범위를 넓혔다. 연구팀이 개발한 인공지능 반도체는 서버로 데이터를 보내지 않고 모바일 장치 내에서 생성적 적대 신경망(GAN)을 스스로 학습할 수 있어 사생활을 보호를 가능케 하는 프로세서라는 점에서 그 활용도가 기대된다. 모바일 기기에서 저전력으로 다중-심층 신경망을 가속하기 위해서 다양한 핵심 기술이 필요하다. 연구팀이 개발한 GANPU에 사용된 핵심 기술 중 대표적인 기술 3가지는 ▲적응형 워크로드 할당(ASTM, 처리해야 할 워크로드*를 파악해 칩 상의 다중-심층 신경망의 연산 및 메모리 특성에 맞춰 시간·공간으로 나누어 할당함으로써 효율적으로 가속하는 방법) ▲입출력 희소성 활용 극대화(IOAS, 인공신경망 입력 데이터에서 나타나는 0뿐만 아니라 출력의 0도 예측해 연산에서 제외함으로써 추론 및 학습 과정에서의 속도와 에너지효율 극대화) ▲지수부만을 사용한 0 패턴 추측(EORS, 인공신경망 출력의 0을 예측하기 위한 알고리즘으로 인공신경망 입력과 연결 강도(weight)의 부동소수점 데이터 중 지수 부분만을 사용해 연산을 간단히 수행하는 방법)이다. 위의 기술을 사용함으로써 연구팀의 GANPU는 기존 최고 성능을 보이던 심층 신경망 학습 반도체 대비 4.8배 증가한 에너지효율을 달성했다. 연구팀은 GANPU의 활용 예시로 태블릿 카메라로 찍은 사진을 사용자가 직접 수정할 수 있는 응용 기술을 시연했다. 사진상의 얼굴에서 머리·안경·눈썹 등 17가지 특징에 대해 추가·삭제 및 수정사항을 입력하면 GANPU가 실시간으로 이를 자동으로 완성해 보여 주는 얼굴 수정 시스템을 개발했다.
2020.04.06
조회수 16707
50년 만에 스핀구름 존재 규명
물리학과 심흥선 교수 연구팀(응집상 양자 결맞음 선도연구센터)이 금속과 반도체 안에서 불순물의 자성을 양자역학적으로 가리는 스핀 구름의 존재를 규명하는 데 성공했다. 이는 50년 동안 입증되지 않아 논란이 있던 스핀 구름의 존재를 밝힌 것으로, 향후 차세대 양자정보 소자 개발 등에 활용할 수 있을 것으로 기대된다. 일본이화학연구소(RIKEN), 홍콩성시대학(City University of Hong Kong)과 공동으로 수행하고 KAIST 물리학과 심정민 박사과정 학생이 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처(Nature)’ 3월 12일 자에 게재됐다. (논문명 : Observation of the Kondo screening cloud) 도체나 반도체 내의 잉여 전하는 주위 자유 전자들의 전하 구름에 의해 가려진다. 이와는 근본적으로 원리가 다르지만, 도체나 반도체 내 불순물이 스핀을 가질 때, 이 스핀은 주위의 자유 전자들에 의해 생성된 스핀 구름에 의해 가려진다고 알려져 있다. 콘도 효과 (Kondo effect)라고 불리는 이 현상은 충분히 낮은 온도에서 발현되는 양자역학적 현상으로 대표적 자성 현상이다. 콘도 효과의 여러 특성들은 대부분 규명됐으나 스핀 구름의 존재가 입증되지 않은 채 남아있었다. 지난 50년 동안 다양한 시도들이 꾸준히 있었으나 스핀 구름은 발견되지 않았고, 이에 따라 스핀 구름이 실제로 존재하는 것인가에 대한 논쟁이 있었다. 스핀 구름이 다양한 자성 현상에서 중요한 역할을 할 것으로 예측됐기 때문에, 스핀 구름을 발견하고 제어하는 것은 관련 학계에서 성배를 찾는 것과 같은 정도의 중요성으로 비유됐다. 심 교수 연구팀은 일본 이화학연구소와 홍콩성시대학의 연구진들과 공동 연구를 통해 콘도 스핀 구름을 최초로 발견했다. 발견한 스핀 구름의 크기는 마이크로미터(10-6 미터)에 달한다. 연구팀은 스핀 구름을 전기 신호를 이용해 관측하는 방법을 2013년에 선행연구로 제안한 바 있다. 이 선행연구에서는 전기장을 스핀 구름 내부에 가한 경우와 외부에 가한 경우에 각각 서로 다른 전류가 발생함을 예측했고, 이를 이용해 스핀 구름 공간 분포의 관측을 제안했다. 심 교수 연구팀의 제안에 따라 일본이화학연구소와 홍콩성시대학의 연구팀은 양자점을 이용해 반도체에 불순물 스핀을 인위적으로 생성하고, 생성된 불순물 주변에 서로 다른 여러 곳에 전기장을 인가할 수 있는 양자 소자를 제작하는 실험을 수행했다. 100mK(밀리켈빈)의 낮은 온도에서 관측된 소자의 전기 신호를 심 교수 연구팀에서 분석한 결과, 발견된 스핀 구름의 크기와 공간 분포는 이론 예측과 일치했고 그 크기는 수 마이크로미터(10-6 미터)로 확인됐다. 심흥선 교수는 “스핀 구름의 존재 입증은 학계의 숙원으로, 이번 연구에서 스핀 구름이 발견된 만큼 스핀 구름에 대한 후속 연구들이 활성화될 것으로 기대된다”라며, “스핀 구름을 전기적으로 제어해 미해결 자성 문제들을 이해하는 데에 활용할 수 있을 뿐 아니라, 스핀 구름의 양자 얽힘 특성을 기반으로 해 차세대 양자정보 소자를 개발할 수 있다”라고 말했다. 이 연구는 한국연구재단의 기초과학 선도연구센터 지원사업의 지원을 통해 수행됐다.
2020.03.13
조회수 13827
저전력·고속 터널 전계효과 트랜지스터 개발
물리학과 조성재 교수 연구팀이 기존의 금속 산화물 반도체 전계효과 트랜지스터(metal-oxide-semiconductor field-effect transistor, MOSFET) 대비 작동전력 소모량이 10배 이상, 대기전력 소모량이 1만 배 가까이 적은 저전력, 고속 트랜지스터를 개발했다. 조 교수 연구팀은 2차원 물질인 흑린(black phosphorus)의 두께에 따라 밴드갭이 변하는 독특한 성질을 이용해 두 물질의 접합이 아닌 단일 물질의 두께 차이에 의한 이종접합 터널을 제작하는 데 성공했다. 이러한 단일 물질의 이종접합을 터널 트랜지스터에 활용하면 서로 다른 물질로 제작한 이종접합 트랜지스터에서 발생했던 격자 불균형, 결함, 계면 산화 등의 문제를 해결할 수 있어 고성능 터널 트랜지스터의 개발이 가능하다. 김성호 연구원이 1 저자로 참여한 이번 연구는 국제 학술지 ‘네이처 나노테크놀로지 (Nature Nanotechnology)’ 1월 27일 자 온라인판에 게재됐다. (논문명 : Thickness-controlled black phosphorus tunnel field-effect transistor fro low-power switches). 무어 법칙에 따른 트랜지스터 소형화 및 집적도 증가는 현대의 정보화 기술을 가능하게 했지만 최근 트랜지스터의 소형화가 양자역학적 한계에 다다르면서 전력 소모가 급격히 증가해 이제는 무어 법칙에 따라 트랜지스터 소형화가 진행되지 못하는 상황이다. 최근에는 자율주행차, 사물인터넷 등의 등장으로 많은 양의 데이터를 저전력, 고속으로 처리할 수 있는 비메모리 반도체의 기술 발달이 시급히 요구되고 있다. 트랜지스터의 전력 소모는 크게 작동 전력 소모와 대기 전력 소모로 나뉜다. 작동 전력과 대기 전력을 같이 낮추기 위해서는 트랜지스터의 작동 전압과 대기 상태 전류를 동시에 낮추는 것이 필수적이다. 이를 위해서는 전류를 10배 증가시키는데 필요한 전압으로 정의되는 SS 값(subthreshold swing, 단위: mV/decade = mV/dec)의 감소가 필요한데, 금속 산화물 반도체 전계효과 트랜지스터에서는 SS 값이 상온에서 60 mV/dec 이하로 낮아질 수 없다. 이를 해결하기 위해서는 상온에서 SS 값을 60 mV/dec 이하로 낮출 수 있는 새로운 트랜지스터의 개발이 필요하다. 이전에 개발되었던 낮은 SS를 가지는 저전력 터널 트랜지스터의 경우 트랜지스터 채널을 구성하는 두 물질의 이종접합 계면에서 산화막 등의 문제가 발생하여 작동 상태에서 낮은 전류를 가지는 문제가 있었다. 작동 상태 전류는 트랜지스터 작동속도에 비례하기 때문에, 낮은 작동 상태 전류는 저전력 트랜지스터의 경쟁력을 떨어뜨린다. 조 교수 연구팀이 적은 전력소모를 위한 낮은 SS 값과 고속 작동을 위한 높은 작동 상태 전류를 단일 트랜지스터에서 동시에 달성한 것은 유례없는 일로 2차원 물질 기반의 저전력 트랜지스터가 기존의 금속 산화물 반도체 전계효과 트랜지스터의 전력 소모 문제를 해결하고, 궁극적으로 기존 트랜지스터를 대체하고 미래의 저전력 대체 트랜지스터가 될 수 있음을 의미한다. 조성재 교수는 “이번 연구는 기존의 어떤 트랜지스터보다 저전력, 고속으로 작동해 실리콘 기반의 CMOS 트랜지스터를 대체할 수 있는 저전력 소자의 필요충분조건을 최초로 만족시킨 개발이다”라며 “대한민국 비메모리 산업뿐 아니라 세계적으로 기초 반도체 물리학 및 산업 응용에 큰 의의를 지닌다”라고 말했다. 이번 연구는 한국연구재단 미래반도체신소자원천기술개발사업의 지원을 받아 수행됐다.
2020.02.20
조회수 16313
김상현 교수, 6만 ppi 초고해상도 디스플레이 제작기술 개발
〈 김상현 교수 연구팀(왼쪽 위 두번째 김상현 교수) 〉 우리 대학 전기및전자공학부 김상현 교수 연구팀이 반도체 공정 기술을 활용해 기존 마이크로 LED 디스플레이의 해상도 한계를 극복할 수 있는 6만 ppi(pixel per inch) 이상의 초고해상도 디스플레이 제작 가능 기술을 개발했다. 금대명 박사가 1 저자로 참여한 이번 연구는 국제학술지 ‘나노스케일(Nanoscale)’ 12월 28일자 표지 논문으로 게재됐다. (논문명 : Strategy toward the fabrication of ultrahigh-resolution micro-LED displays by bonding interface-engineered vertical stacking and surface passivation). 디스플레이의 기본 단위인 LED 중 무기물 LED는 유기물 LED보다 높은 효율, 높은 신뢰성, 고속성을 가져 마이크로 크기의 무기물 LED를 픽셀 화소로 사용하는 디스플레이(마이크로 LED 디스플레이)가 새로운 디스플레이 기술로 주목받고 있다. 무기물 LED를 화소로 사용하기 위해서는 적녹청(R/G/B) 픽셀을 밀집하게 배열해야 하지만, 현재 적색과 녹색, 청색을 낼 수 있는 LED의 물질이 달라 각각 제작한 LED를 디스플레이 기판에 전사해야 한다. 따라서 마이크로 LED 디스플레이에 관련한 대부분 연구가 이런 패키징 측면의 전사 기술 위주로 이루어지고 있다. 그러나 수백만 개의 픽셀을 마이크로미터 크기로 정렬해 세 번의 전사과정으로 화소를 형성하는 것은 전사 시 사용하는 LED 이송헤드의 크기 제한, 기계적 정확도 제한, 그리고 수율 저하 문제 등 해결해야 할 기술적 난제들이 많아 초고해상도 디스플레이에 적용하기에는 한계가 있다. 연구팀은 문제 해결을 위해 적녹청 LED 활성층을 3차원으로 적층한 후, 반도체 패터닝 공정을 이용해 초고해상도 마이크로 LED 디스플레이에 대응할 수 있는 소자 제작 방법을 제안함과 동시에 수직 적층시 문제가 될 수 있는 색의 간섭 문제, 초소형 픽셀에서의 효율 개선 방안을 제시했다. 연구팀은 3차원 적층을 위해 기판 접합 기술을 사용했고, 색 간섭을 최소화하기 위해 접합 면에 필터 특성을 갖는 절연막을 설계해 적색-청색 간섭 광을 97% 제거했다. 이러한 광학 설계를 포함한 접합 매개물을 통해 수직으로 픽셀을 결합해도 빛의 간섭 없이 순도 높은 픽셀을 구현할 수 있음을 확인했다. 연구팀은 수직 결합 후 반도체 패터닝 기술을 이용해 6만 ppi 이상의 해상도 달성 가능성을 증명했다. 또한, 초소형 LED 픽셀에서 문제가 될 수 있는 반도체 표면에서의 비 발광성 재결합 현상을 시간 분해 광발광 분석과 전산모사를 통해 체계적으로 조사해 초소형 LED의 효율을 개선할 수 있는 중요한 방향성을 제시했다. 김상현 교수는 “반도체 공정을 이용해 초고해상도의 픽셀 제작 가능성을 최초로 입증한 연구로, 반도체와 디스플레이 업계 협력의 중요성을 보여주는 연구 결과이다”라며 “후속 연구를 통해 초고해상도 미래 디스플레이의 기술 개발에 힘쓰겠다”라고 말했다. 이번 연구는 한국연구재단 이공분야 기초연구사업 기본연구, 기후변화대응기술개발사업 등의 지원을 받아 수행됐다. □ 그림 설명 그림 1. 1um 크기를 가진 마이크로 단일 LED 가 실제로 배열된 모습을 보여주는 이미지, 1 um, 0.6 um 크기를 가진 LED를 광 여기 방법을 통해 적색 발광이 되는 모습을 보여주는 이미지(작은 사진). 이는 작아진 LED에서도 적색 발광특성이 잘 발현됨을 보여줌. 그림 2. 나노스케일 커버 이미지: 본 제작 방법의 사용 예시를 보여줌
2020.01.06
조회수 17233
신병하 교수, 홀 효과 한계 보완한 새 반도체 분석기술 개발
〈 신병하 교수, 배성열 박사과정 〉 우리 대학 신소재공학과 신병하 교수와 IBM 연구소의 오키 구나완(Oki Gunawan) 박사 공동 연구팀이 반도체 특성 분석의 핵심 기술인 홀 효과(Hall effect)의 한계를 넘을 수 있는 새로운 반도체 정보 분석 기술을 개발했다. 이번 연구는 140년 전에 처음 발견된 이래로 반도체 연구 및 재료 분석의 토대가 된 홀 효과 측정에 대한 새로운 발견으로 향후 반도체 기술 개발에 이바지할 수 있을 것으로 기대된다. 신병하 교수와 오키 구나완 박사가 교신 저자로, 배성열 박사과정이 2 저자로 참여한 이번 연구 결과는 국제 학술지‘네이처(Nature)’ 10월 07일 자 온라인판에 게재됐으며 11월 07일 정식 게재됐다. (논문명: Carrier-Resolved Photo Hall Effect) 1879년 에드윈 홀(Edwin Hall)이 발견한 홀 효과는 물질의 전하 특성(유형, 밀도, 이동성 또는 속도)에 대한 중요한 정보를 제공한다. 이는 반도체 소자를 이해하고 설계하는 데 필요한 가장 기본적인 특성들이다. 이러한 이유로 홀 효과는 지난 100년이 넘는 시간 동안 가장 일반적인 반도체 특성 분석 기법의 하나며 전 세계의 반도체 연구기관에서 보편적으로 사용되고 있다. 그러나 현재까지의 분석 기법으로는 홀 효과를 통해 다수 운반체(Majority carrier)와 관련한 특성만 파악할 수 있고, 태양 전지와 같은 소자의 구동 원리 파악에 필수인 소수 운반체(Minority carrier) 정보는 얻을 수 없다는 한계를 가지고 있었다. 연구팀은 문제 해결을 위해 ‘포토 홀 효과(Carrier-Resolved Photo-Hall" (CRPH))’ 기술을 개발했다. 이 기술을 사용하면 한 번의 측정으로 다수 운반체 및 소수 운반체에 대한 많은 정보를 동시에 추출할 수 있다. 기존 홀 측정에서는 세 가지 정보를 얻을 수 있었다면 연구팀의 새로운 기술은 실제 작동 조건을 포함한 여러 광도에서 광여기 전하의 농도, 다수 운반체 및 소수 운반체의 전하 이동도, 재결합 수명, 확산 거리 등 최대 일곱 개의 중요한 정보를 얻을 수 있다. 연구팀의 이 기술은 태양 전지, 발광 다이오드와 같은 광전자 소자 분야에서 사용 가능한 신소재 개발 및 최적화에 핵심적인 역할을 할 것으로 기대된다. 신 교수는 “지난 2년간의 연구가 좋은 결심을 맺게 되어 기쁘고, 이 기술을 통해 새로운 광소자 물질의 전하 수송 특성을 이해하고 더 나은 소자를 개발하는 데 큰 도움이 되리라 믿는다”라고 말했다. 이번 연구는 한국연구재단 기후변화대응기술개발사업, 산업통상자원부와 한국에너지기술평가원(KETEP) 에너지기술개발사업의 지원을 통해 수행됐다. □ 그림 설명 그림1. 포토 홀 효과 개념도
2019.11.14
조회수 13308
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
>
다음 페이지
>>
마지막 페이지 8