-
남택진 교수팀, 레드닷 어워드 2021 대상 수상
우리 대학 남택진 산업디자인학과 교수팀이 세계 최대 규모의 디자인 공모전인 독일 ʻ레드닷 디자인 어워드(Red Dot Design Award) 2021ʼ 제품디자인 부문에서 대상(best of the best award)을 받았다. 수상작은 남 교수팀이 개발한 ʻ코로나 중증 환자 치료용 이동형 감염병동(mobile clinic module, MCM)ʼ이다. 올해 공모전에는 60여 개국에서 총 7천8백여 개의 작품이 출품돼 제품 디자인·커뮤니케이션 디자인·콘셉트 디자인 등 3개 분야에서 경쟁을 펼쳤다. 주최 측은 "수상작들이 자동차·로봇·의료 기술·포장에 이르기까지 디자인을 통해 현대 사회가 가진 문제를 해결하고 인류의 생활 수준을 향상하는 데 중요한 역할을 했다ˮ라고 밝혔다. 특히, 남 교수팀의 이동형 감염병동은 "제품 디자인이 감염병 확산을 방지하는 일에 얼마나 가치 있게 기여할 수 있는지를 보여줬다ˮ라고 평가했다.
이동형 감염병동의 쾌거는 이뿐만이 아니다. 레드닷 디자인 어워드(Red Dot Design Award)와 함께 세계 최고 권위의 디자인 공모전으로 손꼽히는 iF 디자인 어워드(International Forum Design Award) 2021에서도 제품·실내건축·사용자인터페이스·사용자경험 등 총 4개 분야에서 본상을 수상했다.
이로써, 남 교수팀의 이동형 음압병동은 국제 권위의 디자인 공모전을 연이어 석권하며 기능성·경제성·효용성뿐만 아니라 독창적 디자인과 심미성까지 갖춘 의료 시설로서 가치를 인정받게 됐다.
이동형 음압병동은 고급 의료 설비를 갖춘 음압 격리 시설로 신속하게 변형하거나 개조해 사용할 수 있도록 디자인됐다. 음압 프레임·에어 텐트·기능 패널 등의 각 모듈을 조합해 단시간 내에 음압 병동이나 선별진료소 등을 구축할 수 있다. 또한, 소규모의 장비와 인력으로도 관리·이송·설치가 가능해 기존의 조립식 병동 대비 경제적·시간적 효율을 높인 것이 가장 큰 특징이다. 남택진 교수팀은 작년 7월부터 KAIST 코로나 대응 과학기술 뉴딜사업(단장 배충식)의 일환으로 이동형 음압병동을 개발했다. 조스리 스튜디오·20Plus 등과 협력해 디자인을 진행했고 신성이엔지가 제작을 담당했다. 배상민(산업디자인학과)·이태식(산업및시스템 공학과)·김형수(기계공학과) 교수 등이 자문했으며, 석현정(산업디자인학과), 박해원·김성수(기계공학과), 한동수(전산학과) 교수 등이 감염병원 서비스 주제로 연구에 참여했다. 현재 한국 원자력의학원·제주도 백신 접종센터에 시제품이 설치돼 코로나 환자 및 백신 접종자들을 대상으로 시범 운영 중이다. 향후, 건양대 병원 등으로 적용 범위를 확대해나갈 예정이다. 디자인 총괄한 남택진 교수는 "현실 세계의 문제를 발견하고 해결하여 책임지는 디자이너가 더 많아지기를 바란다ˮ라고 수상 소감을 전했다. 이어, 남 교수는 "MCM의 생산 효율성과 안정된 운영을 위해 엔지니어링 디자인 측면을 개선하는 연구를 진행 중이며, 빠른 시일 내에 상용화와 수출이 이뤄질 수 있도록 박차를 가할 예정이다ˮ라고 전했다. KAIST 코로나 대응 과학기술 뉴딜사업단은 KAIST의 과학기술 역량을 기반으로 감염 예방·보호·진단·치료 등 감염병의 전 주기에 대응하는 치료 분야에서 산·학·연·병이 협력해 방역 요소기술 개발과 과학기술 기반의 방역 시스템을 구축하는 연구를 수행하고 있다.
2021.04.19
조회수 43847
-
개인 맞춤형 암 치료에 한 발짝 다가서
우리 연구진이 급성골수성백혈병(Acute myeloid leukemia)과 골수이형성증후군(Myelodysplastic syndromes) 치료에 사용되는 항암 화학 치료제 중 하나인 데시타빈(decitabine)의 인체 내 작용 메커니즘을 규명해 항암제 효과가 있는 환자와 없는 환자를 구별해 낼 수 있는 유전자 발굴에 성공했다.
이번 연구를 통해 환자별로 적합한 치료를 받을 수 있게 되면 환자들이 치료에 드는 경제적 지출과 시간적 소비 또한 확연하게 줄일 수 있을 것으로 기대된다.
우리 대학 생명화학공학과 김유식 교수와 서울대병원 혈액암센터 홍준식 교수 공동 연구팀이 항암 화학치료에서 작용하는 주요 인자를 찾아냈다고 7일 밝혔다.
생명화학공학과 박사과정에 재학 중인 구용석 학생, 서울대병원 박주환 연구원 그리고 우리 대학 조령은 학생이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `미국국립과학원회보(PNAS)' 3월 30일 字에 게재됐다. (논문명: Noncanonical immune response to the inhibition of DNA methylation via stabilization of endogenous retrovirus dsRNAs)
데시타빈과 같은 DNA 탈메틸화제(DNA demethylating agent)는 DNA 복제과정에 참여하고 DNA상에 존재하는 메틸기(-CH₃)를 제거해 유전자 발현을 조절한다. 특히 암세포에는 일반 세포보다 많은 양의 DNA가 메틸화돼 있으며, 이는 DNA에서 RNA를 생성하는 전사 과정을 억제하는 역할을 한다. 세포에 탈메틸화제 처리를 하면 DNA상에 메틸기가 제거돼 세포 내에 수많은 종류의 RNA들이 생성된다.
이렇게 데시타빈에 의해 조절되는 RNA 중에는 이중나선 RNA (double-stranded RNA, 이하 dsRNA)가 있다. 원래 dsRNA는 바이러스에 감염된 세포에서 많이 생산되며, 인간 세포는 바이러스에서 유래된 dsRNA를 외부 물질로 인지해 면역반응을 일으킨다.
특이하게도 dsRNA를 인지하는 인간의 선천성 면역반응 시스템은 핵산 서열 정보를 무시한 채 dsRNA의 길이나 말단 형태와 같은 구조적 특징을 이용해 dsRNA와 반응한다. 이와 같은 특징 때문에 꼭 바이러스에서 유래된 dsRNA가 아니라 체내에서 생성된 dsRNA 또한 외부 물질로 오인돼 비정상적인 면역반응을 일으킬 수 있다. 암 치료에서는 DNA 탈메틸화제 처리로 dsRNA의 발현량을 증가시키고 이는 dsRNA에 의한 면역 활성으로 이어져 암세포만의 세포사멸이 일어나게 된다.
연구팀은 이러한 데시타빈에 의한 dsRNA 발현증가 그리고 dsRNA에 의한 세포사멸을 조절하는 유전자를 연구했다. 특히, DNA 탈메틸화제를 투여받은 환자 중 많은 수의 환자가 약물의 효과를 보지 못한다는 점에 착안해 dsRNA와 상호작용하는 다양한 dsRNA 결합 단백질을 분석했다.
그 결과로 dsRNA와 직접 결합해 dsRNA의 안정성을 조절하는 단백질인 `스타우펜1(이하 Staufen1)'이 데시타빈에 의한 세포 반응에 중요한 기능을 한다는 것을 최초로 규명했다. Staufen1의 발현이 억제된 세포에서는 dsRNA가 빠르게 제거돼 하위 면역반응이 일어나지 않았으며 암세포의 사멸도 관찰되지 않았다.
연구팀은 데시타빈 뿐만 아니라 아자시티딘(azacitidine)과 같은 DNA 탈메틸화제를 투여받은 급성골수성백혈병과 골수이형성증후군 환자 46명의 골수추출액에서 Staufen1 유전자의 발현양상을 분석했고, 그 결과 약물의 효과를 보지 못한 환자에게서는 Staufen1의 발현이 유의미하게 감소해 있다는 것을 확인했다. 또한, Staufen1의 발현이 낮은 환자는 생존율(overall survival)과 무진행 생존율(progression-free survival)이 모두 낮아 환자의 예후가 좋지 않다는 것을 확인했다.
생명화학공학과 김유식 교수는 "이번 연구에서는 단순 데시타빈 항암제의 작용기전 규명을 넘어서 실제 데시타빈을 투여받은 환자의 검체에서도 그 효과를 검증했다ˮ면서 "추후 이번에 찾은 유전자의 바이오마커화를 통해 데시타빈과 아자시티딘과 같은 DNA 탈메틸화제의 효과를 예측할 수 있어 효과적인 맞춤형 암 치료전략을 마련하는데 유용할 것ˮ 이라고 말했다.
한편 이번 연구는 한국연구재단 신진연구자지원사업과 KAIST 미래형 시스템 헬스케어 연구개발사업의 지원을 받아 수행됐다.
2021.04.07
조회수 77101
-
탄소중립 인공 광합성 기술 개발
우리 대학 생명과학과 조병관 교수 연구팀이 기후변화의 주된 요인인 C1 가스(이산화탄소, 일산화탄소 등 탄소 1개로 구성된 가스)를 고부가가치 바이오 화학물질로 전환하는 기술을 개발했다고 9일 밝혔다.
조 교수 연구팀은 광 나노입자가 빛을 받으면 내놓는 전자를 미생물이 에너지원으로 이용할 수 있도록 고효율 광 나노입자가 표면에 부착된 미생물-광 나노입자 인공광합성 시스템을 개발했다. 이 기술은 빛을 유일한 에너지원으로 활용해 미생물이 C1 가스를 다양한 바이오 화학물질로 전환하는 친환경 C1 가스 리파이너리 기술로 정부가 선언한 2050 탄소중립 실현을 위한 다양한 응용 가능성을 제시한다.
생명과학과 진상락 석박사통합과정 학생이 제1 저자로 참여한 이번 연구는 국제 학술지 `미국국립과학원회보(Proceedings of National Academy of Science, PNAS)'에 2월 23일 字 온라인판에 게재됐다.(논문명: Acetogenic bacteria utilize light-driven electrons as an energy source for autotrophic growth)
아세토젠 미생물은 우드-융달 대사회로를 통해 C1 가스를 아세트산으로 전환할 수 있다. 이에 C1 가스로부터 바이오 화학물질 생산을 위한 바이오 촉매로 활용 가능성이 커 탄소 포집 및 활용 기술로 많은 주목을 받고 있다.
아세토젠 미생물은 C1 가스 대사를 위한 환원 에너지를 당이나 수소를 분해해 얻는다. 당이나 수소를 대체하기 위해 나노입자 크기의 개별 광전극 역할을 하는 광 나노입자를 미생물 표면에 부착시켜 빛에너지를 미생물로 전달시키면 당이나 수소 없이도 C1 가스를 활용할 수 있다.
기존기술은 광 나노입자를 생합성해 세포 표면에 부착시키는 방법으로 광 나노입자의 구조와 크기를 조절하기 어려워 C1 가스 대사 효율을 높이는 데 한계가 있었다. 이는 구조와 크기에 따라 광전도효과의 성능에 차이가 생기는 광 나노입자의 독특한 특성 때문이다.
이와 같은 한계를 극복하기 위해 연구팀은 구조와 크기가 균일하고 우수한 광전도효과를 나타내는 고효율 광 나노입자를 화학적 방법으로 합성하고, 산업적으로 활용 가능한 아세토젠 미생물 중 하나인 `클로스트리디움 오토에타노게놈(Clostridium autoethanogenum)'의 표면에 부착시켰다.
연구팀은 광 나노입자를 부착한 미생물이 C1 가스로부터 아세트산을 생산할 수 있음을 입증해 빛을 이용한 친환경 인공광합성 시스템을 구축하고 구축된 인공광합성 시스템 미생물의 전사체 분석(세포 내 모든 RNA를 분석해 유전자 발현 유무를 규명하는 기술)을 통해 광 나노입자로부터 생성된 전자가 미생물 내로 전달되기 위한 전자수용체를 규명했다.
연구를 주도한 조병관 교수는 "C1 가스 고정과정에서 사용되는 당 또는 수소를 친환경 빛에너지로 대체할 수 있고, 미생물 기반의 생합성 광 나노입자를 활용한 기존 인공광합성 시스템의 한계를 극복했다ˮ며 "고효율 광 나노입자를 사용해 인공광합성 효율을 증대시킬 수 있고, 광 나노입자로부터 생성된 전자를 효율적으로 수용할 수 있는 인공미생물 개발연구에 실마리를 제공했다ˮ 고 의의를 설명했다.
한편 이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 C1 가스 리파이너리 사업단 및 지능형바이오시스템 설계 및 합성연구단(글로벌프론티어사업)의 지원을 받아 수행됐다.
2021.03.09
조회수 97184
-
코로나 중증 환자용 이동형 음압병동 개발
작년 11월 초부터 시작된 3차 코로나 대유행으로 중증 환자 수가 급증하면서 음압 병상 부족 사태가 심화되는 가운데, 이를 신속하게 해결할 수 있는 이동형 음압병동이 우리 대학 연구진에 의해 개발됐다. 음압병동은 중증 감염병 환자 치료에 필수적인 시설이다.
우리 대학 산업디자인학과 남택진 교수 연구팀은 코로나 대응 과학기술 뉴딜사업단(단장 배충식 공과대학장)의 한국형 방역패키지 기술 개발사업의 일환으로 작년 7월부터 연구해온 '이동형 음압병동(Mobile Clinic Module, 이하 MCM)'을 개발하고 시범 운영에 들어갔다. MCM은 고급 의료 설비를 갖춘 음압 격리 시설로 신속하게 변형하거나 개조해 사용할 수 있는 것이 특징인데, 진단검사 · 영상의학 · 의료물품 공급 · 의무기록 관리와 환자 식사 제공 등 기존 병원의 인프라와 함께 활용해야 한다. 연구팀은 작년 12월 28일부터 서울 노원구에 있는 한국원자력의학원에 4개의 중환자 병상을 갖춘 병동을 설치한 후, 의료진과 일반인으로 구성한 모의 환자그룹을 대상으로 의료 활동과 환자 일상 등 치료 전 과정을 점검하는 시뮬레이션에 들어갔다. 이달 15일까지 모의 운영을 진행한 뒤 의료진과 환자의 사용성·안정성·만족도 등을 임상 검증한 후 본격적인 상용화에 나설 계획이다. 남 교수 연구팀이 개발한 MCM은 약 450㎡(136평) 규모로 가로 15m x 세로 30m 크기다. 이 MCM은 음압 시설을 갖춘 중환자 케어용 전실과 4개의 음압병실, 간호스테이션 및 탈의실, 그리고 각종 의료장비 보관실과 의료진실로 꾸며져 있다.
음압 프레임·에어 텐트·기능 패널 등의 시설을 갖춘 MCM은 부품을 조합해 신속하게 음압 병상이나 선별진료소 등으로 변형 또는 개조해서 사용할 수 있다. 이뿐만 아니라 기존 중환자 병상을 음압 병상으로 전환하는 데도 매우 효과적이다. 이에 따라, MCM이 본격 상용화되면 코로나19 중환자용 음압 병상 부족난을 해소하는 데에도 큰 도움이 될 것으로 기대된다.
컨테이너나 텐트 등을 활용해 짓는 기존의 조립식 감염 병동은 건설과 장비 확보에 비용이 많이 들고, 기능적으로는 임시 수용 시설에 불과하다는 게 단점으로 꼽힌다. 따라서 중환자를 수용하기 위한 전문적인 의료 시설로 사용하기에는 역부족이다. 남 교수 연구팀은 안전한 음압 환경을 형성하는 독자적인 기기인 '음압 프레임'을 설계하고 이를 '에어 텐트'와 연결하는 모듈형 구조에 접목해 최소한의 구조로 안정적인 음압병실을 구축할 수 있는 MCM 기술 개발에 성공했다. 음압 프레임이 양방향으로 압력을 조절해 두 에어 텐트 공간(예: 전실과 병실)을 효과적으로 음압화하는 원리다. 텐트에 '기능 패널'을 조합해 중환자 치료에 필요한 의료 설비나 기본 병실 집기를 구축할 수 있다. 또 모듈 조합을 통해 음압병동 및 선별진료소, 음압화 중환자 병상, 음압화 일반병실 등 목적에 맞는 의료 시설로 사용할 수 있다. 연구팀 관계자는 "병실 모듈 제작에 걸리는 시간은 14일 정도며 이송 및 설치 또한 통상적으로 5일 안에 가능하다ˮ고 말했다. 특히, 전실과 병실로 구성된 MCM의 기본 유닛은 모듈 재료가 현장에 준비된 상태에서 15분 이내에 설치가 가능한 게 특징이다. 이밖에 기존 조립식 병동으로 증축할 경우와 비교할 때 약 80% 정도 비용을 절감할 수 있다고 연구팀 관계자는 설명했다. 또한, 감염병 사태 이후 보관이 어려운 기존 조립식 병동과는 다르게 부피와 무게를 70% 이상 줄인 상태로 보관할 수 있어 군수품처럼 비축해놨다가 감염병이 유행할 때 빠르게 도입해 설치할 수 있다는 것도 큰 장점이다. 모듈화된 패키지는 항공 운송도 가능해 병동 전체의 수출도 기대할 수 있다.
다년간의 사용자 중심 시스템 디자인 노하우를 보유 중인 남택진 교수 연구팀은 환자·의료인 등 실사용자를 위해 기능성·경제성·효용성 등을 종합적으로 고려한 안전한 음압병동 개발을 목표로 작년 7월부터 관련 기술 개발을 진행해왔다. 사용 편의성·감성적 경험 및 독창성 등을 만족시키기 위해서 입원 치료 환경 구축을 위한 의료 자문을 포함, 의료진과의 협력을 통해 감염 치료 프로세스를 이해하는 등 음압병동 디자인에 필요한 요구사항을 현장에서 확립하는 연구도 동시 진행했다. 그 결과, 의료 활동과 환자의 일상을 지원하는 다양한 기능 패널 아이디어와 옥외 주차장·공터·실내 체육관 등 기존 병원의 유휴 공간을 활용할 수 있는 병동 구축을 통해 기존 의료자원과 연계하는 모듈러 시스템을 완성하는 데 성공했다.
남 교수 연구팀은 특히 한국원자력의학원 의료진들과 공동으로 이동형 감염병원 표준 운영 절차(SOP, Standard Operation Procedure)를 개발해 감염병 대응 과정의 안전성을 확보하는 한편 이동 음압병동을 처음 운영하는 의료진들의 현장 활용도를 높였다. 한국원자력의학원 조민수 박사(비상진료부장)는 "코로나 대응에 있어서 환자와 의료진이 안전한 환경에서 중증 환자 치료까지 이뤄지도록 설계·제작했다ˮ고 설명했다. 조 부장은 이어 "국내외 확대 보급 시 원자력의학원에 설치된 이동형 음압병동이 의료진 교육훈련센터 기능을 수행할 수 있다ˮ면서 "필요시에는 실제 의료현장에서의 운영 지원도 가능하다ˮ고 밝혔다.
남택진 교수팀의 이번 연구는 KAIST 코로나 대응 과학기술 뉴딜사업의 지원을 받아 이뤄졌는데 사용자 연구부터 디자인·시제품 개발에 이르기까지 6개월 만에 임상적 운영이 가능한 병동 개발을 완료했다.
에어 텐트 형태의 음압병동 시제품은 과제 협약업체인 신성이엔지에서 제작을 맡았는데 6~8개의 중환자 병상을 갖춘 이동형 감염병원의 경우 3~4주 이내 납품이 가능하다. 연구 총괄을 맡은 남택진 KAIST 산업디자인학과 교수는 "MCM은 병동 증축을 최소화하며 주기적으로 반복될 감염병 위기에 필수적인 방역시스템으로 자리를 잡게 될 것ˮ이라고 말했다. 남 교수는 이어 "세계 최초로 개발한 MCM의 하드웨어와 운용 노하우를 향후 K-방역의 핵심 제품으로 추진하고 수출까지 기대할 수 있다ˮ고 덧붙였다. 한편, KAIST는 과기정통부로부터 후원을 받아 작년 7월부터 교내에 코로나 대응 과학기술 뉴딜사업단을 공식 출범시켜 관련 연구를 진행 중이다. 배충식 사업단장(공과대학장)이 이끄는 이 사업단은 KAIST가 보유한 과학기술을 활용해 코로나19에 발 빠르게 대응하고 국가적 위기를 기회로 전환하자는 목표 아래 KAIST 교수진 위주의 연구 책임자 45명 및 외부 참여 교수를 포함해 총 464명의 연구진이 감염 예방-진단-치료 등 항·감염 전주기에 대응하는 과학기술 기반 한국형 방역패키지를 개발하고 있다.
2021.01.07
조회수 61691
-
노화된 세포를 젊은 세포로 되돌리는 초기 원천기술 개발
우리 연구진이 노화된 세포를 젊은 세포로 되돌리는 역 노화 원천기술을 개발했다. 이를 활용하면 노화 현상을 막고 각종 노인성 질환을 사전 억제할 수 있는 치료제를 개발할 단서를 찾을 수 있을 것으로 기대된다.
우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 시스템생물학 연구를 통해 노화된 인간 진피 섬유아세포를 정상적인 젊은 세포로 되돌리는 역 노화의 초기 원천기술을 개발했다고 26일 밝혔다.
조광현 교수팀의 이번 연구 결과는 ㈜아모레퍼시픽 기술연구원과의 산학 공동연구를 통해 최초로 개발된 노화 인공피부 모델에서 이 기술을 적용함으로써 입증하는 데 성공했다.
조 교수팀은 이번 연구를 위해 인간 진피 섬유아세포의 세포노화 신호전달 네트워크의 컴퓨터 모델을 개발한 후 시뮬레이션 분석을 통해 노화된 인간 진피 섬유아세포를 젊은 세포로 되돌리는데 필요한 핵심 인자를 찾아냈다. 이후 노화 인공피부 모델에서 핵심 인자를 조절함으로써 노화된 피부조직에서 감소된 콜라겐의 합성을 증가시키고 재생 능력을 회복시켜 젊은 피부조직의 특성을 보이게 하는 역 노화 기술을 개발했다.
연구팀 관계자는 이러한 역 노화 기술은 노화된 피부 등을 포함한 노화 현상 및 많은 노인성 질환의 발생을 사전에 억제할 수 있도록 근본적인 치료전략을 제시한 것으로 건강 수명을 오랫동안 유지하고 싶은 인류의 꿈을 실현하는데 한 걸음 다가선 결과라고 의미를 부여했다.
바이오및뇌공학과 안수균 박사과정 학생, 강준수 연구원, 이수범 연구원과 ㈜아모레퍼시픽의 바이오사이언스랩이 참여한 이번 연구 결과는 국제저명학술지인 `미국국립과학원회보(PNAS)'에 게재됐다.(논문명: Inhibition of 3-phosphoinositide-dependent protein kinase 1 (PDK1) can revert cellular senescence in human dermal fibroblasts)
현재 널리 연구되고 있는 회춘 전략은 이미 분화된 세포를 역분화시키는 4개의 `OSKM(Oct4, Sox2, Klf4, c-Myc) 야마나카 전사인자'를 일시적으로 발현시켜 후성유전학적 리모델링(epigenetic remodeling)을 일으킴으로써 노화된 세포를 젊은 상태로 되돌리는 부분적 역분화(partial reprogramming) 전략이다.
이 기술은 노화된 세포가 젊은 세포로 되돌아갈 수 있다는 것을 증명했지만 종양의 형성과 암의 진행을 유발하는 부작용이 생긴다. 따라서 이와 같은 부작용을 배제할 수 있는 정교한 제어 전략이 과학 난제로 남아있었다.
조 교수팀은 이러한 난제 해결을 위해 시스템생물학 연구 방법을 통해 노화된 인간 진피 섬유아세포를 정상적인 젊은 세포로 되돌릴 수 있는 핵심 조절인자를 오래전부터 탐구하기 시작했다. 4년에 걸친 연구 끝에 단백질 합성, 세포의 성장 등을 조절하는 mTOR와 면역 물질 사이토카인의 생성에 관여하는 NF-kB를 동시에 제어하고 있는 상위 조절 인자인 `PDK1(3-phosphoinositide-dependent protein kinase 1)'을 찾아냈다.
연구팀은 PDK1을 억제함으로써 노화된 인간 진피 섬유아세포를 다시 정상적인 젊은 세포로 되돌릴 수 있음을 분자 세포실험 및 노화 인공피부 모델 실험을 통해 입증했다. 연구를 통해 노화된 인간 진피 섬유아세포에서 PDK1을 억제했을 때 세포노화 표지 인자들이 사라지고 주변 환경에 적절하게 반응하는 정상 세포로서 기능을 회복하는 현상을 확인했다.
연구 결과 노화된 인간 진피 섬유아세포에서는 PDK1이 mTOR와 NF-kB를 활성화해 노화와 관련된 분비 표현형(SASP: Senescence Associated Secretary Phenotype)을 유발하고 노화 형질을 유지하는 것과 연관돼 있음을 밝혀냈다. 즉, PDK1을 억제함으로써 다시 원래의 정상적인 젊은 세포 상태로 안전하게 되돌릴 수 있음을 증명한 것이다.
조 교수팀이 연구 과정에서 찾아낸 표적 단백질의 활성을 억제할 수 있는 저분자화합물과 관련된 신약개발과 그리고 전임상실험을 통해 노화된 세포의 정상 세포화라는 연구 결과는 새로운 노인성 질환의 치료 기술과 회춘 기술에 관한 연구를 본 궤도에 올려놓은 초석을 다진 획기적인 연구로 평가받고 있다.
실제 ㈜아모레퍼시픽 기술연구원은 이번 연구 결과로부터 동백추출물에서 PDK1 억제 성분을 추출해 노화된 피부의 주름을 개선하는 화장품을 개발중이다.
조광현 교수는 "그동안 비가역적 생명현상이라고 인식돼왔던 노화를 가역화할 가능성을 보여줬다ˮ라며 "이번 연구는 노화를 가역적 생명현상으로 인식하고 이에 적극적으로 대처해 건강 수명을 연장하는 한편 노인성 질환을 예방할 수 있는 새로운 시대의 서막을 열었다ˮ라고 의미를 부여했다.
이번 연구는 조광현 교수 연구팀의 시스템생물학 기반 가역화 기술 개발의 일환으로 이뤄졌으며, 연구팀은 지난 1월 같은 기술을 적용해 대장암세포를 다시 정상 대장 세포로 되돌리는 연구에 성공한 바 있다.
한편 이번 연구는 한국연구재단의 중견연구자지원사업과 KAIST 그랜드챌린지 30 (KC30) 프로젝트 및 아모레퍼시픽 R&D 센터의 지원으로 수행됐다.
2020.11.26
조회수 42799
-
사람 3D 폐포 배양 기술로 코로나19 감염 기전을 규명하는 데 성공
우리 대학 연구진 포함 국내 연구진이 실험실에서 3차원으로 키운 사람의 폐포(허파꽈리)에 코로나19 바이러스를 배양해 감염 기전과 치료제 개발에 적용이 가능한 기술 개발에 성공했다.
국제 통계 사이트 월드오미터에 따르면 전 세계 누적 코로나바이러스감염증-19(이하 코로나19) 확진자 수는 25일 기준 4,331만 8,941명으로 지난 18일(4,030만 1,609명) 4,000만 명을 넘어선 후 일주일 만에 4,331만을 돌파하는 2차 대유행이 점차 현실화돼 가고 있다.
우리 대학 의과학대학원 주영석 교수 연구팀은 인간의 폐포 세포를 실험실에서 구현하는 3D 미니 장기기술을 개발하고 이를 활용해 코로나19 바이러스가 인간의 폐 세포를 파괴하는 과정을 정밀하게 규명하는 데 성공했다고 26일 밝혔다.
이번 연구는 영국 케임브리지대학 이주현 박사를 비롯해 국립보건연구원 국립감염병연구소 최병선 과장·기초과학연구원(IBS) 고규영 혈관연구단장(우리 대학 의과학대학원 교수)·서울대병원 김영태 교수와 우리 대학 교원창업기업인 ㈜지놈인사이트와 공동으로 진행됐다.
공동연구팀의 이번 연구 결과는 줄기세포 분야 세계적인 학술지 `Cell Stem Cell' 10월 22일 字 온라인판에 실렸다. (논문명: Three-dimensional human alveolar stem cell culture models reveal infection response to SARS-CoV-2)
정확한 질병 기전의 이해를 기반으로 치료제를 효과적으로 개발하기 위해서는 실험실에서 사용 가능한 인체를 모사한 모델 사용이 필수적이다. 코로나19 바이러스는 생쥐 모델에 감염시키기가 어렵고, 특히 실험실에서 사용할 수 있는 폐 세포 모델은 존재하지 않기 때문에 직접적인 감염 연구의 한계가 존재해왔다.
공동연구팀은 이런 문제를 해소하기 위해 지속적으로 배양이 가능한 3차원 인간 폐포 모델을 새롭게 정립했다. 이를 이용하면 실험실에서 사람의 폐 세포를 이용해 코로나19 바이러스 등 각종 호흡기 바이러스의 질병 기전을 연구할 수 있기 때문이다. 더 나가서 3차원 인간 폐포 모델은 약물 스크리닝 등 치료법 개발에도 직접적으로 응용할 수 있다는 장점이 있다.
공동연구팀은 폐암 등 사람의 수술 검사재료에서 확보되는 사람 폐 조직을 장기간 안정적으로 3차원 배양할 수 있는 조건을 알아내는 데 성공했다. 실험 결과, 3D 폐포는 코로나19 바이러스에 노출되면 6시간 내 급속한 바이러스 증식이 일어나 세포 감염이 완료됐으나, 이를 막기 위한 폐 세포의 선천 면역 반응 활성화에는 약 3일가량의 시간이 걸렸다.
이와 함께 하나의 코로나19 바이러스 입자는 하나의 세포를 감염시키는 데 충분하다는 사실을 알아냈다. 감염 3일째 공동연구팀은 세포 가운데 일부분이 고유의 기능을 급격히 상실한다는 사실도 확인했다.
공동 교신저자인 주영석 교수는 "이번에 개발한 3차원 인체 폐 배양 모델 규모를 확대한다면 코로나19 바이러스를 포함한 다양한 호흡기 바이러스의 감염 연구에 유용하게 사용될 것ˮ이라고 말했다.
주 교수는 이어 "동물이나 다른 장기 유래의 세포가 아닌 호흡기 바이러스의 표적 세포인 사람의 폐 세포를 직접적으로 질병 연구에 응용함으로써 효율적이고 정확한 기전 규명은 물론 치료제 개발에도 이용할 수 있다ˮ고 강조했다.
코로나19 바이러스 대응 기술개발을 위해서는 다양한 기관의 지원과 관련 연구자들의 협력 연구가 필수적이다. 공동연구팀의 이번 연구는 한국연구재단·질병관리청·기초과학연구원(IBS)·서울대학교 의과대학·유럽연구이사회(ERC)·서경배과학재단·휴먼프론티어과학재단의 지원을 받아 수행됐다.
2020.10.26
조회수 29907
-
2차원 신소재를 1차원 리본으로 오려내는 나노 가위 기술 개발
우리 대학 신소재공학과 김상욱 교수 연구팀이 생명화학공학과 정유성 교수 연구팀과 공동연구로 2차원 반도체인 *전이금속 칼코지나이드 물질을 얇은 리본 형태로 오려낼 수 있는 신기술을 개발했다고 15일 밝혔다.
☞ 2차원 전이금속 칼코지나이드 : 전이금속원소와 칼코겐 원소의 화합물. 평면 방향으로는 전이금속원소와 칼코겐 원소가 강한 공유결합을 하고 있으나, 수직 방향으로 약한 반데르발스 결합을 하는 층상구조를 가지고 있다. 이를 이용하여 층간 분리를 통해 2차원 단층 형태로 박리가 가능하다.
연구팀은 간단한 초음파 처리를 통해 2차원 전이금속 칼코지나이드 물질을 일정한 방향으로 절개해 긴 나노 리본 형태로 오려내는 데 세계 최초로 성공했다. 김상욱 교수와 정유성 교수 공동 연구팀이 개발한 이 신소재는 기존 백금 촉매를 대체하여 수소 발생 반응 촉매로 활용이 가능할 것으로 기대된다.
우리 대학 신소재공학과의 인도 출신인 수치스라 파드마잔 사시카라(Suchithra Padmajan Sasikala) 연구교수가 제1 저자로 참여한 이번 연구성과는 국제 학술지 '네이처 커뮤니케이션즈(Nature Communications)'에 10월 6일 字 온라인 판에 게재됐다.(논문명: Longitudinal unzipping of 2D transition metal dichalcogenides)
수소는 공해물질을 배출하지 않기 때문에 기존의 화석연료를 대체할 수 있는 신 에너지 자원으로 주목받고 있다. 수소를 생산하는 가장 환경친화적인 방법은 화학적으로 물을 분해하는 방법인데 이 경우 효율적으로 수소를 생성할 수 있도록 값싸고 높은 효율의 촉매를 개발하는 것이 매우 중요하다.
2차원 전이금속 칼코지나이드 소재는 우수한 촉매 성능을 지니고 있어 에너지·환경 분야에 응용이 기대되는 소재다. 하지만 보다 높은 촉매 성능을 달성하기 위해서는 촉매 활성을 갖는 2차원 소재의 가장자리를 많이 노출하는 방법이 요구돼왔다. 종이를 오려내듯 2차원 소재를 길쭉한 1차원 리본 형태로 오려내게 되면 더 많은 가장자리를 노출할 수 있다는 장점 때문이다.
현재까지는 그래핀과 같이 한가지 원소로만 이루어진 2차원 소재의 경우 여러 방법의 오려내는 기술이 보고돼왔지만, 2개 이상의 원소로 이뤄진 2차원 전이금속 칼코지나이드 물질에 이를 적용하는 데 한계가 따랐다.
공동 연구진은 문제해결을 위해 화학 반응을 통해 2차원 소재의 특성 변화를 유도한 후, 저렴한 초음파 처리 공정을 통해 1차원 리본 형태로 오려내는 기술을 세계 최초로 개발하는 데 성공했다.
연구팀은 2차원 소재 표면이 산소와 일정한 방향성을 가지고 화학 반응한다는 점을 발견하고 간단한 초음파 자극을 통해 1차원 리본 형태로 오려냈다. 이어 이 기술을 활용해 기존 고가의 백금 촉매에 견줄 만한 높은 성능을 지닌 수소 발생 반응 촉매를 구현했다.
연구팀 관계자는 "기존에 보고된 적이 없는 다원소로 구성된 2차원 전이금속 칼코지나이드 소재를 오려내는 새로운 기술 개발을 계기로 다양한 다원소 저차원 나노 신물질을 제조할 것으로 크게 기대가 된다ˮ고 설명했다.
교신저자로 이번 연구를 주도한 김상욱 교수는 "2차원 전이금속 칼코지나이드 소재는 뛰어난 물성에도 불구하고 나노구조를 정교하게 조절하는 방법이 부족했다"면서 "이번 연구를 계기로 가격이 비싼 백금 기반 촉매를 대체하는 새로운 수소 발생 촉매의 개발도 가능할 것이다"고 말했다.
한편 이번 연구는 과학기술정보통신부 리더연구자지원사업인 다차원 나노조립제어 창의연구단과 중견연구자지원사업의 지원을 받아 수행됐다.
2020.10.15
조회수 29898
-
물방울로 코로나19 바이러스 잡는다
우리 대학 기계공학과 이승섭 교수와 정지훈 박사팀이 코로나19 바이러스 살균 기능이 있는 초미세 물방울의 대량 생성이 가능한 '정전분무' 기술을 개발했다고 14일 밝혔다.
이승섭 교수팀의 '정전분무(electrostatic atomization)' 기술로 만들어진 마이크로/나노 크기의 초미세 물방울 안에는 *'OH 래디컬'이 함유돼 있다. OH 래디컬은 불안정한 화학구조로 반응성이 매우 높고 강력한 산화력 때문에 세균과 바이러스 살균 기능을 보유하고 있지만 인체에는 전혀 해를 끼치지 않는 천연물질이다.
☞ OH 래디컬(hydroxyl radical): 거의 모든 오염물질의 살균·소독에 관여하며 화학적으로 분해하고 제거할 수 있는 가장 강력한 효과를 발휘하면서도 인체에는 무해한 물질. 현존하는 물질 중에서 OH 래디컬의 산화력(살균·소독·분해하는 능력)은 불소(F) 다음으로 강력하고 오존과 염소보다 강력하지만 불소·염소·오존처럼 독성이 있거나 인체에 유해하지는 않다.
OH 래디컬은 높은 반응성으로 공기 중에서는 수명이 매우 짧아 효과적인 살균 기능에 어려움이 있으나, OH 래디컬을 물방울에 가두면 수명을 크게 늘릴 수가 있어 살균에 유용하게 이용할 수 있다. OH 래디컬을 함유하는 초미세 물방울은 일본 파나소닉 社의 나노이(nanoeTM) 기술이 세계적으로 가장 앞서있다. 다만, 나노이 기술은 공기 중의 수분을 차가운 금속 팁 위에 응결시켜 정전분무 하는 방식이어서 생성되는 초미세 물방울의 양이 매우 적고 인가전압이 높아 인체에 해로운 오존이 발생되는 단점이 있다.
일본 파나소닉은 자사의 나노이 기술로 만들어진 초미세 물방울이 코로나19 바이러스에 살균 효과가 있다는 실험 결과를 올 7월 말 발표한 바 있다.
이승섭 교수 연구팀은 세계 최초로 멤스(MEMS) 기술로 제작된 폴리머 재질의 초미세 노즐을 이용해 정전분무 하는 방식으로, 인가전압이 낮아 정전분무가 오존 발생 없이 안정적으로 구현된다. 또한 초미세 노즐 어레이를 이용해 외부 환경과는 무관하게 초미세 물방울을 대량으로 생성하는 데도 성공했다.
머리카락보다 가는 초미세 노즐은 피뢰침과 같이 높게 솟아있는 구조로 초미세 노즐의 주위는 마이크로 돌기로 소수성 처리가 돼 있다. 이승섭 교수팀은 지난 수년간 폴리머 초미세 노즐 개발과 물 정전분무 기술을 이용해 가습·탈취·미세먼지제거·항균 등과 같은 공기정화에 관한 연구를 수행해왔다.
이승섭 교수팀은 현재 초미세 물방울의 양산이 가능한 '폴리머 초미세 노즐 정전분무' 기술을 기반으로 코로나19 바이러스 살균용 공기정화기를 개발 중이다. 순수한 물을 이용한 살균 방법으로 인체에 해가 없고 친환경이라는 장점 때문에 향후 코로나19 방역에도 큰 도움을 줄 것으로 기대하고 있다.
한편 이승섭 교수팀의 폴리머 초미세 노즐을 이용한 물 정전분무 연구는 올 4월 국제학술지 '폴리머(Polymer)'에 소개된 바 있다. (논문명; Polymer micro-atomizer for water electrospray in the cone jet mode). 아울러 이 교수팀은 올 8월부터 KAIST 코로나 뉴딜사업의 지원을 받아 후속 연구를 진행 중이다.
2020.10.14
조회수 29778
-
코로나19 감염 중증도 결정하는 인자 발견
코로나19로 위중, 중증 상태인 중환자가 6일 0시 기준 163명을 기록했다. 지난달 19일 12명이었던 위중, 중증 환자는 20여일 만에 13배 넘게 늘어났다. 이러한 심각한 상황에서 우리 연구진이 코로나19 중증 환자와 경증 환자를 쉽게 판별할 수 있는 바이오 마커(표시물)를 발견해 중증 코로나19에 대한 치료제 개발에 기대감을 높였다.
우리 대학 의과학대학원 이흥규 교수 연구팀이 *'호중구'와 *'당질코르티코이드'의 연관성을 밝혀 코로나19의 중증도를 결정짓는 인자를 발견했다고 7일 밝혔다.
☞ 호중구(neutrophil) : 혈액의 전체 백혈구 중 50~70%를 차지하는 선천 면역세포로, 세균이나 곰팡이 감염 등에 대응하는 면역세포이다.
☞ 당질코르티코이드(glucocorticoid) : 글루코코르티코이드라고도 하며 콩팥 근처 부신의 부신 겉질에서 생성되는 호르몬으로, 다양한 신체 기능 조절에 관여한다. 특히, 면역반응을 억제하는 호르몬으로도 알려져 있다.
WHO에 의해 세계적 대유행(팬데믹)으로 지정된 코로나바이러스감염증(COVID-19)은 사람마다 증상이 판이하다. 따라서, 환자의 중증도를 예상 및 판별하기 위해서는 확실한 바이오 마커의 활용이 중요하며, 이들을 선별적으로 치료할 수 있는 표적 치료제가 매우 중요하다.
중증 코로나19 환자들은 급성 호흡곤란 증후군의 증상을 보이고 특히 폐 조직의 심한 손상이 관찰된다. 이에 대응해 호중구 등 다양한 면역세포들이 바이러스 감염으로부터 숙주를 보호하기 위해 면역반응을 보이지만 사이토카인 폭풍(과잉 염증반응)처럼 과도한 면역반응으로 오히려 장기를 손상시킬 수도 있다.
이 교수 연구팀은 유전자 발현 옴니버스(GEO)에 공개된 코로나19 감염 경증 및 중증 환자의 기관지 폐포 세척액에 존재하는 단일세포 유전 정보를 분석했다. 그 결과, 그동안 곰팡이나 세균 감염에서만 중요성이 알려졌고 바이러스 감염 시에는 상대적으로 중요성이 알려지지 않았던 호중구의 과활성화로 인해 중증 코로나19가 발생함을 밝혔다.
특히 연구팀은 대식세포 등의 골수 유래 면역세포 내에서 발현하는 CXCL8과 같은 *케모카인에 의해 호중구 유입이 증가함을 밝혔다. 연구팀은 골수에서 유래한 면역세포 내의 당질코르티코이드 수용체 발현에 따라 CXCL8의 생성이 조절받으며, 이것이 결과적으로 호중구의 유입 및 활성도와 연관됨을 밝혔다.
☞ 케모카인(chemokine): 백혈구유주작용, 활성화작용을 하는 염기성헤파린 결합성 저분자 단백질
이 교수는 "이번 연구 결과는 코로나19의 중증도를 결정하는 바이오 마커를 발굴한 것 뿐만 아니라, 덱사메타손 등의 당질코르티코이드 억제제를 활용해 중증도를 개선할 치료제 개발에 단초를 제공할 수 있을 것으로 기대한다"고 밝혔다.
의과학대학원 박장현 석박사통합과정 대학원생이 제1 저자로 참여한 이번 연구는 국제면역학회연합에서 발간하는 면역학 전문 학술지인 '프론티어스 인 이뮤놀로지(Frontiers in Immunology)' 8월 28일 字 온라인판에 게재됐다. (논문명: Re-analysis of Single Cell Transcriptome Reveals That the NR3C1-CXCL8-Neutrophil Axis Determines the Severity of COVID-19)
한편 이번 연구는 과학기술정보통신부의 코리아 바이오 그랜드 챌린지사업, 신약타겟발굴 및 검증사업 및 KAIST 코로나 대응 과학기술 뉴딜사업을 받아 수행됐다.
2020.09.07
조회수 25918
-
코로나19 해외유입 확진자 수 예측 기술 개발
최근 전 세계적으로 코로나바이러스감염증-19(COVID-19) 확진자 수가 2,000만 명을 넘어선 가운데 최근 국내에서도 코로나19 확진자 수가 급증해 2차 대유행 조짐을 보이면서 정부는 8월 23일부터 전국 대상으로 사회적 거리두기 단계를 2단계로 격상해 시행 중이다.
중앙재난안전대책본부(중대본)에 따르면 국내 코로나 누적 확진자 수는 8월 23일 오전 0시 기준으로 총 1만7,399명이다. 이 중 해외유입 감염자 수는 2,716명(8월 22일 오전 0시 기준)으로 전체 확진자의 약 16%를 차지한다. 대륙별로 보면 아시아(중국 외), 미주, 유럽, 아프리카 순이다. 지난 14일 이후 국내 지역 발생 신규확진자 수가 급증하고 있지만 향후 해외유입 확진자 수의 확산추세 또한 결코 장담할 수 없는 상황이다.
이런 가운데 우리 연구진이 해외유입 확진자 수를 예측할 수 있는 관련 기술을 개발했다. 우리 대학 산업및시스템공학과 이재길 교수 연구팀이 코로나19 해외유입 확진자 수를 예측하는 빅데이터‧인공지능(AI) 기술을 개발했다고 19일 밝혔다.
이재길 교수 연구팀이 개발한 이 기술은 해외 각국의 확진자 수와 사망자 수, 해외 각국에서의 코로나19 관련 키워드 검색빈도와 한국으로의 일일 항공편 수, 그리고 해외 각국에서 한국으로의 로밍 고객 입국자 수 등 빅 데이터에 인공지능(AI) 기술을 적용해 향후 2주간의 해외유입 확진자 수를 예측한다.
코로나19 확진자 수가 급증할수록 해외유입에 의한 지역사회 확산의 위험성도 항상 뒤따르기 마련이다. 이에 따라 이재길 교수 연구팀이 개발한 정확한 해외유입 확진자 수 예측기술은 방역 시설 및 격리 시설 확충, 고위험 국가 입국자 관리 정책 등에 폭넓게 응용 및 적용될 수 있을 것으로 기대가 크다.
우리 대학 지식서비스공학대학원에 재학 중인 김민석 박사과정 학생이 제1 저자로, 강준혁, 김도영, 송환준, 민향숙, 남영은, 박동민 학생이 제2~제7 저자로 각각 참여한 이번 연구는 최고권위 국제 학술대회 'ACM KDD 2020'의 'AI for COVID-19' 세션에서 오는 24일 발표된다. (논문명 : Hi-COVIDNet: Deep Learning Approach to Predict Inbound COVID-19 Patients and Case Study in South Korea)
해외유입 확진자 수는 다양한 요인에 의해서 영향을 받는다. 일반적으로 해외 각국에서의 코로나19 위험도와 비례하며, 해외 각국에서 한국으로의 입국자 수와도 비례한다. 그러나 코로나19 위험도와 입국자 수를 실시간으로 알아내기에는 많은 제약이 따르므로 연구진은 쉽게 구할 수 있는 종류의 빅데이터를 기반으로 하는 인공지능(AI) 모델을 구축하는 데 성공했다.
연구진은 기본적으로 해외 각국의 코로나19 위험도를 산출할 때, 보고된 확진자 수와 사망자 수를 활용했다. 그러나 이러한 수치는 진단검사 수에 좌우되기 때문에 코로나19 관련 키워드 검색빈도를 같이 입력 데이터로 활용해 해당 국가의 코로나19 위험도를 실시간으로 산출했다.
이와 함께 실시간 입국자 수는 기밀정보로서 외부에 공개되지 않기 때문에 매일 제공되는 한국에 도착하는 항공편수와 로밍 고객 입국자 수를 통해 이를 유추해냈다. 로밍 고객 입국자 수 데이터는 KT로부터 제공 받았지만 KT 고객 입국자만을 포함한다는 한계를 일일 항공편수를 함께 고려함으로써 이 문제를 해소했다.
이밖에 해외유입 확진자 수 예측을 위해서는 국가 간의 지리적 연관성도 매우 중요하게 고려해야 한다. 어느 특정 국가의 코로나19 발병이 이웃 국가로 더 쉽게 전파되며, 국가 간의 교류도 거리에 따라 영향을 받기 때문이다. 연구팀은 이러한 문제해결을 위해 지리적 연관성을 학습하도록 국가-대륙으로 구성되는 지리적 계층구조에 따라 우선 각 대륙으로부터의 해외유입 확진자 수를 정확히 예측함으로써 궁극적으로 전체 해외유입 확진자 수를 정확히 예측하도록 하는 인공지능(AI) 모델을 설계했다. 연구팀은 이 인공지능 모델을 'Hi-COVIDNet'라고 이름 붙였다.
이후 연구팀은 약 한 달 반에 걸친 단기간의 훈련 데이터만으로 생성된 `Hi-COVIDNet'을 통해 향후 2주 동안의 해외유입 확진자 수를 예측한 결과, 이 모델이 기존의 시계열 데이터기반의 예측 기계학습이나 딥러닝 기반의 모델과 비교했을 때 최대 35% 더 높은 정확성을 지니고 있음을 확인했다.
제1 저자인 김민석 박사과정 학생은 "이번 연구는 최신 AI 기술을 코로나19 방역에 적용할 수 있음을 보여준 사례ˮ 라면서 "K-방역의 위상을 높이는데 기여할 것으로 기대한다ˮ 고 밝혔다.
이번 연구는 KAIST 글로벌전략연구소(소장 김정호)의 코로나19 AI 태스크포스팀의 지원을 받았고, KT(담당 변형균 상무)와 과학기술정보통신부(담당 김수정 서기관)의 '코로나19 확산예측 연구 얼라이언스'를 통해 로밍 데이터 세트를 지원받아 이뤄졌다.
2020.08.23
조회수 35002
-
딥러닝 기반 실시간 기침 인식 카메라 개발
우리 대학 기계공학과 박용화 교수 연구팀이 ㈜에스엠 인스트루먼트와 공동으로 실시간으로 기침 소리를 인식하고 기침하는 사람의 위치를 이미지로 표시해주는 '기침 인식 카메라'를 개발했다고 3일 밝혔다.
작년 말부터 시작된 세계적 유행성 전염병인 코로나19가 최근 미국·중국·유럽 등 세계 각국에서 재확산되는 추세로 접어들면서 비접촉방식으로 전염병을 감지하는 기술에 대한 수요가 증가하고 있다.
코로나19의 대표적인 증상이 발열과 기침인데, 현재 발열은 열화상 카메라를 이용해 직접 접촉을 하지 않고도 체온을 쉽게 판별할 수 있다. 문제는 비접촉방식으로는 기침하는 사람의 증상을 쉽사리 파악하기 어렵다는 점이다. 박 교수 연구팀은 이런 문제를 해결하기 위해 기침 소리를 실시간으로 인식하는 딥러닝 기반의 기침 인식 모델을 개발했다. 또한 열화상 카메라와 같은 원리로 기침 소리와 기침하는 사람의 시각화를 위해 기침 인식 모델을 음향 카메라에 적용, 기침 소리와 기침하는 사람의 위치, 심지어 기침 횟수까지를 실시간으로 추적하고 기록이 가능한 '기침 인식 카메라'를 개발했다.
연구팀은 기침 인식 카메라가 사람이 밀집한 공공장소에서 전염병의 유행을 감지하거나 병원에서 환자의 상태를 상시 모니터링 가능한 의료용 장비로 활용될 것으로 기대하고 있다.
연구팀은 기침 인식 모델 개발을 위해 *합성 곱 신경망(convolutional neural network, CNN)을 기반으로 *지도학습(supervised learning)을 적용했다. 1초 길이 음향신호의 특징(feature)을 입력 신호로 받아, 1(기침) 또는 0(그 외)의 2진 신호를 출력하고 학습률의 최적화를 위해 일정 기간 학습률이 정체되면 학습률 값을 낮추도록 설정했다.
이어서 기침 인식 모델의 훈련 및 평가를 위해 구글과 유튜브 등에서 연구용으로 활발히 사용 중인 공개 음성데이터 세트인 `오디오세트(Audioset)'를 비롯해 `디맨드(DEMAND)'와 `이티에스아이(ETSI)', `티미트(TIMIT)' 등에서 데이터 세트를 수집했다. 이 중 `오디오세트'는 훈련 및 평가 데이터 세트 구성을 위해 사용했고 다른 데이터 세트의 경우 기침 인식 모델이 다양한 배경 소음을 학습할 수 있도록 데이터 증강(data augmentation)을 위한 배경 소음으로 사용했다.
☞ 합성 곱 신경망(convolutional neural network): 시각적 이미지를 분석하는 데 사용되는 인공신경망(생물학의 신경망에서 영감을 얻은 통계학적 학습 알고리즘)의 한 종류
☞ 지도학습(Supervised Learning): 훈련 데이터(Training Data)로부터 하나의 함수를 유추해내기 위한 기계 학습(Machine Learning)의 한 방법
데이터 증강을 위해 배경 소음을 15%~75%의 비율로 `오디오세트'에 섞은 후, 다양한 거리에 적응할 수 있게 음량을 0.25~1.0배로 조정했다. 훈련 및 평가 데이터 세트는 증강된 데이터 세트를 9:1 비율로 나눠 구성했으며, 시험 데이터 세트는 따로 사무실에서 녹음한 것을 사용했다.
모델 최적화를 위해서는 '스펙트로그램(spectrogram)' 등 5개의 음향 특징과 7개의 최적화 기기(optimizer)를 사용해 학습을 진행하고 시험 데이터 세트의 정확도를 측정, 성능을 확인한 결과 87.4%의 시험 정확도를 얻을 수 있었다.
연구팀은 이어 학습된 기침 인식 모델을 소리를 수집하는 마이크로폰 어레이와 카메라 모듈로 구성되는 음향 카메라에 적용했다. 그 결과 수집된 데이터는 음원의 위치를 계산하는 빔 형성 과정을 거쳐 기침 인식 모델이 기침 소리로 인식할 경우 기침 소리가 난 위치에 기침 소리임을 나타내는 등고선과 라벨이 각각 표시된다.
박 교수팀은 마지막 단계로 기침 인식 카메라의 예비 테스트를 진행한 결과, 여러 잡음 환경에서도 기침 소리와 그 이외의 소리로 구분이 가능하며 기침하는 사람과 그 사람의 위치, 횟수 등을 실시간으로 추적해 현장에서의 적용 가능성을 확인했다. 이들은 추후 병원 등 실사용 환경에서 추가 학습이 이뤄진다면 정확도는 87.4%보다 더 높아질 것으로 기대하고 있다.
박용화 교수는 "코로나19가 지속적으로 전파되고 있는 상황에서 공공장소와 다수 밀집 시설에 기침 인식 카메라를 활용하면 전염병의 방역 및 조기 감지에 큰 도움이 될 것ˮ이라고 말했다. 박 교수는 이어 "특히 병실에 적용하면 환자의 상태를 24시간 기록해 치료에 활용할 수 있기 때문에 의료진의 수고를 줄이고 환자 상태를 더 정밀하게 파악할 수 있을 것ˮ 이라고 강조했다.
한편, 이번 연구는 에너지기술평가원(산업통상자원부)의 지원을 받아 수행됐다.
2020.08.03
조회수 29026
-
전자 신호의 오차를 1경분의 1초 수준으로 제어하는 기술 개발
우리 대학 기계공학과 김정원 교수 연구팀이 초고속 펄스 레이저를 이용하여 전자 신호의 시간 오차를 1경분의 1초(100아토초=10-16초) 이하 수준까지 측정하고 제어하는 기술을 개발했다. 이 기술을 이용하면 매우 정밀한 시간 성능이 요구되는 차세대 데이터 변환기와 초고속 통신 및 집적회로의 성능을 획기적으로 높일 수 있을 것으로 기대된다.
현민지 박사과정 학생이 제1 저자로 참여하고 고려대학교 전자및정보공학과 정하연 교수팀과 공동연구로 수행된 이번 연구는 국제학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 7월 22일자에 게재됐다. (논문명: Attosecond electronic timing with rising edges of photocurrent pulses)
초고속 펄스 레이저를 이용하면 기존의 기술들로 달성하기 어려웠던 시간 안정도를 얻을 수 있으며, 지난 십여년간 이러한 레이저로부터 하나의 마이크로파 주파수 성분을 걸러내어 낮은 위상잡음의 사인파 형태 전자 신호를 발생하는 연구가 세계적으로 활발하게 이루어졌다.
하지만 많은 디지털 및 정보통신 시스템들은 사인파가 아닌 펄스나 사각파 형태의 클럭 신호를 사용하는 경우가 많으며, 아직까지 초고속 레이저로부터 펄스 혹은 사각파 형태의 전자 클럭 신호를 생성하여 그 잡음 특성을 측정한 연구는 존재하지 않았다.
연구팀은 독자적으로 개발한 시간 오차 측정기술을 이용하여 초고속 레이저로부터 생성한 전류 펄스 신호의 시간 오차를 50아토초 분해능으로 측정할 수 있었다. 이를 통하여 전류 펄스의 상승에지(rising edge)에서의 시간 오차가 100아토초 수준으로 매우 작을 수 있음을 세계 최초로 규명했다.
연구팀은 또한 이러한 시간 오차가 광신호의 진폭 잡음이 시간 영역에서의 잡음으로 변환되는 과정에 의하여 제한된다는 것을 밝혔으며, 광신호의 진폭 잡음을 제어함으로써 전류펄스의 상승에지에서의 시간 오차를 64아토초 수준까지 제어할 수 있었다.
최근 전자 시스템과 데이터 속도가 급격하게 빨라짐에 따라 펄스나 사각파 형태의 전자 클럭 신호의 시간 오차를 줄이는 것이 매우 중요해지고 있으며, 고속 데이터 전송 및 데이터변환, 고속 칩간통신, 5G 통신 등에서는 이미 수십 펨토초(펨토초=10-15초, 1000조분이 1초) 수준의 시간 오차를 요구하고 있다. 이번 연구 결과는 초고속 레이저를 이용하면 이러한 최근의 요구보다도 훨씬 우수한 펨토초 이하의 100아토초(1경분의 1초) 수준까지도 전자 클럭 신호의 시간 오차를 제어할 수 있음을 의미한다. 따라서 이번 연구 결과를 이용하면 향후 초고속 레이저의 ICT 분야에서의 활용이 보다 본격화될 수 있을 것으로 기대된다.
김 교수는 “이미 이번 논문의 후속 결과로서 매우 작은 시간 오차를 가지는 광전류 펄스를 이용하여 전자칩에 클럭 신호를 주입하고 동작시키는 데에도 성공했다”고 밝히며, “초고속 레이저를 이용한 다양한 고성능 ICT 분야에서의 응용을 계속 연구할 계획”이라고 말했다.
이번 연구는 삼성전자 미래기술육성센터의 지원을 받아 수행됐다.
2020.07.24
조회수 22256