본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%9D%B8%EA%B3%B5%EC%A7%80%EB%8A%A5
최신순
조회순
암세포만 공략하는 스마트 면역세포 시스템 개발
우리 대학 바이오및뇌공학과 최정균 교수와 의과학대학원 박종은 교수 공동연구팀이 인공지능과 빅데이터 분석을 기반으로 스마트 면역세포를 통한 암 치료의 핵심 기술을 개발했다고 밝혔다. 이 기술은 키메라 항원 수용체(Chimeric antigen receptor, CAR)가 논리회로를 통해 작동하게 함으로써 정확하게 암세포만 공략할 수 있도록 하는 차세대 면역항암 치료법으로 기대가 모아진다. 이번 연구는 분당차병원 안희정 교수와 가톨릭의대 이혜옥 교수가 공동연구로 참여했다. 최정균 교수 연구팀은 수백만개의 세포에 대한 유전자 발현 데이터베이스를 구축하고 이를 이용해 종양세포와 정상세포 간의 유전자 발현 양상 차이를 논리회로 기반으로 찾아낼 수 있는 딥러닝 알고리즘을 개발하고 검증하는 데 성공했다. 이 방법론으로 찾아진 논리회로를 장착한 CAR 면역세포는 마치 컴퓨터처럼 암과 정상 세포를 구별하여 작동함으로써 부작용없이 암세포만 정확하게 공략하는 것이 가능하다. 바이오및뇌공학과 권준하 박사, 의과학대학원 강준호 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 '네이처 바이오테크놀로지(Nature Biotechnology)'에 지난 2월 16일 출판됐다. (논문명: Single-cell mapping of combinatorial target antigens for CAR switches using logic gates) 최근의 암 연구에서 가장 많은 시도와 진전이 있었던 분야는 바로 면역항암치료이다. 암환자가 갖고 있는 면역체계를 활용하여 암을 극복하는 이 치료 분야에는 몇 가지 방법이 있는데, 면역관문억제제 및 암백신과 더불어 세포치료 또한 해당된다. 특히, 키메라 항원 수용체를 장착한 CAR-T 혹은 CAR-NK라고 하는 면역세포들은 암항원을 인식하여 암세포를 직접 파괴할 수 있다. CAR 세포치료는 현재 혈액암에서의 성공을 시작으로 고형암으로 그 적용 범위를 넓히고자 하는 중인데, 혈액암과 달리 고형암에서는 부작용을 최소화하면서 효과적인 암 살상 능력을 보유하는 CAR 세포 개발에 어려움이 있었다. 이에 따라 최근에는 한 단계 진보된 CAR 엔지니어링 기술, 즉 AND, OR, NOT 과 같은 컴퓨터 연산 논리회로를 활용해 효과적으로 암세포를 공략할 수 있는 스마트 면역세포 개발이 활발히 진행되고 있다. 이러한 시점에서, 연구진은 세포 단위에서 정확히 암세포들에서만 발현하는 유전자들을 발굴하기 위해 대규모 암 및 정상 단일세포 데이터베이스를 구축했다. 이어서 연구진은 암세포들과 정상세포들을 가장 잘 구별할 수 있는 유전자 조합을 검색하는 인공지능 알고리즘을 개발했다. 특히 이 알고리즘은, 모든 유전자 조합에 대한 세포 단위 시뮬레이션을 통해 암세포만을 특이적으로 공략할 수 있는 논리회로를 찾아내는데 사용되었다. 이 방법론으로 찾아진 논리회로를 장착한 CAR 면역세포는 마치 컴퓨터처럼 암과 정상 세포를 구별하여 작동함으로써 부작용은 최소화하면서도 항암치료의 효과는 극대화시킬 수 있을 것으로 기대된다. 제1 저자인 권준하 박사는 "이번 연구는 이전에 시도된 적이 없는 방법론을 제시했는데, 특히 주목할 점은 수백만개의 개별 암세포 및 정상세포들에 대한 시뮬레이션을 통해 최적의 CAR 세포용 회로들을 찾아낸 과정이다ˮ라며 "인공지능과 컴퓨터 논리회로를 면역세포 엔지니어링에 적용하는 획기적인 기술로서 혈액암에서 성공적으로 사용되고 있는 CAR 세포치료가 고형암으로 확대되는데 중요한 역할을 할 것으로 기대된다"고 설명했다.ᅠ 이번 연구는 한국연구재단 원천기술개발사업-차세대응용오믹스사업의 지원을 받아 수행됐다.
2023.03.02
조회수 8008
똑똑한 영상 복원 인공지능 기술 개발
딥러닝 기술은 영상 복원 속도가 기존 알고리즘 대비 수백 배 이상 빠를 뿐만 아니라 복원 정확도 역시 높다. 하지만, 주어진 학습 데이터에만 의존하는 딥러닝 기술은 영상 취득 환경상에 변화가 생기면 성능이 급격히 저하되는 치명적인 약점이 있다. 이는 알파고와 이세돌 九단과의 대국 시 `신의 한 수'에 의해 알파고의 성능이 급격하게 저하되었던 사례를 떠올리면 쉽게 이해할 수 있다. 즉, 인공지능이 학습하지 못했던 변수(학습 데이터상에 존재하지 않는 수)가 발생할 때 신뢰도가 급격히 낮아지는 인공지능 기술의 근본적인 문제이기도 하다. 우리 대학 바이오및뇌공학과 장무석 교수 연구팀과 김재철AI 대학원 예종철 교수 연구팀이 공동 연구를 통해 인공 지능의 신뢰도 문제를 해결할 수 있는 물리적 학습 기반의 영상 복원 딥러닝 기술을 개발했다고 6일 밝혔다. 연구팀은 영상 취득 환경에서 발생할 수 있는 변수 대부분이 물리적 법칙을 통해 수학적으로 기술 가능하다는 점에 착안해 물리적 법칙과 심층 신경망이 통합된 학습 기법을 제시했다. 모든 영상 기술은 물리적인 영상 기기를 통해 영상 정보를 취득한다. 연구팀은 이 정보 취득 과정에 대한 물리적인 통찰력을 인공지능에 학습시키는 방법을 개발했다. 예를 들면, `네가 도출한 복원 결과가 물리적으로 합당할까?' 혹은 `이 영상 기기는 물리적으로 이런 변수가 생길 수 있을 것 같은데?'라는 식의 질문을 통해 물리적 통찰력을 인공지능에 이식하는 방법을 제시한 것이다. 연구팀은 변화하는 영상 취득 환경에서도 신뢰도 높은 홀로그래피 영상* 을 복원하는데 성공했다. 홀로그래피 영상 기술은 의료 영상, 군용 감시, 자율 주행용 영상 등 다양한 정밀 영상 기술에 다양하게 활용될 수 있는데, 이번 연구는 의료 진단 분야의 활용성을 집중적으로 검증하였다. *홀로그래피 영상: 물체의 그림자 패턴(회절 패턴)으로부터 물체의 형태를 복원하는 영상 기법, 일반적인 영상 기술과 달리 위상 변화에 의한 물체의 미세 구조를 감지할 수 있는 영상 기술 연구팀은 먼저 3차원 공간상에서 매우 빠르게 움직이는 적혈구의 회절 영상(확산된 그림자형상)으로부터 적혈구의 형태를 실시간으로 복원하는데 성공했다. 이러한 동적인 영상 환경에서 예상치 못한 변수로는 여러 개의 적혈구 덩어리가 복잡하게 겹쳐진다거나 적혈구가 예상하지 못했던 위치로 흘러가는 경우를 생각해 볼 수 있다. 여기서, 연구팀은 인공 지능이 생성한 영상이 합당한 결과인지 빛 전파 이론을 통해 검산하는 방식으로 물리적으로 유효한 복원 신뢰도를 구현하는데 성공하였다. 연구팀은 암 진단의 표준기술로 자리잡고 있는 생검 조직(생체에서 조직 일부를 메스나 바늘로 채취하는 것)의 영상 복원에도 성공했다. 주목할 점은 특정한 카메라 위치에서 측정된 회절 영상만을 학습했음에도 인공지능의 인지능력이 부가되어 다양한 카메라 위치에서도 물체를 인식하는데 성공했다는 점이다. 이번에 구현된 기술은 세포 염색 과정이나 수 천 만원에 달하는 현미경이 필요하지 않아 생검 조직 검사의 속도와 비용을 크게 개선할 수 있을 것으로 기대된다. 물리적 통찰력을 인공 지능에 이식하는 영상 복원 기술은 의료 진단 분야 뿐만 아니라 광범위한 영상 기술에 활용될 것으로 기대된다. 최근 영상 기술 산업계 (모바일 기기 카메라, 의료 진단용 MRI, CT, 광 기반 반도체 공정 불량 검출 등) 에선 인공지능 솔루션 탑재가 활발히 이루어지고 있다. 영상 취득에 사용되는 센서, 물체의 밝기, 물체까지의 거리와 같은 영상 취득 환경은 사용자마다 다를 수밖에 없어 적응 능력을 갖춘 인공 지능 솔루션에 대한 수요가 큰 상황이다. 현재 대부분의 인공 지능 기술은 적응 능력 부재로 신뢰도가 낮은 문제 때문에 실제 현장에서 활용성이 제한적인 상황이다. 바이오및뇌공학과 이찬석 연구원은 "데이터와 물리 법칙을 동시에 학습하는 적응형 인공지능 기술은 홀로그래피 영상뿐만 아니라 초고해상도 영상, 3차원 영상, 비시선 영상(장애물 뒷면을 보는 영상) 등 다양한 계산 영상 기술에 적용될 수 있을 것으로 기대된다ˮ고 밝혔다. 연구진은 "이번 연구를 통해 인공지능 학습에 있어서 학습 데이터에 대한 강한 의존성(신뢰도 문제)을 물리적 법칙을 결합해 해소했을 뿐만 아니라, 이미지 복원에 있어 매게 변수화된 전방 모델을 기반으로 했기 때문에 신뢰도와 적응성이 크게 향상됐다ˮ며, 이어 "이번 연구에서는 데이터의 다양한 특성 중에서 수학적 혹은 물리적으로 정확히 다룰 수 있는 측면에 집중했고, 향후 무작위적인 잡음이나 데이터의 형태에 대해서도 제약받지 않는 범용 복원 알고리즘을 개발하는 데 주력할 것이다ˮ라고 밝혔다. 바이오및뇌공학과 이찬석 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 머신 인텔리전스(Nature Machine Intelligence)'에 지난 1월 17일 字 출판됐다. (논문명: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data) 한편 이번 연구는 삼성미래기술육성사업과 선도연구센터사업의 지원을 받아 수행됐다.
2023.02.06
조회수 5543
사진에서 3차원 정보를 추론하는 인공지능 반도체 IP(지식재산권) 세계 최초 개발
우리 대학 전기및전자공학부 유회준 교수가 이끄는 PIM 반도체 설계 연구센터(AI-PIM)가 유수 학계에서 인정한 5종의 최첨단 인공지능 반도체 IP(지식재산권)를 개발했다고 29일 밝혔다. 대표적으로 심층신경망 추론 기술 및 센서 퓨전* 기술을 통해 사진으로부터 3차원 공간정보 추출하고 물체를 인식해 처리하는 인공지능(AI) 칩은 KAIST에서 세계 최초로 개발해 SRAM PIM** 시스템에 필요한 기술을 IP(지식재산권)화 한 것이다. * 센서 퓨전 : 카메라, 거리센서 등의 각종 센서로부터 얻은 데이터를 결합하여보다 정확한 데이터를 얻는 방식 ** SRAM PIM : 기존 메모리 SRAM과 DRAM 중 SRAM에 연산기를 결합한 PIM반도체 이 IP는 올해 2월 20일부터 28일까지 개최된 국제고체회로설계학회(ISSCC)에서 현장 시연을 통해 많은 주목을 받았으며, 이를 누구라도 편리하게 활용할 수 있도록 한 것이다. (웹사이트 : www.ai-pim.org) KAIST PIM 반도체 설계연구센터는 해당 IP를 포함해 ADC*, PLL** 등 총 5가지의 PIM IP를 확보했으며, 지난 28일 웹사이트를 오픈해 연구자들이 공유할 수 있는 환경을 제공하고 있다. * ADC(Analog to Digital Converter) : 아날로그 데이터를 디지털 데이터로 변환시키는 회로 ** PLL(Phase-Locked Loop) : 내부 신호의 위상과 외부 신호의 위상을 동기화할 수 있도록 설계된 회로 기존 물체 인식 인공지능 반도체는 사진과 같은 2차원 정보를 인식하는 `사진인식기술'에 불과하다. 하지만 현실 세계의 물체들은 3차원 구조물이기 때문에 3차원 공간정보를 활용해야만 정확한 `물체인식'이 가능하다. 3차원 공간정보는 사진과 같은 2차원 정보에 거리정보를 포함시켜 실제 3차원 공간을 표현한 것으로, 3차원 공간정보에 물체를 식별해 해당 물체의 위치 및 각도를 추적하는 3차원 물체인식 기술이다. 이는 자율주행, 자동화 기술, 개인용 증강현실 (AR)과 가상현실(VR) 등과 같은 3D 어플리케이션에서 사용하는 핵심기술이다. 기존 ToF 센서*를 활용해 센서 뷰 내에 있는 모든 물체에 대한 정밀한 3차원 정보를 추출하는 것은 전력 소모가 매우 크기 때문에 배터리 기반 모바일 장치(스마트폰, 태블릿 등)에서는 사용하기 어렵다. * ToF 센서 : 3차원 공간정보를 추출하는 Time-of-Flight 센서로, 레이저를 방출하고 반사된 레이저가 검출되는 시간을 측정하여 거리를 계산, 대표적인 센서로 3D 라이다 (LiDAR) 센서가 있음 또한, ToF 센서는 특정 측정 환경에서 3차원 정보가 손실되는 문제와 데이터 전처리 과정에 많은 시간이 소요된다는 문제점이 있다. 3차원 물체인식 기술은 데이터가 복잡해 기존 인공지능 2차원 사진인식 가속 프로세서로 처리하기 어렵다. 이는 3차원 포인트 클라우드 데이터를 어떻게 선택하고 그룹화하느냐에 따라 메모리 접근량이 달라진다. 따라서 3차원 포인트 클라우드 기반 인공지능 추론은 연산 능력이 제한적이고 메모리가 작은 모바일 장치에서는 소프트웨어만으로 구현할 수 없었다. 이에 연구팀은 카메라와 저전력 거리센서 (64픽셀)를 사용하여 3차원 공간정보를 생성했고, 모바일에서도 3차원 어플리케이션 구현이 가능한 반도체 (DSPU: Depth Signal Processing Unit)를 개발함으로써 인공지능 반도체의 활용범위를 넓혔다. 모바일 기기에서 저전력 센서를 활용한 3차원 정보 처리 시스템을 구동하면서, 실시간 심층신경망 추론과 센서 퓨전 기술을 가속하기 위해서는 다양한 핵심기술이 필요하다. 인공지능 핵심기술이 적용된 DSPU는 단순 ToF센서에 의존했던 3차원 물체인식 가속기 반도체 대비 63.4% 낮춘 전력 소모와 53.6% 낮춘 지연시간을 달성했다. PIM반도체 설계연구센터(AI-PIM)의 소장인 유회준 교수는 “이번 연구는 저가의 거리센서와 카메라를 융합해 3차원 데이터 처리를 가능하게 한 인공지능 반도체를 IP화했다는 점에서 의미가 크며, 모바일 기기에서 인공지능 활용 영역을 크게 넓혀 다양한 분야에 응용 및 기술이전을 기대하고 있다”고 연구의 의의를 설명했다. 한편, 이번 연구는 과학기술정보통신부와 정보통신기획평가원의 PIM인공지능반도체핵심기술개발사업을 통해 개발되었으며, 이와 관련해 PIM 반도체 관련 기업과 연구기관에 개발된 IP들의 기술이전 및 활용을 돕고 있다.
2022.12.29
조회수 6066
인공지능으로 정확한 세포 이미지 분석..세계 AI 생명과학 분야 대회 우승
우리 대학 김재철AI대학원 윤세영 교수 연구팀이 세계 최고 수준의 인공지능(AI) 학회인 `뉴립스(NeurIPS, 신경정보처리시스템학회) 2022'에서 개최된 `세포 인식기술 경진대회'에서 취리히 리서치센터, 베이징대, 칭화대, 미시간대 등 다수의 세계 연구팀을 모두 제치고 1위로 우승을 달성했다고 28일 밝혔다. 뉴립스는 국제머신러닝학회(ICML), 표현학습국제학회(ICLR)와 함께 세계적인 권위의 기계학습 및 인공지능 분야 학회로 꼽힌다. 뛰어난 연구자들이 제출하는 논문들도 승인될 확률이 25%에 불과할 정도로 학회의 심사를 통과하기 어려운 것으로 알려져 있다. 윤세영 교수 연구팀은 이번 학회에서 `세포 인식기술 경진대회(Cell Segmentation Challenge)'에 참가했다. 이기훈(박사과정), 김상묵(박사과정), 김준기(석사과정)의 3명의 연구원으로 구성된 OSILAB 팀은 초고해상도의 현미경 이미지에서 인공지능이 자동으로 세포를 인식하는 MEDIAR(메디아) 기술을 개발해 2위 팀과 큰 성능 격차로 1위를 달성했다. 세포 인식은 생명 및 의료 분야의 시작이 되는 중요한 기반 기술이지만, 현미경의 측정 기술과 세포의 종류 등에 따라 다양한 형태로 관찰될 수 있어 인공지능이 학습하기 어려운 분야로 알려져 있다. 세포 인식기술 경진대회는 이러한 한계를 극복하기 위해 초고해상도의 현미경 이미지에서 제한된 시간 안에 세포를 인식하는 기술을 주제로 개최됐다. 연구팀은 기계학습에서 소수의 학습 데이터를 더 효과적으로 활용해 성능을 높이는 데이터 기반(Data-Centric) 접근법과 인공신경망의 구조를 개선하는 모델 기반(Model-Centric) 접근법을 종합적으로 활용해 MEDIAR(메디아) 기술을 개발했다. 개발된 인공지능 기술을 통해 정확하게 세포를 인식하고 고해상도 이미지를 빠르게 연산함으로써 대회에서 좋은 성과를 얻을 수 있었다. 지도교수인 KAIST 김재철AI대학원 윤세영 교수는 “MEDIAR는 세포 인식기술 경진대회를 통해 개발됐지만 기상 예측이나 자율주행과 같이 이미지 속 다양한 형태의 개체 인식을 통해 정확한 예측이 필요한 많은 분야에 적용할 수 있다”라고 향후 다양한 활용을 기대했다. 팀을 이끌었던 이기훈 박사과정은 "처음 접하는 분야에서도 성과를 낼 수 있었던 것은 평소 기본기를 중요시하는 교수님의 가르침 덕분ˮ이라며 "새로운 문제에 끊임없이 도전하자는 것이 연구팀의 기본 정신ˮ이라고 강조했다. 이어 같은 연구실 김상묵 박사과정은 "연구 과정에서 많은 실패가 있었지만, 세상에 꼭 필요한 기술이라는 생각으로 끝까지 노력했다ˮ라며 "혼자서라면 절대 해내지 못했던 결과인 만큼 팀원들에게 정말 감사하다ˮ라고 수상 소감을 전했다. 같은 연구실 김준기 석사과정은 "팀원들과 이룬 성과가 의료 분야 인공지능이 겪는 현실의 문제를 해결하는 데 도움이 될 수 있기를 바란다”라고 밝혔다. 연구팀은 생명과학 분야 연구의 발전을 돕기 위해 개발된 기술을 전면 오픈소스로 공개한다고 밝혔다. 학습된 인공지능 모델과 인공지능을 구현하기 위한 프로그램의 소스 코드는 개발자 플랫폼인 깃허브 (GitHub)를 통해 이용할 수 있다.
2022.12.28
조회수 7190
낸드플래시 방식의 고신뢰성 인공 시냅스 소자 개발
우리 대학 신소재공학과 김경민 교수 연구팀이 낸드플래시(NAND Flash)의 전하 저장 방식을 활용하여 양산성이 높으며 높은 균일도를 갖는 고신뢰성 인공 시냅스 소자 개발에 성공했다고 6일 밝혔다. 최근 고성능의 인공지능 기술(Artificial Intelligence; AI) 구현을 위하여 인공 시냅스 소자를 통해 크로스바 어레이 구조에서 고밀도의 메모리 집적과 행렬 연산 가속을 동시에 구현하는 맞춤형 하드웨어를 개발하기 위한 노력이 계속되고 있다. 시냅스 소자의 후보 물질로 다양한 물질이 제시되었으나, 인공지능 가속기가 요구하는 다비트성 (Multi-bit), 보존성 (retention), 균일성 (uniformity), 내구성(Endurance) 등을 모두 만족하는 소자는 매우 드물었으며, 또한 제시되는 후보 물질들의 동작 방식도 기존 반도체 소자들과 매우 달라 반도체 소자로 활용함에 있어 양산성 및 수율 등에도 추가적인 검증이 필요하다는 한계가 있었다. 김경민 교수 연구팀은 낸드플래시의 전하 저장하는 방식을 차용한 2단자 구조의 인공 시냅스 소자를 개발했다. 기존에는 2단자 시냅스 구조가 안정적으로 동작하기 위해서는 전하의 저장 상태를 읽기 위해 산화막을 얇게 하여 저장된 전하의 보존성을 희생해야하는 한계가 있었다. 연구팀은 이번 연구에서 알루미늄 산화막, 나이오븀 산화막, 탄탈룸 산화막 등이 순차적으로 적층된 최적의 시냅스 소자 구조를 제안하였으며, 이를 통해 안정적인 다비트성과 보존성을 모두 확보하였다. 또한, 제안한 시냅스 소자가 갖는 자가정류(self-rectifying) 특성을 활용하는 병렬 컴퓨팅 방법을 제시하여 기존의 순차적 컴퓨팅 대비 필요한 에너지를 약 71% 절약할 수 있었다. 공동 제1 저자인 신소재공학과 김근영 석박통합과정은 “이번 연구는 이미 검증된 낸드플래시 메모리 구조를 인공 시냅스 소자에 적용하여 시냅스 소자의 양산성에 대한 우려를 불식한데 의미가 있다”며 “이처럼 향후 개발되는 인공지능 반도체에도 기존 반도체 소자의 고성능 특성과 물질의 새로운 특성을 접목하는 연구가 활발히 이뤄질 것으로 예상된다”고 밝혔다. 이러한 인공 시냅스 소자 기술은 인공지능 컴퓨팅을 저전력으로 구현하는 지능형 반도체 소자에 적용되어 에지 컴퓨팅 (Edge computing)과 같이 적은 에너지 소모가 필수적인 인공지능 기술에 다양하게 적용될 수 있을 것으로 기대된다. 이번 연구는 국제 학술지 ‘어드밴스드 사이언스(Advanced Science)’에 11월 28일 字 온라인 게재됐으며 한국연구재단, KAIST, SK Hynix의 지원을 받아 수행됐다. (논문명: Retention secured nonlinear and self-rectifying analog charge trap memristor for energy-efficient neuromorphic hardware)
2022.12.06
조회수 5195
세계 최초로 사람처럼 사물의 개념을 스스로 학습하는 장면 인식 기술 개발
우리 대학 전산학부 안성진 교수 연구팀이 미국 럿거스(Rutgers) 대학교와 공동연구를 통해 사람의 라벨링 없이 스스로 영상 속 객체를 식별할 수 있는 인공지능 기술을 개발했다고 1일 밝혔다. 이 모델은 복잡한 영상에서 각 장면의 객체들에 대한 명시적인 라벨링 없이도 객체를 식별하는 최초의 인공지능 모델이다. 기계가 주변 환경을 지능적으로 인지하고 추론하기 위해서는 시각적 장면을 구성하는 객체들과 그들의 관계를 파악하는 능력이 필수적이다. 하지만 이 분야의 연구는 대부분 영상의 각 픽셀에 대응하는 객체의 라벨을 사람이 일일이 표시해야 하는 지도적 학습 방식을 사용했다. 이 같은 수작업은 오류가 발생하기 쉽고 많은 시간과 비용을 요구한다는 단점이 있다. 이에 반해 이번에 연구팀이 개발한 기술은 인간과 유사하게 환경에 대한 관측만으로 객체의 개념을 스스로 자가 학습하는 방식을 취한다. 이렇게 인간의 지도 없이 스스로 객체의 개념을 학습할 수 있는 인공지능은 차세대 인지 기술의 핵심으로 기대돼왔다. 비지도 학습을 이용한 이전 연구들은 단순한 객체 형태와 배경이 명확히 구분될 수 있는 단순한 장면에서만 객체를 식별하는 단점이 있었다. 이와 달리 이번에 안성진 교수 연구팀이 개발한 기술은 복잡한 형태의 많은 객체가 존재하는 사실적인 장면에도 적용될 수 있는 최초의 모델이다. 이 연구는 그림 인공지능 소프트웨어인 DALL-E와 같이 텍스트 입력을 통해 사실적인 이미지를 생성할 수 있는 이미지 생성 연구에서 영감을 얻었다. 연구팀은 텍스트를 입력하는 대신, 모델이 장면에서 객체를 감지하고 그 객체의 표상(representation)으로부터 이미지를 생성하는 방식으로 모델을 학습시켰다. 또한, 모델에 DALL-E와 유사한 트랜스포머 디코더를 사용하는 것이 사실적이고 복잡한 영상을 처리할 수 있게 한 주요 요인이라고 밝혔다. 연구팀은 복잡하고 정제되지 않은 영상뿐만 아니라, 많은 물고기가 있는 수족관과 교통이 혼잡한 도로의 상황을 담은 유튜브 영상과 같이 복잡한 실제 영상에서도 모델의 성능을 측정했다. 그 결과, 제시된 모델이 기존 모델보다 객체를 훨씬 더 정확하게 분할하고 일반화하는 것을 확인할 수 있었다. 연구팀을 이끈 안성진 교수는 "인간과 유사한 자가 학습 방식으로 상황을 인지하고 해석하는 혁신적인 기술ˮ이라며 "시각적 상황인지 능력을 획기적으로 개선해 지능형 로봇 분야, 자율 주행 분야뿐만 아니라 시각적 인공지능 기술 전반에 비용 절감과 성능향상을 가져올 수 있다ˮ고 말했다. 이번 연구는 미국 뉴올리언스에서 지난 11월 28일부터 개최되어 12월 9일까지 진행 예정인 세계 최고 수준의 기계학습(머신러닝) 학회인 제36회 신경정보처리학회(NeurIPS)에서 발표됐다.
2022.12.02
조회수 5933
세계 최고 수준의 딥러닝 의사결정 설명기술 개발
우리 대학 김재철AI대학원 최재식 교수(㈜인이지 대표이사) 연구팀이 인공지능 딥러닝의 의사결정에 큰 영향을 미치는 입력 변수의 기여도를 계산하는 세계 최고 수준의 기술을 개발했다고 23일 밝혔다. 최근 딥러닝 모델은 문서 자동 번역이나 자율 주행 등 실생활에 널리 보급되고 활용되는 추세 및 발전에도 불구하고 비선형적이고 복잡한 모델의 구조와 고차원의 입력 데이터로 인해 정확한 모델 예측의 근거를 제시하기 어렵다. 이처럼 부족한 설명성은 딥러닝이 국방, 의료, 금융과 같이 의사결정에 대한 근거가 필요한 중요한 작업에 대한 적용을 어렵게 한다. 따라서 적용 분야의 확장을 위해 딥러닝의 부족한 설명성은 반드시 해결해야 할 문제다. 최교수 연구팀은 딥러닝 모델이 국소적인 입력 공간에서 보이는 입력 데이터와 예측 사이의 관계를 기반으로, 입력 데이터의 특징 중 모델 예측의 기여도가 높은 특징만을 점진적으로 추출해나가는 알고리즘과 그 과정에서의 입력과 예측 사이의 관계를 종합하는 방법을 고안해 모델의 예측 과정에 기여하는 입력 특징의 정확한 기여도를 계산했다. 해당 기술은 모델 구조에 대한 의존성이 없어 다양한 기존 학습 모델에서도 적용이 가능하며, 딥러닝 예측 모델의 판단 근거를 제공함으로써 신뢰도를 높여 딥러닝 모델의 활용성에도 크게 기여할 것으로 기대된다. ㈜인이지의 전기영 연구원, 우리 대학 김재철AI대학원의 정해동 연구원이 공동 제1 저자로 참여한 이번 연구는 오는 12월 1일, 국제 학술대회 `신경정보처리학회(Neural Information Processing Systems, NeurIPS) 2022'에서 발표될 예정이다. 모델의 예측에 대한 입력 특징의 기여도를 계산하는 문제는 해석이 불가능한 딥러닝 모델의 작동 방식을 설명하는 직관적인 방법 중 하나다. 특히, 이미지 데이터를 다루는 문제에서는 모델의 예측 과정에 많이 기여한 부분을 강조하는 방식으로 시각화해 설명을 제공한다. 딥러닝 예측 모델의 입력 기여도를 정확하게 계산하기 위해서 모델의 경사도를 이용하거나, 입력 섭동(행동을 다스림)을 이용하는 등의 연구가 활발히 진행되고 있다. 그러나 경사도를 이용한 방식의 경우 결과물에 잡음이 많아 신뢰성을 확보하기 어렵고, 입력 섭동을 이용하는 경우 모든 경우의 섭동을 시도해야 하지만 너무 많은 연산을 요구하기 때문에, 근사치를 추정한 결과만을 얻을 수 있다. 연구팀은 이러한 문제 해결을 위해 입력 데이터의 특징 중에서 모델의 예측과 연관성이 적은 특징을 점진적으로 제거해나가는 증류 알고리즘을 개발했다. 증류 알고리즘은 딥러닝 모델이 국소적으로 보이는 입력 데이터와 예측 사이의 관계에 기반해 상대적으로 예측에 기여도가 적은 특징을 선별 및 제거하며, 이러한 과정의 반복을 통해 증류된 입력 데이터에는 기여도가 높은 특징만 남게 된다. 또한, 해당 과정을 통해 얻게 되는 변형된 데이터에 대한 국소적 입력 기여도를 종합해 신뢰도 높은 최종 입력 기여도를 산출한다. 연구팀의 이러한 입력 기여도 측정 기술은 산업공정 최적화 프로젝트에 적용해 딥러닝 모델이 예측 결과를 도출하기 위해서 어떤 입력 특징에 주목하는지 찾을 수 있었다. 또한 딥러닝 모델의 구조에 상관없이 적용할 수 있는 이 기술을 바탕으로 복잡한 공정 내부의 다양한 예측변수 간 상관관계를 정확하게 분석하고 예측함으로써 공정 최적화(에너지 절감, 품질향상, 생산량 증가)의 효과를 도출할 수 있었다. 연구팀은 잘 알려진 이미지 분류 모델인 VGG-16, ResNet-18, Inception-v3 모델에서 개발 기술이 입력 기여도를 계산하는 데에 효과가 있음을 확인했다. 해당 기술은 구글(Google)이 보유하고 텐서플로우 설명가능 인공지능(TensorFlow Explainable AI) 툴 키트에 적용된 것으로 알려진 입력 기여도 측정 기술(Guided Integrated Gradient) 대비 LeRF/MoRF 점수가 각각 최대 0.436/0.020 개선됨을 보였다. 특히, 입력 기여도의 시각화를 비교했을 때, 기존 방식 대비 잡음이 적고, 주요 객체와 잘 정렬됐으며, 선명한 결과를 보였다. 연구팀은 여러 가지 모델 구조에 대해 신뢰도 높은 입력 기여도 계산 성능을 보임으로써, 개발 기술의 유효성과 확장성을 보였다. 연구팀이 개발한 딥러닝 모델의 입력 기여도 측정 기술은 이미지 외에도 다양한 예측 모델에 적용돼 모델의 예측에 대한 신뢰성을 높일 것으로 기대된다. 전기영 연구원은 "딥러닝 모델의 국소 지역에서 계산된 입력 기여도를 기반으로 상대적인 중요도가 낮은 입력을 점진적으로 제거하며, 이러한 과정에서 축적된 입력 기여도를 종합해 더욱 정확한 설명을 제공할 수 있음을 보였다ˮ라며 "딥러닝 모델에 대해 신뢰도 높은 설명을 제공하기 위해서는 입력 데이터를 적절히 변형한 상황에서도 모델 예측과 관련도가 높은 입력 특성에 주목해야 한다ˮ라고 말했다. 이번 연구는 2022년도 과학기술정보통신부의 재원으로 정보통신기획평가원의 지원을 받은 사람 중심 AI강국 실현을 위한 차세대 인공지능 핵심원천기술개발 사용자 맞춤형 플로그앤플레이 방식의 설명가능성 제공, 한국과학기술원 인공지능 대학원 프로그램, 인공지능 공정성 AIDEP 및 국방과학연구소의 지원을 받은 설명 가능 인공지능 프로젝트 및 인이지의 지원으로 수행됐다.
2022.11.23
조회수 7930
딥러닝 적대적 공격을 막는 방어 프레임 개발
우리 대학 전기및전자공학부 노용만 교수 연구팀이 물체를 검출하는 딥러닝 신경망에 대한 적대적 공격을 방어하는 알고리즘을 개발했다고 15일 밝혔다. 최근 몇 년간 인공지능 딥러닝 신경망 기술이 나날이 발전하고 실세계에 활용되면서, 딥러닝 신경망 기술은 자율주행 및 물체검출 등 다양한 분야에서 떠오르는 핵심기술로 주목받고 있다. 하지만 현재의 딥러닝 기반 검출 네트워크는, 특정한 적대적 패턴을 입력 이미지에 악의적으로 주입하여 잘못된 예측 결과를 초래하는 적대적 공격에 대해 심각하게 취약하다. 적대적 패턴이란 공격자가 검출이 되지 않기 위해 인위적으로 만든 패턴이다. 이 패턴이 포함된 물체는 검출이 되지 않게 하는 것으로 적대적 패턴 공격이라 한다. 이러한 취약성은 인공지능으로 대표되는 딥러닝 기반의 모델을 국방이나 의료 및 자율주행 등 국민의 생명과 재산을 직접 다루는 분야에 적용할 때 크게 문제가 된다. 구체적인 예로 국방·보안을 위한 감시 정찰 분야에서 적군이 적대적 패턴으로 위장하여 침입하면 검출을 못하는 경우가 발생하여 국방 및 보안에 매우 큰 위험을 초래할 수 있다. 기존의 많은 연구가 적대적 패턴 공격을 막기 위해 노력했으나 추가로 복잡한 모듈이 필요하거나 네트워크를 처음부터 다시 학습해야 했기 때문에, 기존 연구는 실시간으로 동작하는 물체검출 알고리즘에 현실적으로 적용하기가 쉽지 않았다. 노 교수 연구팀은 물리적인 환경에서 적대적 패턴 공격의 원리를 반대로 이용해 적대적 공격을 막아내는 방어 프레임을 고안했다. 이러한 방어 프레임은 부가적인 복잡한 모듈이나 네트워크의 재학습이 필요하지 않으므로 보다 실용적이고 강인한 물체검출 네트워크를 구축하는데 폭넓게 응용 및 적용될 수 있을 것으로 기대된다. 공동 제1 저자인 전기및전자공학부 유영준 박사과정 학생과 이홍주 박사과정 학생 등이 함께 수행한 이번 연구는 영상처리 분야 최고의 국제 학술지인 `IEEE Transactions on Image Processing'에 11월 1일 자로 온라인 게재됐다. (논문명 : Defending Person Detection Against Adversarial Patch Attack by using Universal Defensive Frame). 연구팀은 문제 해결을 위해 적대적 공격의 원리를 역으로 이용해, 학습된 네트워크에 접근하지 않으면서도 입력단에서 방어할 수 있는 방어 프레임 기술을 고안했다. 연구팀의 방어 기술은 적대적 공격과 정반대로 물체검출 시 딥러닝 모델이 옳은 예측 결과를 내리도록 방어 프레임을 만드는 것이다. 이러한 방어 프레임은 마치 창과 방패의 싸움처럼 적대적 패턴과 함께 경쟁적으로 학습되며, 해당 과정을 반복해 최종적으로 모든 적대적 패턴 공격에 대해 높은 방어성능을 지니도록 최적화된다. 연구팀은 입력 이미지 외부에 덧붙이는 방어 프레임을 변화시킴으로써 손쉽게 방어성능을 조절할 수 있음을 확인했고, 개발된 방어 프레임은 인리아(INRIA) 검출 벤치마크 데이터셋에서 기존 방어 알고리즘 대비 평균 31.6% 정확도가 향상하는 성과를 거뒀다. 연구팀이 개발한 방어 프레임은 실시간 물체 탐지 시, 모델의 재학습 없이 적대적 패턴 공격을 방어할 수 있으므로 예측 시간 및 비용 절감을 크게 이룰 수 있을 것으로 기대된다. 연구팀은 나아가 이번 연구에서 개발된 방어 프레임을 물리적으로 직접 구현시켜서, 물리적 환경에 자연스레 놓여있는 적대적 패턴 공격과 마찬가지로 좀 더 접근성 있는 방어 방법으로도 활발히 응용될 수 있음을 제시하였다. 노용만 교수는 "국방 및 보안 분야에서 인공지능이 활용되기 위해서 아직 인공지능의 완전성을 높이는 많은 연구가 필요한데, 이번에 개발된 방어 기술은 이 분야들에서 인공지능 모델을 적용 시 실용적인 적대적 방어를 제시함에 의의가 있을 것ˮ이라며 "이 기술은 국방 감시정찰, 보안, 자율주행 분야에도 적용될 수 있을 것이다ˮ라고 말했다. 한편 이번 연구는 방위사업청과 국방과학연구소의 지원으로 한국과학기술원 미래국방 인공지능 특화연구센터에서 수행됐다.
2022.11.15
조회수 4882
악천후에서도 자율주행을 가능하게 하는 세계 최고의 4D 레이더 인공지능 기술 개발
우리 대학 조천식모빌리티대학원 공승현 교수 연구팀이 세계 최초로 악천후 상황에서 안정적인 자율주행을 가능하게 하는 4D 레이더(Radar)의 주변 객체 인지 인공지능 기술을 개발했다고 20일 밝혔다. 연구팀은 구축된 인공지능 학습 데이터셋(Dataset)인 KAIST-레이더(이하 K-레이더)와 개발된 인공지능 신경망(RTN4D) 그리고 전 세계 연구자를 위한 4D 레이더 인공지능 개발 플랫폼(Platform)과 관련 벤치마크(Benchmark)를 모두 공개한다고 밝혔다. 현재 전 세계적으로 개발되고 있는 자율주행 자동차는 주로 카메라와 라이다(LiDAR)에서 출력되는 이미지와 포인트 클라우드(Pointcloud) 데이터를 적절한 인공지능 신경망으로 처리해 자동차 주변의 객체들을 인식하는 방식으로 구현돼 있다. 그러나 카메라와 라이다는 각각 가시광선과 적외선을 사용하므로 눈비 또는 안개 상황에서 측정 성능이 크게 떨어지는데, 이로 인해 주변 객체들에 대한 인식이 어려워져 안전한 자율주행이 불가능하다. 더구나, 차내에 설치할 수 있는 카메라와 달리 자동차의 지붕에 설치하는 라이다는 외부 환경에 노출돼 있어서 그 표면에 눈비 또는 흙먼지가 묻는 경우 라이다를 이용한 전방 탐지가 어려워진다. 공승현 교수는 "젖은 도로에서 전방에 주행 차량이 있는 경우, 그 바퀴에서 일어나는 흙먼지가 섞인 물보라로 라이다 표면이 빠르게 더럽혀지고, 결과적으로 모든 전방 객체에 대한 라이다 측정이 불가능해진다ˮ고 설명한다. {그림 1 참조} 적외선을 사용하는 라이다와는 달리 77기가헤르츠(GHz) 대역의 자동차 레이더는 눈, 비, 안개 등의 악천후 상황에 매우 강건하며 표면에 눈비나 흙먼지가 묻은 상황에서도 안정적인 측정 결과를 보인다. 최근에는 고해상도의 4D 레이더(대상까지의 거리, 방위각, 높이, 도플러 주파수를 측정)가 개발돼 상용화되고 있으며, 그 성능도 빠르게 향상되고 있다. 이에 따라서 전 세계적으로 4D 레이더에 인공지능을 이용한 주변 인지 기술 연구가 시작되고 있지만, 4D 레이더에 필요한 인공지능 연구는 매우 더디게 진행되고 있다. 카메라나 라이다와 달리, 고성능 인공지능 개발에 필수적인 충분한 데이터셋이 구축되지 못하고 있기 때문이다. 2021년부터 4D 레이더의 포인트 클라우드 데이터셋이 일부 공개됐으나, 데이터의 양이 충분하지 않고 측정치가 매우 희소해 신뢰할 만한 객체 인식 인공지능 신경망 개발이 쉽지 않다. 연구팀이 공개하는 K-레이더는 악천후를 포함한 다양한 날씨 및 교통 상황에서 수집된 다양성 높은 데이터셋이며, 정확히 동기된 카메라와 라이다 측정 데이터와 함께 구축된 13테라바이트(TB)에 이르는 대용량으로 세계 최초의 4D 레이더 데이터셋이다. 특히, K-레이더는 포인트 클라우드 형태가 아닌 인공지능 신경망의 성능을 극대화할 수 있는 텐서(Tensor) 형태의 데이터셋으로, 이는 일반적인 레이더의 잡음 제거 방식을 사용하지 않아 잡음 수준의 미약한 미세 측정치를 온전히 담고 있는 형태의 데이터셋이다. 연구팀이 개발한 4D 레이더 인공지능 신경망(RTN4D)은 K-레이더로 수많은 학습을 진행했고, 그 결과 다양한 날씨와 도로 상황에서 70m 이내의 객체에 대해 객체 판별, 위치 추정 및 주행 방향 추정의 3가지 추정을 정확히 수행하는 경우가 최종 62.5%인 세계 최고의 성능을 가진다. 또한, 연구팀은 전 세계의 연구자들이 자체적으로 데이터를 추가 구축하고 신경망 기술을 개발하며 그 성능을 자체 평가할 수 있도록 레이더용 인공지능 신경망 개발 플랫폼과 벤치마크도 공개 제공한다. 조천식모빌리티대학원 공승현 교수는 "눈이나 비가 오는 날씨에서 4D 레이더 인공지능 신경망은 기존 라이다 인공지능 신경망 보다 훨씬 더 안정적인 주변 객체 인지 성능을 갖는데, 이는 4D 레이더가 악천후에서 자율주행을 위한 필수 센서임을 보여주는 결과이며{그림 2 참조}, 최근 미국의 웨이모(Waymo)와 이스라엘의 모빌아이(Mobileye)가 수년 내로 4D 레이더를 자율주행의 주요 인지 센서로 활용할 계획임을 공개적으로 밝힌 이유다ˮ라며 "우리 연구팀이 공개한 K-레이더와 4D 레이더 인공지능 개발 플랫폼 및 벤치마크를 통해, 향후 4D 레이더에 관한 인공지능 연구가 더욱 활발히 진행될 것으로 기대한다ˮ라고 말했다. K-레이더, 4D 레이더 인공지능 신경망(RTN4D), 4D 레이더 인공지능 개발 플랫폼과 벤치마크는 연구실 홈페이지(http://ave.kaist.ac.kr/)와 깃허브(https://github.com/kaist-avelab/K-Radar)를 통해서 배포될 예정이다. 이번 연구는 한국연구재단(NRF) 및 정보통신기획평가원(IITP)의 지원과 ㈜스마트레이더시스템의 협력으로 수행됐으며, 연구 성과는 백동희 박사과정 학생이 2022년 12월에 열리는 세계적인 인공지능 컨퍼런스인 `뉴립스(NeurIPS) 2022' 데이터셋&벤치마크 트랙(Datasets and Benchmark Track)에서 발표할 예정이다(논문명: K-Radar: 4D Radar Object Detection Dataset and Benchmark for Autonomous Driving in Various Weather Conditions)
2022.10.20
조회수 6195
인공지능 심층 학습(딥러닝) 서비스 구축 비용 최소화 가능한 데이터 정제 기술 개발
최근 다양한 분야에서 인공지능 심층 학습(딥러닝) 기술을 활용한 서비스가 급속히 증가하고 있다. 서비스 구축을 위해서 인공지능은 심층신경망을 훈련해야 하며, 이를 위해서는 충분한 훈련 데이터를 준비해야 한다. 특히 훈련 데이터에 정답지를 만드는 레이블링(labeling) 과정이 필요한데 (예를 들어, 고양이 사진에 `고양이'라고 정답을 적어줌), 이 과정은 일반적으로 수작업으로 진행되므로 엄청난 노동력과 시간적 비용이 소요된다. 따라서 훈련 데이터 구축 비용을 최소화하는 방법 개발이 요구되고 있다. 우리 대학 전산학부 이재길 교수 연구팀이 심층 학습 훈련 데이터 구축 비용을 최소화할 수 있는 새로운 데이터 동시 정제 및 선택 기술을 개발했다고 12일 밝혔다. 일반적으로 심층 학습용 훈련 데이터 구축 과정은 수집, 정제, 선택 및 레이블링 단계로 이뤄진다. 수집 단계에서는 웹, 카메라, 센서 등으로부터 대용량의 데이터가 정제되지 않은 채로 수집된다. 따라서 수집된 데이터에는 목표 서비스와 관련이 없어서 주어진 레이블에 해당하지 않는 분포 외(out-of-distribution) 데이터가 포함된다 (예를 들어, 동물 사진을 수집할 때 재규어 `자동차'가 포함됨). 이러한 분포 외 데이터는 데이터 정제 단계에서 정제돼야 한다. 모든 정제된 데이터에 정답지를 만들기 위해서는 막대한 비용이 소모되는데, 이를 최소화하기 위해 심층 학습 성능 향상에 가장 도움이 되는 훈련 데이터를 먼저 선택해 레이블링하는 능동 학습(active learning)이 큰 주목을 받고 있다. 그러나 정제와 레이블링을 별도로 진행하는 것은 데이터 검사 측면에서 중복적인 비용을 초래한다. 또한 아직 정제되지 않고 남아 있는 분포 외 데이터가 레이블링 단계에서 선택된다면 레이블링 노력을 낭비할 수 있다. 이재길 교수팀이 개발한 기술은 훈련 데이터 구축 단계에서 데이터의 정제 및 선택을 동시에 수행해 심층 학습용 훈련 데이터 구축 비용을 최소화할 수 있도록 해준다. 우리 대학 데이터사이언스대학원에 재학 중인 박동민 박사과정 학생이 제1 저자, 신유주 박사과정, 이영준 박사과정 학생이 제2, 제4 저자로 각각 참여한 이번 연구는 최고권위 국제학술대회 `신경정보처리시스템학회(NeurIPS) 2022'에서 올 12월 발표될 예정이다. (논문명 : Meta-Query-Net: Resolving Purity-Informativeness Dilemma in Open-set Active Learning) 데이터의 정제 및 선택을 동시에 고려하기 위해서 구체적으로 가장 분포 외 데이터가 아닐 것 같은 데이터 중에서 가장 심층 학습 성능 향상에 도움이 될 데이터를 선택한다. 즉, 주어진 훈련 데이터 구축 비용 내에서 최고의 효과를 내도록 데이터의 순도(purity) 지표와 정보도(informativeness) 지표의 최적 균형(trade-off)을 찾는다. 순도와 정보도는 일반적으로 서로 상충하므로 최적 균형을 찾는 것이 간단하지 않다. 이 교수팀은 이러한 최적 균형이 정제 전 데이터의 분포 외 데이터 비율과 현재 심층신경망 훈련 정도에 따라 달라진다는 점을 발견했다. 이 교수팀은 이러한 최적 균형을 찾아내기 위해 추가적인 작은 신경망 모델을 도입했다. 연구팀은 추가된 모델을 훈련하기 위해 능동 학습에서 여러 단계에 걸쳐 데이터를 선별하는 과정을 활용했다. 즉, 새롭게 선택돼 레이블링 된 데이터를 순도-정보도 최적 균형을 찾기 위한 훈련 데이터로 활용했고, 레이블이 추가될 때마다 최적 균형을 갱신했다. 이러한 방법은 목표 심층신경망의 성능 향상을 위해 추가적인 상위 레벨의 신경망을 사용하였다는 점에서 메타학습(meta-learning)의 일종이라 볼 수 있다. 연구팀은 이 메타학습 방법론을 `메타 질의 네트워크'라고 이름 붙이고 이미지 분류 문제에 대해 다양한 데이터와 광범위한 분포 외 데이터 비율에 걸쳐 방법론을 검증했다. 그 결과, 기존 최신 방법론과 비교했을 때 최대 20% 향상된 최종 예측 정확도를 향상했고, 모든 범위의 분포 외 데이터 비율에서 일관되게 최고 성능을 보였다. 또한, `메타 질의 네트워크'의 최적 균형 분석을 통해, 분포 외 데이터의 비율이 낮고 현재 심층신경망의 성능이 높을수록 정보도에 높은 가중치를 둬야 함을 연구팀은 밝혀냈다. 제1 저자인 박동민 박사과정 학생은 "이번 기술은 실세계 능동 학습에서의 순도-정보도 딜레마를 발견하고 해결한 획기적인 방법ˮ 이라면서 "다양한 데이터 분포 상황에서의 강건성이 검증됐기 때문에, 실생활의 기계 학습 문제에 폭넓게 적용될 수 있어 전반적인 심층 학습의 훈련 데이터 준비 비용 절감에 기여할 것ˮ 이라고 밝혔다. 연구팀을 지도한 이재길 교수도 "이 기술이 텐서플로우(TensorFlow) 혹은 파이토치(PyTorch)와 같은 기존의 심층 학습 라이브러리에 추가되면 기계 학습 및 심층 학습 학계에 큰 파급효과를 낼 수 있을 것이다ˮ고 말했다. 한편, 이 기술은 과학기술정보통신부 재원으로 정보통신기획평가원의 지원을 받아 SW컴퓨팅산업원천기술개발사업 SW스타랩 과제로 개발한 연구성과 결과물(2020-0-00862, DB4DL: 딥러닝 지원 고사용성 및 고성능 분산 인메모리 DBMS 개발)이다.
2022.10.12
조회수 6732
인공지능으로 화학반응을 예측하다
우리 대학 생명화학공학과 정유성 교수 연구팀이 화학자처럼 생각하는 인공지능을 개발했다고 4일 밝혔다. 연구팀이 개발한 인공지능은 유기 반응의 결과를 정확하게 예측한다. 유기 화학자는 반응물을 보고 유기 화학반응의 결과를 예상해 약물이나 유기발광다이오드(OLED)와 같이 원하는 물성을 갖는 분자를 합성한다. 하지만 실험을 통해 화학반응의 생성물을 직접 확인하는 작업은 일반적으로 시간과 비용이 많이 소모된다. 게다가 유기 화학 반응은 같은 반응물에서 다양한 생성물이 생길 수 있어 숙련된 유기 화학자라도 모든 화학반응을 정확하게 예측하지 못한다. 이런 한계를 극복하고자 인공지능을 이용해 유기 반응을 예측하는 연구가 활발하게 일어나고 있다. 대부분의 연구는 반응물과 생성물을 서로 다른 두 개의 언어로 생각하고 한 언어에서 다른 언어로 번역하는 언어 번역 모델을 사용하는 방법에 집중하고 있다. 이 방법은 예측 정확도는 높지만, 인공지능이 화학을 이해하고 생성물을 예측했다고 해석하기 어려워 모델이 예측한 결과를 신뢰하기 어렵다. 정 교수팀은 화학적 직관을 바탕으로 모델을 설계해서 모델이 예측한 결과를 화학적으로 설명을 할 수 있을 뿐 아니라, 공개 데이터베이스에서 매우 우수한 예측 정확도를 달성했다. 정 교수팀은 화학자가 반응 결과를 예측하는 방법에서 아이디어를 얻었다. 화학자는 반응 중심을 파악하고 화학반응 규칙을 적용해 가능한 생성물을 예측한다. 이 과정을 본떠서 공개 화학반응 데이터베이스로부터 화학반응 규칙을 도출했다. 화학반응 규칙을 바탕으로 분자의 화학 반응성을 예측하기 위해서, 분자를 그래프로 취급하는 그래프 신경망(Graph Neural Network, GNN) 모델을 개발했다. 이 모델에 반응물들을 넣으면 화학반응 규칙과 반응 중심을 식별해 생성물을 성공적으로 예측한다. 정 교수팀은 화학반응에서 널리 사용되는 미국 특허무역청(USPTO) 데이터를 이용해 유기 반응을 90% 이상의 정확도로 예측하는 데 성공했다. 개발된 모델은 실제 사용 시 모델에 높은 신뢰성을 제공하는 `예측의 불확실성'을 말할 수 있다. 예를 들어, 불확실성이 낮다고 간주되는 모델의 정확도는 98.6%로 증가한다. 모델은 무작위로 샘플링된 일련의 유기 반응을 예측하는 데 있어 소규모의 합성 전문가보다 더 정확한 것으로 나타났다. 이번 연구의 성공으로 연구팀은 다른 분야에서 좋은 성능을 보인 모델을 그대로 사용하던 기존 방법보다, 화학자가 생각하는 방법과 동일하게 신경망을 설계하는 전략이 더 합리적이고 우수한 성능을 보인다는 것을 입증했다. 연구팀은 이 연구를 활용하면 분자 설계 과정이 비약적으로 빨라질 것으로 기대하며, 새로운 화합물 개발에 실용적인 응용을 기대하고 있다. 정유성 교수팀은 현재 연구 성과의 특허 출원을 준비하고 있다. 우리 대학 생명화학공학과 첸수안(Shuan Chen) 박사과정이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 '네이처 머신 인텔리전스(Nature Machine Intelligence)'에 9월호 표지논문으로 선정돼 출판됐다. 한편 이번 연구는 산업통상자원부와 한국연구재단의 지원을 받아 수행됐다.
2022.10.04
조회수 13873
세계 최초 네트워크 기술이 적용된 SSD 시스템 반도체 개발
우리 대학 전기및전자공학부 김동준 교수 연구팀이 세계 최초로 `패킷 기반 네트워크' 기술이 적용된 SSD(Solid State Drive, 반도체 기억소자를 사용한 저장장치) 시스템 개발을 통해 차세대 SSD의 읽기/쓰기 성능을 비약적으로 높이는 시스템 반도체를 개발했다고 28일 밝혔다. 패킷이란 다양한 크기를 지닌 데이터를 일정한 크기로 분할한 후 제어 정보를 추가한 데이터 전송의 기본 단위를 말하며, 효율적이고 신뢰성 있게 데이터를 전송할 수 있다는 장점이 있어 주로 컴퓨터 네트워크 기반 정보 기술에서 사용되고 있다. 최근 시스템 반도체 분야에서는 다양한 계산 자원들을 칩 내부 네트워크로 연결하여 효율적으로 활용하는 기술이 적용되고 있다. 본 연구는 이러한 시스템 반도체 분야에서 효과적인 네트워크 연결 기술을 메모리 반도체에 적용하였다는 점에서 큰 의미를 가지고 있다. SSD는 플래시메모리를 이용해 정보를 저장하는 장치로, 기존 자기디스크를 이용한 데이터 저장장치인 `하드디스크 드라이브(HDD)'에 비해 데이터 입출력(읽기/쓰기) 속도가 빠르고 발열과 소음이 적어 데이터 센터 및 클라우드 서비스를 위한 주요 저장장치로 활용되고 있다. 전 세계적으로 수십억 명이 사용하는 페이스북(Facebook), 트위터(Twitter) 등과 같은 SNS 서비스를 제공하는 기업들뿐만 아니라 구글, 마이크로소프트 등과 같이 수십억 명의 사용자 정보를 저장하고 이를 활용해 서비스를 제공하는 기업들은 더 많은 데이터를 저장하고 성능이 좋은 고용량/고성능 SSD 제품을 필요로 한다. 특히 인터넷 서비스 제공 기업들은 많은 양의 정보가 데이터 센터에서 저장되고 처리되면서 더 많은 데이터를 저장할 수 있고, 더 빠르게 데이터를 읽고 쓰는 것이 가능한 고성능 SSD 제품을 요구한다. 따라서 SSD는 지속해서 성능과 용량의 개선을 요구하는 상황에 놓이게 된다. 이에 삼성, SK 하이닉스, 등과 같은 SSD 및 메모리를 제공하는 기업에서는 고성능 SSD 기술에 크게 주목하고 있으며, 이는 많은 애플리케이션의 성능 향상에 도움이 될 뿐만 아니라 비용적인 측면에서도 효율적으로 서버 시스템을 확장하는 데 도움이 될 것으로 기대하고 있다. 하지만 이러한 장점에도 불구하고, 고용량 및 고성능 SSD를 위해 규모를 증가시키는 스케일 업(scale-up)은 하드웨어 패키징 한계에 제한돼 쉽게 확장하기 어렵다. 무엇보다도 기존 SSD 시스템은 사용 가능한 처리량 (bandwidth)이 있음에도 불구하고 효율적으로 사용하지 못하는 비효율적인 데이터 송수신 방식 채택해 사용하고 있다. 이에 김동준 교수 연구팀은 기존 SSD 시스템 설계를 분석해 CPU, GPU 등과 같은 비메모리 시스템 반도체 설계에서 주로 활용되는 네트워크 기술을 적용해 SSD 성능을 크게 높일 수 있는 `네트워크 기술이 적용된 SSD 시스템 반도체'를 개발했다. 김동준 교수팀이 개발한 SSD 시스템은 플래시 인터커넥트(interconnection network) 와 패킷 기반 플래시 컨트롤러 (packet-based flash controller) 등으로 구성되어 있으며, 현재 사용되는 기존 SSD 시스템 대비 2배 많은 처리량을 제공하고 응답시간을 약 10배 줄인 성능을 보인다고 연구팀 관계자는 설명했다. 또한 이번 개발을 통해서 기존 하드웨어의 한계를 비메모리 시스템 반도체에서 주로 사용되는 패킷(packet) 기반 송수신 기법의 사용으로 극복해 고성능 SSD 기술에 도움을 줄 수 있을 것으로 기대된다고 연구팀 관계자는 설명했다. 전기및전자공학부 김지호 박사과정이 제1 저자로, 한양대학교 컴퓨터소프트웨어학과 강석원 박사과정, 박영준 연세대학교 컴퓨터과학과 교수가 공동 저자로 참여한 이번 연구는 미국 시카고에서 열리는 컴퓨터 구조 분야 최우수 국제 학술대회인 `55th IEEE/ACM International Symposium on Microarchitecture (MICRO 2022)'에서 오늘 10월 발표될 예정이다. (논문명 : Networked SSD: Flash Memory Interconnection Network for High-Bandwidth SSD) 연구를 주도한 김동준 교수는 "이번 연구는 지금까지는 없던 네트워크 패킷(packet)이 적용된 SSD 시스템 반도체를 세계 최초로 개발했다는 점에서 의의가 있으며, 데이터 센터 및 클라우드 서비스 시장에서 지속적으로 증가하는 고성능 SSD 요구에 발맞춰 큰 도움을 줄 수 있을 것으로 보인다ˮ며, "SSD의 성능 향상은 인공지능 연구 및 빅데이터 분석 기술을 활용하는 다양한 알고리즘 성능 개선에도 기여할 것으로 보인다ˮ고 연구의 의의를 설명했다. 한편 이번 연구는 한국연구재단과 정보통신기획평가원 차세대지능형반도체기술개발사업의 지원을 받아 수행됐다.
2022.09.28
조회수 7490
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
>
다음 페이지
>>
마지막 페이지 9