본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%97%B0%EA%B5%AC%EC%9E%90
최신순
조회순
김용훈 교수, 차세대 탄소섬유 개발 위한 이론 규명
우리 대학 EEWS대학원 김용훈 교수 연구팀이 고품질 탄소섬유 개발에 필요한 고분자 전구체와 저차원 탄소 나노소재 간 계면의 원자구조 및 전자구조적 특성을 규명했다. 이번 연구로 차세대 탄소섬유 개발의 이론적 청사진을 제시할 것으로 기대된다. 이주호 박사과정이 1저자로 참여한 이번 연구 성과는 국제 과학 학술지인 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 4월 11일자에 속표지(Inside Back Cover) 논문으로 게재됐다. 탄소섬유는 매우 가벼우면서도 뛰어난 기계적, 열적 특성을 갖고 있기 때문에 초경량 자전거, 골프 클럽 등 스포츠 용품부터 자동차, 항공우주, 원자력 등 다양한 첨단 기술 분야에 활발히 활용되고 있는 신소재이다. 탄소섬유는 전구체(precursor) 고분자를 방사, 안정화 및 탄화 등의 작업을 통해 얻어지며 현재 폴리아크릴로나이트릴(polyacrylonitrile, PAN)이 탄소섬유의 주 전구체로 사용되고 있다. 고품질 차세대 탄소섬유를 얻는 방법으로 탄소나노튜브(carbon nanotube, CNT)를 탄소섬유 전구체 고분자 매트릭스에 분산시켜 고분자의 결정성을 높이는 연구가 대표적이다. 탄소나노튜브와 전구체 고분자의 조합이 탄소섬유의 물성을 향상시킬 수 있다는 것도 실험을 통해 확인된 바 있다. 그러나 20년 이상의 연구에도 탄소나노튜브와 전구체 고분자 간 상호작용에 대한 이해는 실험적 접근법의 어려움으로 인해 부족한 상황이다. 따라서 탄소나노튜브를 활용한 고품질 탄소섬유 제작 기술은 한계가 있었다. 김 교수 연구팀은 슈퍼컴퓨터를 활용해 양자역학적 제1원리 기반 멀티스케일 시뮬레이션을 수행해 대표적인 탄소섬유 전구체인 폴리아크릴로나이트릴 고분자가 탄소나노튜브 계면에서 배열되는 과정을 원자 수준에서 체계적으로 재현했다. 또한 탄소나노튜브-폴리아크릴로나이트릴 고분자 계면이 특히 좋은 특성을 보일 수 있는 이유를 연구했다. 폴리아크릴로나이트릴 고분자의 단위체가 누워있는 형태의 특정 원자구조를 선호하고, 이 때 양전하와 음전하가 균형 있게 이동하는 계면 특유의 특성이 발현되므로 이 계면 구조를 최대화 시키는 것이 최적의 대규모 폴리아크릴로나이트릴 고분자 정렬을 유도할 수 있음을 밝혔다. 또한 폴리아크릴로나이트릴 고분자의 정렬도가 그래핀 나노리본과의 계면에서 극대화되는 것을 확인해 최근 각광을 받고 있는 그래핀을 이용해 탄소 섬유의 품질을 더욱 향상시킬 수 있다는 가능성도 제시했다. “김 교수는 양자역학에 기반한 전산모사가 첨단 소재·소자의 개발을 위한 기본원리를 제공해 줄 수 있음을 보여준 연구의 예다”며 “이러한 전산모사 연구의 중요성은 컴퓨터 성능 및 전산모사 이론체계의 비약적인 발전과 더불어 더욱 커질 것이다”라고 말했다. 이번 연구는 미래창조과학부 중견연구자지원사업, 나노소재원천기술개발사업, 기초연구실지원사업, 글로벌프론티어사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 어드밴스드 펑셔널 머티리얼즈 표지 그림2. 연구 개요 모식도
2018.04.26
조회수 20222
김유천 교수, 부작용 낮춘 레이저 치료제 개발
〈 노 일 구 박사과정, 김 유 천 교수 〉 우리 대학 생명화학공학과 김유천 교수 연구팀이 기존 광역학 치료제(PhotoDynamic Therapy, 이하 PDT)의 단점을 보완한 근적외선 형광물질 기반의 PDT를 개발했다. 노일구 박사과정이 1저자로 참여하고 바이오및뇌공학과 박지호 교수 연구팀이 공동으로 참여한 이번 연구 결과는 국제 학술지 ‘어드밴스드 사이언스(Advanced Science)’ 2018년도 3월 25일자 표지논문에 게재됐다. PDT는 약물이나 유전자가 아닌 빛을 이용하는 치료법으로 레이저를 특정부위에 쬐어 산소를 독성을 갖는 활성산소로 변화시켜 세포를 자가 사멸(apoptosis)로 유도할 수 있는 기술이다. 이 기술은 피부병 치료 등 일상에서도 많이 활용되는 치료법이다. 그러나 기존에 이용하는 PDT 조영제의 경우 낮은 효율을 가질 때 오히려 암세포의 유전변형이 발생해 치료효과 감소 등의 부작용이 나올 수 있다. 따라서 치료효과를 극대화하기 위해선 원하는 위치에 많은 물질을 전달하는 것이 중요하며 이를 위해 세포 소기관인 미토콘드리아에 치료효과를 집중시키는 연구가 진행 중이다. PDT 조영제로 인해 만들어진 활성산소는 미토콘드리아의 막을 공격해 세포 사멸을 일으킨다. 암세포의 미토콘드리아는 일반 세포와 비교했을 때 미토콘드리아 막의 전위 차이가 높아 양전하의 소수성 물질이 더 잘 투입되는 특성이 있다. 연구팀은 이러한 PDT 조영제 효과를 극대화하기 위해 미토콘드리아 타겟팅 그룹인 트리페닐포스포늄, PDT 증강제인 브롬화물, 그리고 용해도 증가를 위한 아민 그룹으로 구성된 물질을 개발했다. 연구팀은 이 기술을 종양이 이식된 실험용 쥐에 주입한 후 종양 부위에 빛을 조사해 항암효과를 유도했고 이를 분석했을 때 효과적으로 표적 치료가 이뤄지는 것을 확인했다. 이 물질은 근적외선 영역에서의 흡광 및 발광을 통한 662 나노미터(nm) 영역 레이저를 사용한다. 이를 통해 기존 가시광선 조영제가 마이크로미터 수준의 깊이를 보였다면 연구팀의 기술은 밀리미터까지 투과성을 가지며 진단 시 가시광역 조영제 보다 100배 이상 감도가 우수한 특성을 갖고 있다고 밝혔다. 연구를 주도한 노일구 박사과정은 “암세포 미토콘드리아에 오래 머물러 있어 레이저를 조사했을 때 원하는 부분에만 부작용 없이 효과적인 치료가 가능하다는 장점이 있다”며 “치료 후 독성이 없이 분해돼 기존 조영제의 단점을 극복할 수 있을 것이다”고 말했다. 김유천 교수는 “기존에 이용되는 진단 및 치료제를 한 단계 더 발전시킨 새로운 플랫폼의 개발을 통해 부작용을 최소화하고 다양한 질병을 치료하는 데 유용하게 사용될 것으로 기대한다”고 말했다. 이번 연구는 글로벌프론티어 지원사업 ABC 바이오매스 사업단 및 한국연구재단의 중견연구자지원사업, 바이오의료기술개발지원사업을 통해 수행됐다. □ 그림 설명 그림1. Advanced science 3월 25일자 3호 표지 그림2. 완성된 물질의 화학구조, 미토콘드리아 타겟팅 효과 및 레이저에 따른 ROS 생성 그래프
2018.04.17
조회수 17341
김도경 교수, 모세관현상 이용한 리튬-황 전지 소재 개발
우리 대학 신소재공학과 김도경 교수 연구팀이 종이가 물을 흡수하는 모세관 현상처럼 탄소나노섬유 사이에 황을 잡아두는 방식을 통해 리튬-황 기반 이차전지 전극 소재를 개발했다. 연구팀이 개발한 면적당 용량(mAh/㎠)이 우수한 저중량, 고용량 리튬-황 기반 이차전지 전극소재를 통해 리튬-황 전지의 상용화를 앞당길 수 있을 것으로 기대된다. 윤종혁 박사과정이 1저자로 참여하고 김도경 교수, UNIST 이현욱 교수가 교신저자로 참여한 이번 연구는 국제 학술지 ‘나노 레터스(Nano Letters)’ 2018년도 18호에 게재됐다. 최근 전기자동차, 대용량 에너지 저장장치의 수요가 급증함에 따라 기존 리튬이온 전지를 뛰어넘는 높은 에너지 밀도의 이차전지 개발 필요성이 커지고 있다. 리튬-황 전지는 차세대 고용량 리튬이차전지로 각광받고 있으며 이론적으로 리튬이온 전지보다 약 6배 이상 높은 에너지 밀도를 갖는다. 하지만 황의 낮은 전기전도도, 충전과 방전으로 인해 발생하는 부피 변화, 리튬 폴리설파이드 중간상이 전해질로 녹아 배출되는 현상은 리튬-황 전지 상용화의 걸림돌이다. 이를 해결하기 위해 다공성 탄소 분말로 황을 감싸 전기전도도를 향상시키고 부피변화를 완화시키며 폴리설파이드가 녹는 것을 방지하는 황-탄소 전극 개발에 대한 연구가 주로 진행돼 왔다. 그러나 이러한 구형의 0차원 탄소 분말들은 입자 간 무수한 접촉 저항이 발생하고 황을 감싸는 합성 과정이 까다로울 뿐 아니라 입자들을 연결하기 위해 고분자 바인더를 사용해야한다는 단점이 있다. 연구팀은 기존 탄소 재료의 단점을 극복하기 위해 전기방사를 통해 대량으로 1차원 형태의 탄소나노섬유를 제작하고 고체 황 분말이 분산된 슬러리(slurry, 고체와 액체 혼합물 또는 미세 고체입자가 물 속에 현탁된 현탁액)에 적신 뒤 건조하는 간단한 방법을 통해 접촉 저항을 대폭 줄인 황-탄소 전극을 개발했다. 연구팀은 주사전자현미경(SEM)을 통해 현상을 관찰했다. 종이가 물을 흡수하듯 고체 황이 전기화학 반응 중 중간 산물인 액체 리튬 폴리설파이드로 변화하고 이들이 탄소나노섬유들 사이에 일정한 모양으로 맺힌 후 충전과 방전 과정에서 그 형태를 유지하며 밖으로 녹아나가지 않음을 확인했다. 이는 복잡하게 황을 감싸지 않고도 황이 탄소 섬유들 사이에 효과적으로 가둬지는 것을 발견한 것이다. 또한 기존 연구 결과가 단위 면적당 황 함량이 2mg/㎠ 이내인 것에 비해 이번 연구에서는 10mg/㎠이 넘는 황 함량을 달성했고 이를 기반으로 7mAh/㎠의 높은 면적당용량을 기록했다. 이는 기존 리튬이온전지의 면적당용량인 1~3mAh/㎠를 능가하는 값이다. 1저자인 윤종혁 박사과정은 “금속집전체 위에 전극물질을 도포하는 기존의 전극 제조 방법과는 전혀 다른 전극 구조 및 제조 방식을 적용한 연구로 향후 리튬 이차전지의 연구 범위를 넓히는 데에 기여할 수 있을 것이다”고 말했다. 김도경 교수는 “고용량 리튬-황 상용화에 한 단계 다가선 연구성과로 전기자동차뿐만 아니라 무인항공기(UAV) 및 드론 등에도 폭넓게 적용될 수 있을 것으로 기대된다”고 말했다. 이번 연구는 EEWS 연구센터의 기후변화연구허브사업과 한국연구재단의 중견연구자 지원사업을 통해 수행됐다. □ 그림 설명 그림1. 전기화학 반응을 통해 탄소나노섬유에 황이 맺히는 현상과 그로 인한 전지의 안정적인 수명 특성 그림2. 탄소나노섬유들 사이에 흡수되어 맺힌 형태 그대로 고체화 된 황의 미세구조와 모식도 그림3. 액상의 리튬 폴리설파이드를 효과적으로 흡수하는 탄소나노섬유 구조체
2018.03.22
조회수 17226
남윤기 교수, 뇌질환 치료용 나노입자 프린팅 기술 개발
우리 대학 바이오및뇌공학과 남윤기 교수 연구팀이 잉크젯 프린팅으로 마이크로미터 수준의 열 패턴을 마음대로 찍어내고, 이를 이용해 원격으로 신경세포의 전기적 활성을 제어할 수 있는 기술을 개발했다. 선택적 나노 광열 신경자극이라 할 수 있는 이 기술은 잉크젯 프린팅 기술과 나노입자 기술을 융합한 것으로 뇌전증 등의 뇌질환 환자들에게 맞춤형 정밀 광열 자극을 도입할 수 있는 기반기술이 될 것으로 기대된다. 강홍기 박사가 주도하고 이구행, 정현준, 이지웅 박사과정이 참여한 이번 연구는 국제 학술지 ‘에이씨에스 나노(ACS Nano)’ 2월 5일자에 게재됐다. 나노 광열자극 기술은 금속 나노 입자의 열-플라즈모닉 현상을 이용해 신경 세포의 활성을 조절한다. 연구팀은 지난 4년간 연구를 통해 나노 광열효과에 의한 신경세포 활성 억제 현상을 발견했고, 이를 이용해 뇌전증 등의 뇌질환에서 발생하는 신경세포의 비정상적 활동을 조절하기 위한 기술을 연구했다. 연구팀은 기존의 나노 광열자극 기술이 갖는 공간적인 선택성의 한계와 해상도의 제약을 극복하기 위해 잉크젯 프린팅 기술을 이용한 나노 입자의 미세 패턴 작업을 통해 나노 광열자극 기술을 선택적인 부분에만 가할 수 있는 기술을 개발했다. 정밀 잉크젯 프린팅과 고분자전해질 적층 코팅법을 결합해 고해상도의 선택적 광열 자극 기술을 구현했다. 이 기술은 정밀 잉크젯 프린팅 기술은 금속 나노 입자를 잉크로 사용해 수십 마이크로미터 크기의 나노입자 패턴을 만들 수 있다. 이 기술과 고분자전해질 적층 코팅법을 결합하면 원하는 모양을 보다 정밀하게 인쇄할 수 있고 안정성이 높아 다양한 기판에 적용할 수 있다. 또한 고분자전해질 코팅법은 세포 친화적이기 때문에 세포실험 및 생체 기술에 적용 가능하다. 연구팀은 이 기술을 통해 금 나노막대 입자를 수십 마이크로미터 해상도로 인쇄해 수 센티미터 이상의 정밀한 나노입자 패턴을 손쉽게 제작했다. 이 패턴에 빛을 조사하면 인쇄한 모양대로 정밀한 열 패턴을 형성할 수 있다. 또한 이 기술로 배양된 뇌신경세포의 활동을 선택적, 일시적으로 빛 조사를 통해 억제할 수 있음을 실험을 통해 확인했다. 이 열 패턴 기술을 이용하면 신경세포의 전기적 활성을 열 발생 부분에만 일시적으로 억제할 수 있어 선택적으로 광열 신경자극을 줄 수 있다. 이를 통해 원하는 세포 영역만 구분해 활동을 억제시켜 환자에게 맞춤형 광열 신경자극 치료를 제공할 수 있다. 연구팀의 기술은 얇고 유연한 기판에도 적용 가능해 체내 이식용 뇌질환 치료 장치나 웨어러블 의료 장치에 응용 가능할 것으로 기대된다. 남 교수는 “원하는 형태의 열 모양을 손쉽게 어디든지 인쇄할 수 있다는 점에서 공학적으로 폭넓게 활용 가능하다”며 “바이오공학 분야에서 생체기능 조절을 위해 빛과 열을 이용한 다양한 인터페이스 제작에 적용할 수 있고 새로운 위조 방지 기술 등에도 적용 가능할 것이다”고 말했다. 이번 연구는 과학기술정보통신부의 중견연구자지원사업(도약연구)의 지원을 받아 수행됐다. □ 그림 설명 그림1. 기술을 통해 제작한 사례들 그림2. 잉크젯 프린팅을 이용한 광열 효과 패턴 방식 및 이를 이용한 뇌신경세포의 선택적 활동 조절 기술
2018.02.27
조회수 15890
오일권 교수, 그래핀 기반의 소프트 액추에이터 개발
〈 타바시안 라솔 박사과정, 오 일 권 교수 〉 우리 대학 기계공학과 오일권 교수 연구팀이 두 개의 서로 상반된 그래핀 구조체를 전극으로 사용해 소프트 액추에이터(작동장치)의 성능을 높이는데 성공하였다. 연구팀이 이번 연구를 통해 제작한 액추에이터는 웨어러블 전자기기, 소프트 로봇 등의 분야에서 사용 가능할 것으로 기대된다. 타바시안 라솔(Tabassian Rassoul) 박사과정이 1저자로 참여한 이번 연구는 온라인 국제 학술지 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 1월 31일자에 게재됐으며 표지논문에 선정됐다. 차세대 전자기기에 능동형 소프트 액추에이터를 적용하기 위해서는 액추에이터의 전극이 유연성, 높은 전기 전도성 및 전기 화학적 활성, 내구성 등을 갖는 동시에 높은 효율성을 가져야 한다. 하지만 기존의 소프트 액추에이터는 백금 또는 금 등의 고가 귀금속이 사용됐기 때문에 실제 적용이 어려웠다. 연구팀은 문제 해결을 위해 기능적인 길항성(두 요인이 동시에 작용해 서로의 효과를 상쇄시키는 성질)을 갖는 각기 다른 두 종류의 그래핀 전극을 동시에 사용했다. 연구팀은 전기전도성은 매우 좋지만 전기화학적 활성이 낮은 그래핀 그물망의 단점을 보완하기 위해 질소가 증착된 구겨진 그래핀 입자들을 추가로 적용했다. 그물망 그래핀 메쉬(mesh)와 질소가 증착된 구겨진 그래핀을 결합해 전기화학적으로 기능적 길항성을 갖는 하이브리드 전극을 제작해 소프트 액추에이터에 적용했다. 연구팀이 합성한 그래핀 메쉬 구조는 그래핀 튜브들이 서로 엮인 그물망 형태의 구조를 갖는다. 특히 그물망 구조의 물결 모양 패턴 덕분에 다른 유형의 그래핀 구조보다 우수한 신축성을 갖는다. 또한 화학기상증착법(Chemical vapor deposition, CVD) 방법으로 합성하기 때문에 높은 전기 전도도를 갖는 고품질 그래핀 그물망을 제작할 수 있다. 이 하이브리드 전극에서 그래핀 그물망은 신속하고 균일한 전하 분포 촉진, 질소가 증착된 구겨진 그래핀은 전하를 효율적으로 저장하는 서로 상반된 역할을 각각 수행한다. 이를 통해 재료의 비용적 단점을 보완함과 동시에 전극의 성능 요건을 충족했다. 연구팀은 이번 연구를 통해 제작된 액추에이터는 햅틱 피드백 시스템, 웨어러블 핼스케어 전자기기, 능동촉각 시스템, VR 및 AR용 능동형 디스플레이, 소프트 로봇 등의 분야에서 사용 가능할 것으로 기대된다. 오 교수는 “이번 연구결과를 통해 소프트 액추에이터의 성능향상 원리를 이해하는 기반 연구가 될 것이다”며 “차세대 유연 전자산업에서의 소프트 액추에이터 기술 활용이 가속화되는 계기가 될 것으로 기대한다”고 말했다. 이번 연구는 한국연구재단 리더연구자지원사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 논문 커버 이미지 그림2. 기능적 길항성을 갖는 그래핀 구조 전극 사진 및 소프트 액추에이터 개요
2018.02.07
조회수 12747
조영호 교수, 손목시계형 개인별 열적 쾌적감 측정기 개발
〈 조 영 호 교수, 윤 성 현 연구원 〉 우리 대학 바이오및뇌공학과 조영호 교수 연구팀이 손목의 땀을 측정해 인간의 개인별 열적 쾌적감을 측정할 수 있는 손목시계형 쾌적감 측정기를 개발했다. 심재경, 윤성현 연구원의 주도로 개발한 이번 연구 성과는 융합, 과학 분야의 네이처 자매지 ‘사이언티픽 리포트(Scientific Reports)’ 1월 19일자에 게재됐다. 인간이라면 누구나 더위를 느끼면 땀 발생률이 증가하며 추위를 느끼면 땀 발생률이 감소한다. 따라서 동일한 환경에서도 개인별 땀 발생률을 측정하면 개인마다 느끼는 더위와 추위 상태를 판별해 열적 쾌적감을 측정할 수 있다. 일반적인 냉, 난방기는 공기의 습도와 온도를 일정하게 유지하도록 동작하고 있기 때문에 동일한 온도와 습도여도 개인별 체질과 기후환경에 따라 개인마다 느끼는 추위와 더위 상태는 모두 다르다. 기존의 땀 발생률 측정기는 생리학 실험용으로 사용돼 펌프 및 냉각기 등의 큰 크기를 갖는 외부 장치가 필요하다. 피부 미용 용도는 크기가 작지만 장시간의 회복 시간을 필요로 하는 문제점이 있다. 연구팀은 작은 크기를 가지며 인간의 피부에 착용 가능하면서 환기구동기를 집적해 연속적으로 땀 발생률 측정이 가능한 손목시계형 쾌적감 측정기를 개발했다. 연구팀이 개발한 손목시계형 쾌적감 측정기는 인간이 느끼는 더위나 추위의 정도에 따라 땀 발생률이 변화하는 점에 착안해 땀 발생률을 측정해 주어진 환경 내에서 인간의 체감 더위와 추위를 파악할 수 있는 기술이다. 연구팀은 밀폐된 챔버가 피부에 부착됐을 때 습도가 증가하는 비율을 통해 땀 발생률을 측정하는 방식을 이용했다. 이 측정기는 피부에 챔버가 완전히 부착된 후 측정하기 때문에 외부 공기나 인간의 움직임에도 안정적인 땀 발생률 측정이 가능하다. 또한 소형 열공압 구동기를 집적해 챔버를 피부 위로 들어올려 자동 환기가 가능하다. 연구팀의 손목시계형 쾌적감 측정기는 주위의 온도나 습도에 관계없이 인간의 인지기능에 따라 변화하는 땀 발생률을 측정할 수 있어 개인별 맞춤형 냉난방을 실현할 수 있다. 연구팀의 측정기는 직경 35mm, 두께 25mm, 배터리 포함 무게 30g으로 자동 환기기능을 갖추고 있으며 기존 측정기 대비 무게는 절반 이하(47.6%) 47.6%, 소비전력은 12.8%에 불과하다. 6V 소형 손목시계용 배터리로 4시간 동작이 가능하며 사람의 걸음에 해당하는 공기흐름인 0~1.5m/s에서 안정적으로 작동하기 때문에 움직이는 상태에서 성능을 유지하여야 하는 포터블, 웨어러블 기기로 사용가능하다는 장점이 있다. 이를 이용해 연구팀은 실내 또는 자동차 내에서 기존의 냉, 난방기에 비해 훨씬 더 인간과 교감 기능이 뛰어난 새로운 개념의 인지형 냉, 난방기를 제작할 예정이다. 조영호 교수는 “기존 냉난방기는 주변의 온, 습도 기준으로 쾌적감을 판단해 개인적으로 느끼는 쾌적감과 무관하지만 우리가 개발한 쾌적감 측정기는 개인적 쾌적감을 판단할 수 있어 새 개념의 개인맞춤형 지능형 냉, 난방기로 활용 가능하다”며 “나아가 미래사회에서는 인간의 신체적 건강 뿐 아니라 정신적 건강과 감정 상태의 관리가 필요하기에 향후 인간과 기계의 감성 교감을 이룰 수 있을 것이다”고 말했다. 이번 연구는 과학기술정보통신부의 중견연구자지원사업을 통해 수행됐으며 국내특허로 등록을 완료했다. □ 그림 설명 그림1. 인간 열적 쾌적감 측정이 가능한 손목시계형 쾌적감 측정기 그림2. 손목시계형 쾌적감 측정기 그림3. 손목시계형 쾌적감 측정기의 동작 원리
2018.02.01
조회수 12800
김정원 교수, 초저잡음 마이크로파 주파수 합성기 개발
우리 대학 기계항공공학부 김정원 교수 연구팀이 광섬유 광학 기술을 이용해 X-밴드 레이더에 활용할 수 있는 초저잡음 마이크로파 주파수 합성기를 개발했다. 이번 기술은 레이더 뿐 아니라 통신, 센서, 정밀계측 등 다양한 분야에서 활용 가능하고 기술이전을 통한 국산화도 가능할 것으로 기대된다. 권도현 박사과정이 1저자로 참여한 이번 연구 성과는 ‘포토닉스 리서치(Photonics Research)’ 2018년도 1월호에 게재됐다. 레이더는 자율주행 자동차, 기상관측, 천문연구, 항공관제, 군용탐지 등 민간 및 군용 분야에서 다양하게 활용된다. 고성능 레이더 내에서의 속도 탐지 및 이미지 분해능 개선, 통신 및 신호처리 능력 향상을 위해서는 레이더 송신신호의 위상잡음(phase noise)을 낮추는 것이 필수적이다. 또한 우수한 주파수 스위칭과 변조 성능 역시 레이더 신호원의 중요한 요구 조건이다. 하지만 위상잡음이 낮은 마이크로파 주파수 합성기는 고가일 뿐더러 수출승인(EL) 품목으로 자국 밖 수출이 금지되거나 특별 허가를 받아야 하는 경우가 많다. 김 교수 연구팀은 고가의 재료나 실험실 밖 환경에서 사용이 어려운 기술 없이도 부품의 신뢰성과 가격경쟁력이 확보된 광섬유광학 기술과 상용 디지털신디사이저(DDS) 부품만을 이용했다. 이를 통해 매우 우수한 위상잡음 수준을 가지며 주파수 스위칭 및 다양한 변조가 가능한 마이크로파 주파수 합성기를 개발했다. 이 주파수 합성기는 광섬유 레이저 기술을 이용해 펄스(pulse) 형태의 빛을 생성한다. 이 때 빛 펄스 간의 시간 간격을 매우 일정하게 만들어 1초 동안 1 펨토초(1천조분의 1초)라는 아주 작은 시간의 오차를 갖는 빛 펄스들을 생성했다. 그리고 이 빛 펄스들을 전기 신호로 변환하는데 이 때 펄스 간 시간 간격에 의해 정해지는 반복률(repetition-rate)의 정수배에 해당하는 임의의 사인파(sinusoidal) 형태의 전기 신호를 생성할 수 있다. 이번 연구에서는 여러 가능한 주파수 대역들 중에서 최근 이슈가 된 사드(THAAD) 레이더를 비롯한 고성능 레이더와 우주 통신 분야에서 그 중요성이 커지는 X-밴드(8-12 GHz) 마이크로파 주파수 대역에서 동작하는 주파수 합성기를 구현했다. 이번 기술은 기존의 최고 성능 오븐제어 수정발진기(OCXO) 기반 주파수 합성기들의 위상잡음보다 월등하게 우수한 성능을 보였다. 또한 전자전(electronic warfare) 및 레이더 시스템에서 중요하게 여겨지는 빠른 주파수 변환 속도와 다양한 주파수 변조 기능 역시 가능함을 선보였다. 이 시스템의 또 다른 장점은 기존 마이크로파 주파수 합성기와 달리 매우 낮은 잡음의 광신호 또한 함께 생성할 수 있다는 것이다. 이러한 저잡음 광신호를 이용하면 레이더 수신기에서 이전에는 없던 새로운 신호 분석 기능도 제공할 수 있다. 김 교수는 “이 연구에서는 X-밴드 신호원을 선보였지만 같은 원리를 활용해서 보다 고주파 대역의 초저잡음 신호도 생성할 수 있다”며 “드론처럼 소형, 저속 물체들에 대한 민감한 탐지에도 활용 가능할 것이다”고 말했다. 이번 연구는 한국연구재단 중견연구자지원사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 광섬유광학 기반 X-밴드 레이더 신호원의 개념도 그림2. 10-GHz에서의 위상잡음 측정 결과와 기존의 최고성능 주파수 합성기들과의 성능 비교
2018.01.18
조회수 15213
조용훈 교수, 금속나노구조 이용해 효율 높인 퀀텀닷 LED 개발
우리 대학 물리학과 조용훈 교수 연구팀이 금속나노 배열 구조를 이용해 퀀텀닷(Quantum Dot) 발광다이오드(LED)의 효율을 향상시킬 수 있는 기술을 개발했다. 이 기술을 통해 차세대 디스플레이 기술이 한 단계 발전하는 데 기여할 것으로 기대된다. 현재 사용되는 퀀텀닷 기반의 디스플레이는 청색 LED를 광원으로 사용해 녹색과 적색 퀀텀닷을 여기(勵起, 광자 에너지가 분자로 옮아가 높은 에너지상태로 방출되는 상태)해 색 변환을 하는 방식이다. 이러한 방식은 높은 가격의 퀀텀닷을 이용하기 때문에 디스플레이 소자의 단가가 높아진다. 또한 액체 상태인 퀀텀닷을 소재에 적용하기 위해 공기 중에 말리면 발광 효율이 급격히 저하된다. 연구팀은 문제 해결을 위해 금속 나노구조가 청색 LED의 빛을 받으며 발생하는 국소 표면 플라즈몬 효과를 이용해 퀀텀닷의 발광효율을 증가시켰다. 더불어 발광 휘도를 높일 수 있는 LED 구조를 이론적으로 제시하고 구현하는 데 성공했다. 이 구조는 기본 청색 LED를 여기 광원으로 이용한다. 알루미늄 금속 나노구조와 녹색 퀀텀닷을 여기해 녹색 발광 휘도를 증가시키고, 은 금속 나노구조와 적색 퀀텀닷을 여기해 적색 발광 휘도를 증가시키는 방식이다. 이는 금속 나노구조를 통해 특정 휘도를 얻기 위해 필요한 퀀텀닷의 양을 많이 줄일 수 있다는 의미이고 결과적으로 소재의 단가를 낮출 수 있다. 이번 연구는 소재의 구조를 이론적으로 모델링했기 때문에 목적에 따라 금속 나노구조를 간단하게 새로 디자인해 조절할 수 있다. 조 교수는 “향후 퀀텀닷 디스플레이에 금속 나노구조를 도입하는 기술이 적절히 도입된다면 소재에 필요한 퀀텀닷의 양을 줄이고 효율적인 색 변환을 통해 단가를 줄일 수 있을 것으로 기대된다”고 말했다. 박현철 박사과정이 1저자로 참여한 이번 연구는 나노과학 분야 국제 학술지 ‘스몰(Small)’ 12월 27일자 표지 논문에 선정되었으며, 한국연구재단의 중견연구자 지원사업과 KAIST 기후변화연구 허브사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 스몰(Small)저널의 12월 27일자 표지 논문 그림 . 그림2. 금속 나노구조가 있을 경우와 없을 경우의 발광 세기 차이를 보인 스펙트럼
2018.01.15
조회수 13487
조광현 교수, 암세포 유형별 최적 약물표적 발굴기술 개발
〈 최민수 박사, 조광현 교수 〉 우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 암세포의 유형에 따라 최적의 약물 표적을 찾는 기술을 개발했다. 이는 시스템생물학을 이용해 암세포의 유전자변이가 반영된 분자네트워크의 다이나믹스(동역학)를 분석해 약물의 반응을 예측하는 기술로 향후 암 관련 신약 개발에 크게 기여할 것으로 기대된다. 최민수, 시 주 (Shi Jue), 주 양팅 (Zhu Yanting), 양 루젠 (Yang Ruizhen)이 참여한 이번 연구는 ‘네이처 커뮤니케이션즈(Nature Communications)’ 12월 5일자 온라인 판에 게재됐다. 인간의 암세포는 유전자 돌연변이, 유전체 단위의 반복적 변이 등 여러 형태의 유전자 변이가 있다. 이러한 변이는 같은 암종에서도 암세포에 따라 많은 차이를 보이기 때문에 약물에 대한 반응도 다양하다. 암 연구자들은 암 환자에게서 빈번하게 발견되는 유전자변이를 파악하고 이 중 특정 약물의 지표로 사용될 수 있는 유전자변이를 찾기 위해 노력해 왔다. 이러한 연구는 단일 유전자변이의 발견 또는 유전자네트워크의 구조적 특징 분석에 초점이 맞춰져 있다. 하지만 이러한 접근 방법은 암세포 내 다양한 유전자 및 단백질의 상호작용에 의해 유발되는 암의 생물학적 특성과 이로 인한 약물반응의 차이를 설명하지 못하는 한계가 있다. 암세포의 유전자변이는 해당 유전자 기능 뿐 아니라 이 유전자와 상호작용하는 다른 유전자, 단백질에 영향을 미치기 때문에 결과적으로 분자네트워크의 다이나믹스(동역학) 특성에 변화를 일으킨다. 이로 인해 항암제에 대한 암세포의 반응이 변화하게 된다. 따라서 분자네트워크의 다이나믹스(동역학) 특성을 무시하고 소수의 암 관련 유전자를 표적으로 하는 현재의 치료법은 일부 환자에게만 유용하고 약물저항성을 갖는 대다수 환자에게는 효과적으로 적용되지 못한다. 조 교수 연구팀은 문제 해결을 위해 슈퍼컴퓨팅을 이용한 대규모 컴퓨터시뮬레이션과 세포 실험을 융합해 암세포 분자네트워크의 다이나믹스(동역학) 변화를 분석했다. 이를 통해 약물반응을 예측해 유형별 암세포의 최적 약물 표적을 발굴하는 기술을 개발했다. 이 기술은 대다수 암 발생에 관여하는 것으로 알려진 암 억제 유전자 p53의 분자조절네트워크에 시범적으로 적용됐다. 연구팀은 국제 컨소시엄인 암 세포주 백과사전(CCLE : The Cancer Cell Line Encyclopedia)에 공개된 대규모 암세포 유전체 데이터를 분자네트워크에 반영해 구축했으며 유전변이의 특성에 따라 서로 다른 분자네트워크를 생성했다. 각 분자네트워크에 대해 약물반응을 모사한 섭동분석을 수행해 약물반응을 나타내는 암세포의 변화를 정량화하고 군집화했다. 그 후 컴퓨터시뮬레이션 분석을 통해 효능, 조합에 따른 시너지효과 등 약물반응정도를 예측했다. 이러한 컴퓨터시뮬레이션 결과를 토대로 폐암, 유방암, 골종양, 피부암, 신장암, 난소암 등 다양한 암세포주를 대상으로 약물반응 실험을 수행해 비교 검증했다. 이 기술은 임의의 분자네트워크에 대해서 동일한 방식으로 적용할 수 있고 최적의 약물 표적을 발굴해 개인 맞춤치료에 활용가능하다. 연구팀은 암세포의 이질성에 따른 다양한 약물반응의 원인을 특정 유전자나 단백질뿐만 아니라 상호조절작용을 종합적으로 고려해 분석할 수 있게 됐다고 밝혔다. 또한 약물저항성의 원인을 사전에 예측하고 이를 억제할 수 있는 최적의 약물 표적을 발굴할 수 있게 됐고 기존 약물의 새로운 적용대상을 찾는 약물재창출에 활용될 수 있는 핵심 원천기술을 확보하게 됐다고 말했다. 조 교수는 “암세포별 유전변이는 약물반응 다양성의 원인이지만 지금까지 이에 대한 총체적 분석이 이뤄지지 못했다”며 “시스템생물학을 통해 암세포 유형별 분자네트워크의 약물반응을 시뮬레이션으로 분석해 약물 반응의 근본적 원리를 파악하고 새로운 개념의 최적 약물 타겟을 발굴할 수 있게 됐다”고 말했다. 이번 연구는 과학기술정보통신부와 한국연구재단의 중견연구자지원사업과 바이오의료기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 컴퓨터시뮬레이션을 통한 암세포 유형별 약물반응 예측 및 세포실험 비교 검증 그림2. 암세포별 분자네트워크의 동역학 분석에 기반한 약물반응 예측 및 군집화 그림3. 세포 분자네트워크 분석에 따른 암세포 유형별 약물타겟 발굴 및 암환자별 맞춤치료 전략 수립
2017.12.07
조회수 18459
한명준 교수, 새로운 양자역학적 자성 상태 확인
〈 한명준 교수 연구팀 〉 우리 대학 물리학과 한명준 교수 연구팀이 중앙대학교, 일본 이화학연구소 (RIKEN), 미국 아르곤 국립 연구소 (Argonne National Laboratory) 등과의 공동연구를 통해 새로운 양자역학적 자성 상태인 ‘Jeff = 3/2’의 존재를 처음으로 확인했다. 양자역학에서는 스핀 각운동량과 궤도 각운동량의 합으로 주어지는 총 각운동량을 보통 영문자 ‘J’로 표현한다. 이번에 확인된 특이 자성은 특정한 조건이 만족될 때만 나타나는 일종의 각운동량으로 볼 수 있는데, 학계에서는 ‘유효 (effective) 각운동량’이라는 의미로 흔히 ‘Jeff’로 표기해 왔다. 유효 각운동량이 3/2이 되는 경우는 그간 그 가능성에 대한 논의가 있기는 했지만 실제로 확인되지 못하고 있었는데 이번에 최초로 발견된 것이다. 이는 향후 초전도 현상, 양자 자성 등 관련 연구에도 새로운 발판이 될 것으로 기대된다. 정민용, 심재훈 석박사 통합과정이 참여한 이번 연구는 국제 학술지‘네이쳐 커뮤니케이션즈(Nature Communications)’에 게재됐다. 최근 학계에서는 스핀-궤도 결합이 강한 상황에서 통상적인 것과는 다른 독특한 양자 상태가 구현될 수 있다는 것이 알려지면서 활발한 연구가 진행되고 있다. 보통 전자의 스핀이나 오비탈이 나타내는 자기 모멘트와 달리 이 두 가지가 강하게 결합하여 형성된 유효 자기 모멘트 Jeff는 특이한 바닥상태와 상호작용 양상을 나타내며 이로부터 새로운 현상과 물성이 발현될 수 있다. 지난 10년 여 간의 연구가 주로 Jeff가 1/2인 경우에 대하여 이루어진 데에 반해 이 값이 3/2이 되는 경우에 대한 연구는 실제 사례를 찾지 못하며 더디게 진전되고 있는 상황이었다. 한 교수가 이끄는 연구팀은 지난 2014년 원자가 아니라 분자 오비탈에 기반해 특정 물질군에서‘Jeff = 3/2’상태가 구현될 수 있는 가능성을 이론적으로 예측한 바 있고 이번 연구는 이를 실험적으로 증명한 것이다. 한 교수 팀은‘Jeff = 3/2’상태에서는 일반적인 스핀 모멘트와는 다른 양자역학적 ‘선택 규칙 (Selection Rule)’이 적용되어야 한다는 점에 착안했다. 엑스레이를 이용해 원자 핵 근처에 있는 전자를 ‘여기 (excite)’시키면 여기된 전자는 다른 전자들과 상호작용을 하는 과정에서 흡수되기도 하고 재방출되기도 하는데 이 때 만족시키게 되는 물리법칙이 ‘선택 규칙 (Selection Rule)’이다. 양자역학에 따르면 이 선택 규칙은‘Jeff = 3/2’상태에서는 매우 독특해 보통의 스핀상태와는 뚜렷이 구분될 것이라는 예측이 가능하다. 이러한 아이디어에 따라 진행된 실험에서는 물질 내의 탄탈륨 원자에서 뽑아낸 두 가지 서로 다른 에너지 영역의 전자가 실제 이론 예측을 따르는 스펙트럼 양상을 보이는 것이 확인됐다. 이는‘Jeff = 3/2’모멘트 고유의 양자역학적 간섭현상이 반영된 것으로 그 존재에 대한 매우 직접적인 증거로 받아들여진다. 이 새로운 양자상태는 통상적인 물질의 자기 상태와 매우 다른 것으로서 그 특성에 대한 연구의 시발점이 될 것으로 기대되고 있다. 또한 이러한 자성상태와 상호작용으로부터 발현되는 다양한 물성에 대한 연구 역시 탄력을 받을 것으로 보고 있다. 이번 연구는 한국연구재단의 일반연구자 지원사업과 해외 과학기술 자원활용사업의 지원을 받아 수행됐으며 한국과학기술정보연구원의 슈퍼컴퓨터 자원을 사용했다. □ 그림 설명 그림1. ‘Jeff=3/2’상태를 갖는 것으로 밝혀진 갈륨 탄탈륨 셀레늄화합물의 결정구조 그림2. 갈륨 탄탈륨 셀레늄화합물(GaTa4Se8)의 계산된 전자구조
2017.11.30
조회수 19319
김지한 교수, 다공성 물질 내 가스 흡착량 증진 가능성 제시
〈 김 지 한 교수, 정 상 규 석사과정 〉 우리 대학 생명화학공학과 김지한 교수 연구팀이 결함공학을 통한 다공성 물질의 가스 흡착량 증진법을 개발했다. 정상규 석사과정이 1저자, UC 버클리 화학과의 Günther Thiele 박사후 연구원이 2저자로 참여한 이번 연구는 국제 학술지 ‘네이쳐 커뮤니케이션즈(Nature Communications)’11월 16일차 온라인 판에 게재됐다. 금속-유기 구조체(metal-organic framework, 이하 MOF)는 금속 클러스터와 유기 리간드의 규칙적인 배위결합을 통해 합성되는 결정체이며, 넓은 표면적과 수많은 공극을 지닌 물질로서 다양한 에너지 및 환경 관련 소재로 각광받고 있다. 하지만 다른 결정성 물질들과 마찬가지로 실제 MOF는 완벽한 결정성을 가질 수 없으며 여러 종류의 결함을 가지게 된다. 이러한 결함들 중 결정체 내 유기 리간드가 불규칙적으로 본래 자리에 결합되지 않은 상태를 뜻하는 리간드 공공결함은 실험적인 기법들을 통해 공공결함의 밀도가 조절될 수 있다고 알려져 있다. 연구팀은 기존 제시된 리간드 공공결함의 조절을 통한 결함 공학 기법을 특정 MOF 내 고립된 공극의 존재여부와 접목시켜 결함공학을 통한 가스 흡착 증진 가능성을 제시했다. 김지한 교수가 직접 개발한 그래픽 프로세서(GPU) 소프트웨어 코드로 초고속 스크리닝 기법을 활용해 실험적으로 합성된 12,000 가량의 MOF들로 부터 메탄 가스에 대해 상당한 부피의 고립공극을 가지는 MOF들을 계산적으로 선별했다. 고립 공극의 판별 작업에는 안정적 에너지 구간에 대한 플러드-필(flood-fill) 알고리즘이 사용됐으며 이는 마이크로소프트 그림판에서 흔히 접할 수 있는 ‘색 채우기’ 기능과 동일한 알고리즘이다. 이를 통해 무한히 연결된 주 공극구조만 판별해내고 연결되지 않고 고립돼 존재하는 공극의 존재여부를 판단했다. 이후 많은 양의 고립공극이 파악된 MOF들에 대해 리간드 공공결함을 가상으로 결정 구조 내 도입했으며 리간드가 없어지면서 기존의 고립돼 존재하던 공극들이 주 공극구조와 합쳐지도록 유도했다. 이러한 스크리닝 작업을 통해 연구팀은 리간드 공공결함이 도입되었을 시 상당한 메탄 가스의 흡착량 증진을 겪을 수 있는 13개의 MOF를 최종적으로 선별했으며, 불과 8.33% 이하의 리간드 결함이 존재했을 시에도 최대 55.6% 의 메탄 가스 흡착량 증진을 가질 수 있다는 것을 확인했다. 본 연구팀이 제시한 리간드 공공결함을 통해 기존에 활용되지 못하던 고립 공극을 주 공극구조에 연결시켜 새로이 활용하는 기법은 단순한 가스 흡착량 증진 외에도 혼합 가스의 선택적 흡착, 반 영구적 가스 포획 등 다양한 효과를 가져올 수 있다. 이번 연구는 한국연구재단의 중견연구자지원사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 본 연구에서 사용된 플러드-필 알고리즘을 설명하는 도해와 플러드-필 알고리즙을 통해 고립공극이 판별된 MOF의 예시 그림2. 본 연구에서 선별된 MOF 중 두 가지 MOF의 공공결함 도입 전과 후(좌, 우)의 흡착가능 공간 비교
2017.11.27
조회수 15179
박병국 교수, 열로 스핀전류를 얻는 소재기술 개발
〈 박병국 교수, 김동준 박사 〉 우리 대학 신소재공학과 박병국 교수 연구팀이 자성메모리(MRAM)의 새로운 동작 원리인 열로 스핀전류를 생성하는 소재기술을 개발했다. 이 연구는 고려대 이경진 교수, 충남대 정종율 교수와 공동으로 수행했고 ‘네이쳐 커뮤니케이션즈(Nature Communications)’ 11월 9일자에 게재됐다. - 논문명: Observation of transverse spin Nernst magnetoresistance induced by thermal spin current in ferromagnet/non-magnet bilayers - 저자 정보 : 김동준(제1저자, 한국과학기술원 박사과정), 전철연, 최종국, 이재욱(한국과학기술원), Srivathsava Surabhi, 정종율 교수(충남대학교), 이경진 교수(고려대학교), 박병국 교수(교신저자, 한국과학기술원) 포함 총 8명 자성메모리는 실리콘 기반의 기존 반도체 메모리와 달리 얇은 자성 박막으로 만들어진 비휘발성 메모리 소자다. 외부 전원 공급이 없는 상태에서 정보를 유지할 수 있으며 집적도가 높고 고속동작이 가능한 장점이 있어 차세대 메모리 기술로 경쟁적으로 개발되고 있다. 자성메모리의 동작은 자성소재에 스핀전류를 주어 자성의 방향을 제어하는 방식으로 이루어진다. 기존 자성메모리에서는 스핀전류를 전기로 생성하는데, 본 연구에서 열로 스핀전류를 발생시키는 소재기술을 개발했다. 그동안 열에 의해 스핀전류가 생성되는 현상, 즉 스핀너런스트 효과(spin Nernst effect)가 이론적으로 발표됐으나 최근까지 기술적 한계로 실험적으로 증명되지 못하였다. 하지만 이번 연구에서 스핀궤도결합이 큰 텅스텐(W)과 백금(Pt) 소재를 활용하고 스핀너른스트 자기저항 측정방식을 도입해 스핀너른스트 효과를 실험적으로 규명했고 열에 의한 스핀전류의 생성효율이 기존의 전기에 의한 스핀전류의 생성효율과 유사함을 밝혔다. 박병국 교수는 “본 연구는 열에 의한 스핀전류 생성이라는 새로운 물리현상을 실험적으로 규명한 것에 의미가 크고, 추가 연구를 통하여 자성메모리의 새로운 동작방식으로 개발할 예정이다.” 라고 밝혔다. 열에 의해 동작하는 자성메모리의 개발은 전력소모를 획기적으로 낮출 수 있어 웨어러블, 모바일 및 사물인터넷 등 저전력 동작이 요구되는 전자기기의 발전에 기여할 것으로 기대된다. 이 연구성과는 과기정통부 미래소재디스커버리사업과 중견연구자사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 스핀너른스트 현상을 이용한 열인가 자성메모리의 개념도 그림2. 스핀너른스트 기반 열인가 스핀전류 생성에 관한 주요 연구 결과
2017.11.27
조회수 17035
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 11