-
다른 사람들과 디지털 게임을 하는 중장년층, 웰빙 지수 높아
중장년층이 다른 사람과 함께 디지털 게임을 하는 것이 웰빙 지수, 사회적 지지 만족도와 연관돼 있다는 연구 결과가 나왔다. 이번 연구는 우리나라에서 진행된 설문 연구지만, 그동안 게임 연구에서 주목받지 못했던 중장년층 게이머들의 삶의 만족도를 살펴봤다는 점에서 좋은 평가를 받아 국제 학술지에 게재됐다.
우리 대학 문화기술대학원 도영임 초빙교수가 50~60대 중장년층 190명을 대상으로 한 온라인 설문 연구 결과를 발표했다고 18일 밝혔다. 연구팀은 게임을 다른 사람과 함께 플레이하는 그룹, 게임을 혼자 플레이하는 그룹, 게임을 하지 않는 그룹으로 나눠 웰빙 지수, 사회적 지지 만족도, 게임에 대한 인식에 차이가 있는지 알아봤다. 그 결과, 디지털 게임이 사람들을 고립시킨다는 일반적인 고정관념과는 정반대의 결과가 나왔다.
중장년층에서 게임을 누군가와 함께 플레이하는 사람이 게임을 혼자 플레이하는 사람, 그리고 게임을 하지 않는 사람보다 웰빙 지수와 사회적 지지 만족도가 높았다. 또한, 게임을 혼자 플레이하더라도 게임을 전혀 하지 않는 사람보다 사회적 지지 만족도가 높다는 흥미로운 결과가 나왔다.
그뿐만 아니라, 중장년 게임 이용자들은 비 이용자들에 비해 `게임은 창의성이나 집중력 향상, 두뇌 계발 등에 도움이 된다', `게임 활동을 통해 새롭고 다양한 활동과 도전을 경험해 볼 수 있다', `가족이 같이 게임을 즐기면 관계에 오히려 도움이 될 수 있다'와 같은 긍정적인 인식에 더 동의했다.
이 결과는 중장년층에서 게임을 하면 웰빙 지수가 높아진다는 인과관계를 증명하는 것은 아니지만, 그동안 게임 문화 참여자로 주목하지 않았던 중장년층 게이머와 그들이 경험하는 게임의 긍정적인 사회 정서적 역할을 조망하였다는 데 의의가 있다.
한편, 중장년층이 주로 하는 게임 장르는 애니팡, 테트리스와 같은 퍼즐 게임과 고스톱, 바둑과 같은 온라인 보드게임이 대다수를 차지했다. 연구팀은 시니어들이 즐길 수 있는 상용 게임이 제한돼 있어 이러한 편중이 일어날 수 있다고 봤다.
2020년 한국콘텐츠진흥원의 게임 이용자 실태 조사에 따르면, 50대의 56.8%, 60~65세의 35%가 게임을 플레이하는 것으로 나타났다. 연구팀은 기존 게임들이 주로 젊은 게이머들을 대상으로 서비스했지만, 앞으로 고령(시니어) 세대가 함께 즐길 수 있는 다양한 게임을 제작하고, 이들에게 게임에 대한 정보를 제공할 필요가 있다고 설명했다. 또한, 게임 시장의 새로운 수요층으로 떠오르는 시니어 게이머에 대한 지속적인 심화 연구가 필요하다고 강조했다.
문화기술대학원 이세연 박사과정 학생과 시정곤 교수가 각각 제1, 제2 저자로 참여한 이 논문은 국제학술지 `엔터테인먼트 컴퓨팅(Entertainment Computing)' 2월 27일 字에 실렸다. (논문명 : The relationship between co-playing and socioemotional status among older-adult game players, https://doi.org/10.1016/j.entcom.2021.100414)
한편 이번 연구는 문화체육관광부와 한국콘텐츠진흥원의 <시니어 게임 플레이 지원 기술 및 게임 서비스 모델 개발> 과제의 지원을 받아 수행했다.
2021.03.18
조회수 103137
-
인공지능 기술을 이용한 유전자 전사인자 예측 시스템 개발
우리 대학 생명화학공학과 이상엽 특훈교수와 미국 캘리포니아대학교 샌디에이고캠퍼스(UCSD) 생명공학과 버나드 팔슨(Bernhard Palsson) 교수 공동연구팀이 인공지능을 이용해 단백질 서열로부터 *전사인자를 예측하는 시스템인 '딥티팩터(DeepTFactor)'를 개발했다고 29일 밝혔다. 이번 연구는 국제학술지인 '미국국립과학원회보(PNAS)'에 12월 28일 字 게재됐다. (논문명: DeepTFactor: A deep learning-based tool for the prediction of transcription factors)
※ 전사인자 (transcription factor) : 유전자의 전사(유전 정보를 복사하는 과정)를 조절하는 단백질. 특정 DNA 서열에 특이적으로 결합해 유전자의 전사를 조절한다.
※ 저자 정보 : 김기배(한국과학기술원, 제1 저자), 예 가오(Ye Gao) (UCSD, 제2 저자), 버나드 팔슨(Bernhard Palsson) (UCSD, 제3 저자), 이상엽(교신저자) 포함 총 4명
전사인자는 특정한 DNA 서열에 특이적으로 결합해 유전자의 전사(유전 정보를 복사하는 과정)를 조절하는 단백질이다. 전사인자로 인한 유전자 전사를 분석함으로써 유기체가 유전적 또는 환경적 변화에 어떻게 반응해 유전자의 발현을 제어하는지 이해할 수 있다. 이러한 점에서 유기체의 전사인자를 찾는 것은 유기체의 전사 조절 시스템 분석을 위한 첫 단계라고 할 수 있다.
지금까지 새로운 전사인자를 찾기 위해서는 이미 알려진 전사인자와의 상동성(유사한 성질)을 분석하거나, 기계학습(머신러닝)과 같은 데이터 기반의 접근 방식을 이용했다. 기존의 기계학습 모델을 이용하기 위해서는 분자의 물리 화학적 특성을 계산하거나, 생물학적 서열의 상동성을 분석하는 등, 해결하고자 하는 문제에 대한 전문 지식에 의존해 모델의 입력값으로 사용할 특징을 찾아내는 과정이 필요하다.
한편, 심층 학습(딥러닝)은 문제 해결을 위한 잠재적인 특징을 내재적으로 학습할 수 있기에 최근 다양한 생물학 분야에서 활용되고 있다. 하지만, 심층 학습을 이용한 예측 시스템의 경우 시스템 내부의 복잡한 연산 때문에 추론 과정을 직접 확인할 수 없는 `블랙박스(black box)'라는 특징을 가지고 있다.
공동연구팀은 심층 학습 기법을 이용해 주어진 단백질 서열이 전사인자인지 예측할 수 있는 시스템인 딥티팩터(DeepTFactor)를 개발했다. 딥티팩터는 단백질 서열로부터 전사인자를 예측하기 위해 세 개의 병렬적인 합성곱 신경망(convolutional neural network)을 이용한다. 공동연구팀은 딥티팩터를 이용해 대장균(Escherichia coli K-12 MG1655)의 전사인자 332개를 예측했으며, 그중 3개의 전사인자의 게놈 전체 결합 위치(genome-wide binding site)를 실험으로 확인함으로써 딥티팩터의 성능을 검증했다.
공동연구팀은 나아가 딥티팩터의 추론 과정을 이해하기 위해 특징 지도 (saliency map) 기반의 심층 학습 모델 해석 방법론을 사용했다. 이를 통해 딥티팩터의 학습 과정에서 전사인자의 DNA의 결합 영역에 대한 정보가 명시적으로 주어지지 않았지만, 내재적으로 이를 학습해 예측에 활용한다는 사실을 확인했다.
연구팀 관계자에 따르면, 특정 생물군의 단백질 서열만을 위해 개발됐던 이전 예측 방법론들과 달리, 딥티팩터는 모든 생물군의 단백질 서열에서 우수한 성능을 보여 다양한 유기체의 전사 시스템 분석에 활용 가능할 것으로 기대된다.
이상엽 특훈교수는 “이번 연구에서 개발한 딥티팩터를 이용해서 새롭게 발견되는 단백질 서열과 아직 특성화되지 않은 수많은 단백질 서열을 높은 처리 능력으로 분석할 수 있게 됐다”며 “이는 유기체의 전자 조절 네트워크 분석을 위한 기초 기술로써 활용 가능할 것”이라고 밝혔다.
한편, 이번 연구는 과기정통부가 지원하는 기후변화대응기술개발사업의 바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제 지원을 받아 수행됐다.
2020.12.30
조회수 56338
-
심현철 교수팀, 2020 인공지능 그랜드 챌린지 우승
우리 대학 전기및전자공학부 심현철 교수 연구팀이 25일 열린 2020 인공지능 그랜드 챌린지 3차 대회 제어지능 트랙에서 우승을 차지했다.
지난해 열린 대회에서도 우승을 차지한 심 교수팀은 대회 2연패라는 쾌거를 달성해 1차 대회를 통해 지원받은 11억 원을 포함해 총 24억 원가량의 연구비를 받게 된다.
이한섭(항공우주공학과), 김보성(전기및전자공학과) 박사과정 학생이 참여한 이번 대회는 복잡한 실내 환경에서 드론이 안전하게 비행해 조난자에게 물품을 전달하는 시나리오를 전제로 진행됐다.
벽, 창문, 그물 3개, 숲, 터널, 움직이는 블라인드가 있는 창문, 강풍 구간에서 정해진 위치에 물건 전달하기, 자동으로 정확한 착륙 지점에 하강하기 등 총 7개로 구성된 복잡한 장애물 환경을 극복할 수 있는 드론을 개발해 임무를 수행하는 방식이다.
주어진 코스의 규격이 사전에 공개되지 않기 때문에 출전팀은 장애물을 실측할 수 없는 상태로 대회를 준비해 임무를 완료해야 한다. 출전팀마다 총 3회의 기회가 부여되며 전체 임무를 순서대로 진행하는 과정에서 얼마나 많은 임무를 수행했는지에 따라 우승자가 가려진다. 만약, 성공한 임무의 숫자가 같을 경우 단시간에 임무를 종료한 팀이 우위에 오르게 된다.
심 교수 연구팀은 자체 개발한 실시간 정밀 측위시스템과 고속 비행제어 시스템, 복잡한 임무수행이 가능한 비행제어 시스템을 활용해 100% 자체 개발한 기술로 모든 임무를 완벽하게 수행했다.
총 5개의 출전팀 중 4개 팀이 다섯 번 째 임무 구간인 터널 입구에 도착하지 못한 채 대회를 종료했다. 심 교수 연구팀만이 유일하게 모든 임무를 완료했으며, 주어진 3차 시기를 진행하는 동안 계속해서 기록을 단축하는 압도적인 기량을 선보였다.
2020 인공지능 그랜드 챌린지는 심 교수팀이 출전한 제어 지능 트랙을 포함해 총 8개 종목으로 구성되어 있다. 우승팀은 앞으로 치뤄질 대회를 통해 모든 종목의 경기가 종료된 후 열리는 시상식에서 과학기술정보통신부 장관상을 받을 예정이다. 과기정통부가 주최하고 정보통신기획평가원(IITP)이 주관하는 이번 대회의 우승팀은 향후 인공지능 그랜드 챌린지의 다른 종목 우승팀들과 협업해 복잡한 환경에서 구조 임무를 수행하는 드론을 제작∙제공해 통합적인 임무 수행에 참여하게 된다.
우승을 이끈 심현철 교수는 “인공지능 관련 기술 개발의 중요성이 강조되고 있는 만큼 세계적으로 경쟁력 있는 기술을 개발하기 위해 매진할 계획”이라고 전했다. 이어, 심 교수는 “연구실에서 실내 비행 드론 외에도 민간 무인항공기, 자율주행차량, 배달 로봇, 캠퍼스 주행 트램 등을 개발하고 있으며 이들 자율이동체들에 요구되는 인공지능 기술을 개발 적용해서 관련 분야의 기술력 축적에 기여하고 싶다”고 강조했다.
2020.11.27
조회수 35867
-
초투과성 분리막을 이용한 이산화탄소 전환 시스템 개발에 성공
우리 대학 생명화학공학과 고동연 교수 연구팀이 에너지 집약 산업체의 이산화탄소 배출량을 줄이는 동시에 산업 부산물을 유용한 자원으로 전환하는 신개념 고체 탄산화 시스템을 개발했다고 23일 밝혔다.
연구팀이 개발한 이 시스템은 *중공사막 형태의 `초투과성 분리막'을 이용해 연속적으로 이산화탄소 포집과 전환이 가능하기 때문에 탄소 배출량을 대량으로 줄일 수 있다.
☞ 중공사막: 가운데가 비어있는 형태의 막. 인공 신장 투석기나 정수기 따위의 여과재로 사용된다.
생명화학공학과 황영은 박사과정이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `ACS 서스테이너블 케미스트리 앤드 엔지니어링(ACS Sustainable Chemistry & Engineering)' 10월호에 실렸는데 연구의 파급력을 인정받아 표지논문으로 선정됐다. (논문명 : Solid Carbonation via Ultrapermeable PIM-1 Hollow Fiber Membranes for Scalable CO2 Utilization).
최근 탄소배출권 가격이 오르면서 산업계의 이산화탄소 배출 비용에 대한 절감도 절실히 요구되고 있다. 또한 에너지 집약 산업체의 부산물(석탄회 및 철강 슬래그 등)에 대한 처리비용도 날로 증가하고 있어 이산화탄소를 산업 부산물과 반응시켜 부가가치가 있는 물질로 전환하는 데 관심이 쏠리고 있다.
특히, 이산화탄소를 탄산칼슘 등의 고체 탄산염으로 전환해 건설 소재로 이용하는 기술은 전 세계 시장에서 2030년까지 연간 약 1조 달러의 수익을 창출할 것으로 예상되며, 배출되는 이산화탄소를 연간 약 30~60억 톤 감축할 수 있는 기술로 주목받고 있다.
고동연 교수팀이 개발한 고체 탄산화 기술은 이산화탄소와 알칼리 금속(칼슘, 마그네슘)의 자발적 결정화 반응을 이용하는 일종의 자연모방 기술이다. 이 기술은 이산화탄소를 열역학적으로 가장 안정된 탄소 저장체인 고체 탄산염(CaCO3, MgCO3)으로 전환하는 기술이다. 고체 탄산염은 고품위 물성 제어를 통해 건설·토목 소재, 제지산업, 고분자, 의약, 식품, 정밀화학 분야에 활용할 수 있다.
결과적으로 고 교수팀이 개발한 기술을 활용하면 이산화탄소 배출량을 대폭 줄여 탄소배출권의 절약은 물론 고부가가치 생산물을 통해 추가적인 경제성을 확보할 수 있다는 게 큰 장점이다.
고 교수팀은 우선 미세다공성 고분자로 이뤄진 초투과성 분리막 기술을 통해 기존 공정 유닛보다 5~20배가량 작은 부피로 기존 공정 대비 50% 이상 뛰어난 물질전달 효율을 갖는 고체 탄산화 시스템을 구현하는 데 성공했다.
미세다공성 고분자는 회전할 수 없는 단단한 부분과 고분자 사슬이 뒤틀리는 지점이 반복적으로 나타나는 독특한 구조를 가지는데 기체 분자를 빠른 속도로 투과시킬 수 있어 가스 분리 분야에서 유망한 소재로 주목받고 있다.
연구팀은 이와 함께 미세다공성 고분자를 속이 빈 실과 같은 중공사막 형태로 가공해 모듈화할 수 있는 기술을 확보했다. 이렇게 제조된 초투과성 중공사막 모듈에 이산화탄소/질소 혼합 기체를 흘려보내면 이산화탄소만 선택적으로 빠르게 분리막을 가로질러 중공사막 외부의 알칼리 이온과 반응해 순간적으로 탄산염을 생성하는 원리를 연속식 모듈로 구현했다.
고 교수팀이 개발한 기술은 부피 대비 표면적이 기존 시스템보다 수 배 이상 높아 매우 높은 공간 효율성을 갖는 분리막 모듈의 특성을 이용해 장시간의 연속 공정이 가능한 게 특징이자 장점이다. 이 때문에 이산화탄소 전환 공정의 에너지 및 비용 대비 효율성을 높일 수 있어 고체 탄산염을 활용하는데 높은 경제성뿐만 아니라 이산화탄소 포집 및 전환(CCU) 기술 활성화에도 기여할 것으로 기대가 크다.
이번 연구를 주도한 고동연 교수는 "신기술을 적용해 이번에 새로 개발한 고체 탄산화 시스템은 온실가스 배출량이 많은 발전소나 제철소, 시멘트 제조업체 등 관련 산업계의 탄소배출권 구매량을 줄일 수 있고 동시에 자원 재순환을 통해 경쟁력을 증대시킬 수 있을 것으로 기대된다ˮ고 설명했다.
한편 이번 연구는 산업통상자원부 에너지국제공동연구사업의 지원을 받아 수행됐다.
2020.11.23
조회수 37985
-
메모리-중심 인공지능 가속기 시스템 개발
삼성미래기술육성재단이 지원한 우리 대학 연구진이 세계 최초로 `프로세싱-인-메모리(Processing-In-Memory, 이하 PIM)' 기술을 기반으로 한 인공지능 추천시스템 학습 알고리즘 가속에 최적화된 지능형 반도체 시스템 개발에 성공했다.
전기및전자공학부 유민수 교수 연구팀은 PIM 기술 기반의 메모리-중심 인공지능 가속기 반도체 시스템을 개발했다고 16일 밝혔다. 유 교수는 관련 분야에서 그동안의 탁월한 연구 성과를 인정받아 올해 아시아에서 유일하게 페이스북 패컬티 리서치 어워드(Facebook Faculty Research Award)를 수상했다.
인공지능 기술을 기반으로 고안된 추천시스템 알고리즘은 구글(Google), 페이스북(Facebook), 유튜브(YouTube), 아마존(Amazon) 등 빅테크 기업들이 콘텐츠 추천 및 개인 맞춤형 광고를 제작하는데 기반이 되는 핵심 인공지능 (AI) 기술이다. 온라인 광고를 통한 수입은 구글과 페이스북과 같은 실리콘밸리의 빅테크 기업의 주 수익 모델인 만큼 고도화된 추천 인공지능 기술에 대한 수요는 최근 들어 급상승하는 추세다.
페이스북이 최근 공개한 자료에 따르면 페이스북 데이터센터에서 처리되는 인공지능 연산의 70%가 추천 알고리즘을 처리하는 데에 사용되며, 인공지능 알고리즘 학습을 위한 컴퓨팅 자원의 50%를 추천 알고리즘을 학습하는 데 사용하고 있다.
유민수 교수 연구팀은 최근 메모리 반도체에 인공지능 연산 기능이 추가된 프로세싱-인-메모리(PIM) 기술 기반의 지능형 반도체 시스템을 개발하는 데 성공했다. 유 교수팀이 개발한 이 시스템은 인공지능 추천시스템 알고리즘의 학습 과정을 엔비디아(NVIDIA)의 그래픽카드(GPU)를 사용하는 기존 인공지능 가속 시스템 대비 최대 21배까지 빠르다고 연구팀 관계자는 설명했다.
지능형 메모리 반도체 기술은 우리나라의 AI 반도체 세계시장 공략을 위한 핵심기술로 주목받고 있다. 특히 정부에서도 `AI 종합 반도체 강국 실현'이라는 비전 아래 막대한 국가적 투자를 아끼지 않는 핵심 투자 분야다. 따라서 유 교수팀의 연구 성과는 향후 막대한 수요와 급성장이 예상되는 세계 AI 반도체 시장에서 메모리-중심으로 설계된 PIM 기술의 상용화 및 성공 가능성을 시사한다는 점에서 의미가 크다고 전문가들은 평가하고 있다.
유민수 교수는 서강대와 KAIST에서 각각 학사와 석사를 거쳐 미국 텍사스 오스틴 주립대에서 박사학위를 취득한 후 지난 2014년 인공지능 컴퓨팅 기술 기업인 미국 엔비디아(NVIDIA) 본사에 입사했다. 엔비디아에 입사한 이후 줄곧 인공지능 컴퓨팅 가속을 위한 다양한 하드웨어 및 소프트웨어 시스템 연구를 주도했으며 지난 2018년부터 우리 대학 전기및전자공학부 교수로 재직 중이다.
전기및전자공학부 권영은 박사과정이 제1 저자, 이윤재 석사과정이 제2 저자로 참여한 이번 연구 결과는 세계 최초의 추천시스템 학습용 가속기 시스템 개발 성과라는 학술 가치를 인정받아 컴퓨터 시스템 구조 분야 최우수 국제 학술대회인 IEEE International Symposium on High-Performance Computer Architecture(HPCA)에서 `Tensor Casting: Co-Designing Algorithm-Architecture for Personalized Recommendation Training' 이라는 논문 제목으로 내년 2월에 발표된다.
2020.11.16
조회수 34300
-
사진 위변조 탐지하는 실용 소프트웨어 개발
위조되거나 변조된 사진·영상자료를 손쉽게 탐지해내는 고성능 소프트웨어가 우리 연구진에 의해 개발됐다. 이 기술은 논문 발표 수준에만 머물러 있던 사진과 영상자료의 위·변조 탐지기술을 국내 최초로, 세계에서 두 번째로 실용화 단계로 끌어 올렸다는 점에서 의미가 크다.
우리 대학 전산학부 이흥규 교수 연구팀이 인공신경망을 이용해 디지털 형태의 사진 변형 여부를 광범위하게 탐지하는 실용 소프트웨어 `카이캐치(KAICATCH)'를 개발했다고 3일 밝혔다.
최근 딥페이크(deepfake)를 포함해 각종 위·변조 영상의 등장과 온라인 유통으로 인한 위·변조 탐지기술에 관한 관심이 급속히 증가하고 있다. 그러나 위·변조 여부를 직접 확인할 수 있는 객관적인 분석 도구가 없기 때문에 사실확인 작업이나 정황 판단 등에 의존해 진위를 판단함으로써 주관적 판단 여부의 논란 등 문제가 자주 발생하고 있다.
특히 기존의 디지털사진 포렌식 기술은 개개 변형의 유형에 대응해 개발돼서 변형 유형이 다양하거나, 사전 특정되기 전에는 일정 수준 이상의 높은 신뢰도를 확보하기가 어렵다. 즉, 기존 기술들은 제한된 형식과 알려진 특정 변형에 대해서는 만족할 만한 탐지 성능을 보여주지만, 어떤 변형들이 가해진 것인지 전혀 알 수 없는 임의의 디지털사진을 분석해야 하는 실제 상황에서는 판독의 정확성과 신뢰도가 크게 떨어질 수 밖에 없다.
다양한 변형이 가해진 채 온라인에서 유통되는 사진이나 영상에 대한 변형 여부의 탐지는 극소수 전문가들의 주관적인 판단의 영역에 머물러 왔기 때문에 이런 문제해결을 위해 많은 도전적 연구들이 진행되고 있다.
이흥규 교수 연구팀이 개발한 이 기술은 국내 최초이자 세계 두 번째로 거둔 쾌거이다. 연구팀은 일반인들을 대상으로 2015년 6월부터 `디지털 이미지 위·변조 식별 웹서비스'를 통해 수집한 30여만 장의 실 유통 이미지 데이터와 특징기반·신경망 기반의 포렌식 영상 데이터, 딥페이크와 스테고 분석을 위한 대량의 실험 영상자료를 정밀 분석해 활용한 연구 결과물이다.
이 교수팀은 특정 변형을 탐지하는 개개의 알고리즘들을 모아놓은 기존 기술의 한계를 극복하고, 다양한 변형에 대한 탐지를 유기적으로 통합하는 기술에 주목했다.
이를 위해 잘라 붙이기·복사 붙이기·지우기·이미지 내 물체 크기 변화와 이동·리터칭 등 일상적이면서 자주 발생하는 변형들에서 언제나 발생하는 변이들을 분류, 정리해 필수 변이로 정의하고 이들을 종합 탐지하는 연구를 수행했다. 그 결과 변형의 유형을 특정하지 못하는 상태에서도 변형이 발생했는지 여부를 판단함으로써 탐지 신뢰도를 크게 높였다.
연구팀은 이어 BMP·TIF·TIFF·PNG 등 무압축, 무손실 압축을 포함해 50여 개의 표준 양자화 테이블과 1,000여 개가 넘는 비표준화된 양자화 테이블에 기반한 JPEG 이미지들도 포괄적으로 처리하는 기술을 포함한 실용 소프트웨어를 개발하는 데 성공했다.
이 교수팀이 개발한 `카이캐치'는 전통적인 영상 포렌식 기술, 스테그 분석 기술 등 픽셀 단위의 미세한 변화를 탐지하는 기술들을 응용해, `이상 영역 추정 엔진'과 `이상 유형 분석 엔진' 두 개의 인공지능 엔진으로 구성됐으며 이를 기반으로 결과를 판단하고 사진에 대한 다양한 변형 탐지 기능과 사진의 변형 영역 추정 기능 등을 함께 제공한다.
이흥규 교수는 "다양한 변형 시 공통으로 발생하는 픽셀 수준에서의 변형 탐지와 인공지능 기술을 융합한 영상 포렌식 기술을 카이캐치에 담았는데 이 기술은 특히 임의의 환경에서 주어진 디지털사진의 변형 여부를 판단하는데 탁월한 성능을 보인다ˮ고 말했다.
이 교수는 이어 "향후 각종 편집 도구들의 고급 기능들에 대한 광범위한 탐지 기능을 추가하는 한편 현재 확보한 실험실 수준의 딥페이크 탐지 엔진과 일반 비디오 변형 탐지 엔진들도 실용화 수준으로 발전시켜 카이캐치에 탑재하겠다ˮ 고 덧붙였다.
한편 이번 연구는 우리 대학 창업기업인 ㈜디지탈이노텍(http://www.kaicatch.com/) 과 산학협력 연구로 수행됐다.
2020.11.04
조회수 25964
-
언제 말 걸지 아는 스마트 스피커 개발 길 열어
우리 대학 전산학부 이의진 교수 연구팀이 스마트 스피커 인공지능 비서가 선제적으로 말 걸기 좋은 최적의 시점을 결정하는 중요한 상황맥락 요인을 찾아냈다고 28일 밝혔다.
기존에 개발되거나 시판 중인 스마트 스피커 인공지능 비서는 사용자가 먼저 요청한 서비스만 제공하는 반면 최근 스마트 스피커의 개발은 사용자의 상황에 맞춰 능동적인 서비스를 제공하는 형태로 진화하는 추세다. 똑똑한 음성비서가 사용자가 처해 있는 상황을 정확히 이해한 후에 선제적으로 일정 및 건강관리를 도와주는 방향으로 개발되고 있는 것이다. 하지만 아무 때나 눈치 없이 말을 건다면 도움은커녕 하는 일에 방해만 될 수 있다.
이의진 교수 연구팀은 스마트 스피커가 선제적으로 음성서비스를 제공하기 좋은 최적의 시점을 찾는 연구를 전산학부 이재길 교수를 비롯해 산업디자인학과 이상수 교수와 함께 다학제 연구팀을 구성해 공동연구를 수행했다. 그 결과 다학제 연구팀은 스마트 홈 환경에서의 최적의 발화(發話) 시점을 결정하는 중요한 사용자 상황맥락 요인을 찾았다.
최적의 발화 시점에 관한 추론은 인공지능 비서가 음성서비스를 시작하거나 중지 또는 재개를 스스로 결정하고 제어하기 위한 필수적인 기술이다. 연구팀이 찾아낸 중요한 상황맥락 요인은 최적의 발화 시점 추론 시 정확성을 높일 것으로 관계자들은 기대하고 있다.
스마트 스피커 인공지능 비서가 선제적으로 말 걸기 좋은 시점을 찾기 위해 연구팀은 실험용 스마트 스피커를 제작했다. 스마트 스피커는 사용자의 움직임이 감지되거나 일정한 시간이 지나면 주기적으로 "지금 대화하기 좋은가요ˮ라는 질문을 했다. 참가자는 대화하기 좋은지 아닌지, "네ˮ 또는 "아니요ˮ로 대답하고 무엇을 하고 있었는지 설명했다. 연구진은 이어 교내 기숙사에 거주하는 학생 40명(2인 1실)의 방에 스마트 스피커를 설치해 1주일간 총 3,500개의 사용자 응답 데이터를 수집했다.
데이터 분석 결과 전체 참가자 응답 중 47%는 대화하기 부적절한 것으로 드러났다. 연구진은 대화하기 좋은 시점을 결정하는 주요 상황 요인을 찾기 위해 19개의 실내 활동 범주를 만들었다. 이를 통해 연구팀은 적절한 시점을 결정하는 상황맥락 요인으로 크게 개인적 요인과 움직임 요인, 사회적 요인을 꼽았다.
개인적 요인은 크게 `활동 집중도', `긴급함과 바쁨 정도', `정신적·육체적 상태' 그리고 `다중 작업수행을 위한 듣기 또는 말하기 가능성' 등 4가지다. 예를 들면 집중해서 공부하고 있거나 드라이로 머리를 말리고 있을 때는 스피커와 대화가 어려웠다. 움직임 요인은 `외출', `귀가' 그리고 `활동 전환' 등 3가지다. 특히 사용자 움직임이 있을 때는 스피커와 대화 가능한 거리가 최적 시점 판단에 큰 영향을 미쳤다. 외출은 스피커와 대화 가능 범위 밖으로 나가는 움직임이고, 귀가는 범위 안으로 들어오는 움직임이다. 범위 안으로 들어오는 귀가(歸家) 상황일 때는 대부분 대화하기 좋은 시점으로 분류됐다.
일반적으로 스마트 스피커는 거실처럼 집 구성원이 함께 생활하는 공간에 설치된다. 수집된 사용자 응답 중 절반은 룸메이트가 함께 있을 때 수집됐다. 연구팀은 전화 대화뿐만 아니라 누군가와 함께 있다는 것 또한 스마트 스피커와 대화하기 좋은 시점에 영향을 끼친다는 현상을 발견했다. 룸메이트가 자고 있거나 어떤 활동에 집중하고 있을 때 스마트 스피커와의 대화로 인한 갈등을 최소화하고 싶기 때문이다.
이번 연구에 제1 저자로 참여한 차나래 학생은 "이번 연구가 미래 스마트 스피커 개발의 중요한 토대가 될 것ˮ이라면서 "앞으로는 센서 데이터로 감지된 상황맥락 정보를 활용해 스마트 스피커가 스스로 대화를 시작·중지, 또는 재개하기 좋은 타이밍을 선제적으로 감지해 지능적인 음성서비스를 제공할 수 있을 것ˮ이라고 밝혔다.
한편, 이 연구는 과학기술정보통신부의 재원으로 한국연구재단-차세대정보 컴퓨팅기술개발사업의 지원을 받아 수행됐고 유비쿼터스 컴퓨팅 분야 국제 최우수 학술지인 `Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies' 9월호에 게재됐다.
(논문명 : Hello There! Is Now a Good Time to Talk?: Opportune Moments for Proactive Interactions with Smart Speakers)
2020.10.28
조회수 26832
-
인공지능을 이용해 숨겨진 소재를 탐색하는 기술 개발
우리 대학 생명화학공학과 정유성 교수 연구팀이 인공지능(AI) 기술을 이용해 숨겨진 소재 공간을 탐색, 숨겨진 새로운 물질을 예측하는 기술을 개발하는 데 성공했다고 27일 밝혔다.
소재 연구의 궁극적인 목표는 원하는 *물성을 갖는 소재를 발견하는 것이다. 그러나 무기화합물의 가능한 모든 조성과 결정구조를 고려할 때 무한대에 가까운 경우의 수를 샅샅이 탐색하기는 쉽지 않다. 이러한 문제 해결을 위한 방안으로 컴퓨터 스크리닝 소재 탐색 방법이 널리 사용되고 있지만 찾고자 하는 소재가 스크리닝 후보군에 존재하지 않을 때는 유망한 물질 후보들을 놓치는 경우가 종종 발생한다.
☞ 물성(physical properties): 물질의 전기적, 자기적, 광학적, 역학적 성질 따위를 통틀어 이르는 말
정유성 교수 연구팀이 개발한 *소재 역설계 방법은 데이터 학습을 통해 주어진 조성을 갖는 결정구조를 새롭게 생성하게 함으로써 기존 데이터베이스에는 존재하지 않던 신물질을 발견할 수 있도록 한다. 특히, 기존의 역설계 방법에서는 원하는 조성을 제어할 수 없지만, 정 교수팀이 개발한 역설계 방법은 원하는 조성을 제어함으로써 숨어있는 화학 공간을 효율적으로 탐색해 물질을 설계할 수 있다.
☞ 소재 역설계(Materials Inverse Design): 주어진 구조에 대한 물성을 측정하는 방식의 반대 개념으로, 특정한 물성을 갖도록 소재의 구조를 역으로 찾아가는 방법
이번 정 교수팀의 연구성과인 결정구조 예측기술은 인공지능 생성모델인 적대적 생성 신경망(GAN, Generative Adversarial Network)을 기반으로 개발됐다. 또 기존의 복잡한 3차원 이미지 기반 물질 표현자의 단점을 해소하기 위해 비교적 간단한 원자들의 3차원 좌표를 기반으로 한 물질 표현자를 사용했다.
정 교수팀은 이번 연구를 통해 개발한 소재 역설계 방법을 활용, 빛을 이용한 수소생산 촉매로 활용될 수 있는 마그네슘-망간-산화물 기반의 광촉매 물질의 결정구조를 예측하는 데도 성공했다. 기존 데이터베이스에 존재하지 않는 조성들을 생성조건으로 다양한 마그네슘-망간-산화물 구조를 생성한 결과, 기존에 알려지지 않았으면서 광촉매로서 전도유망한 특성을 갖는 신물질을 다수 발견했다.
정유성 교수는 "광촉매 물질의 설계에 적용한 이번 소재 설계 프레임워크는 화합물의 화학적 조성뿐 아니라 사용자가 원하는 특정 물성을 갖는 소재를 역설계하는데 적용이 가능하다ˮ면서 "여러 소재 응용 분야에서 활용될 수 있을 것으로 기대된다ˮ고 말했다.
우리 대학 생명화학공학과 김성원 박사과정과 노주환 박사과정이 공동 제1 저자로, 토론토 대학의 아스푸루-구지크(Aspuru-Guzik) 교수가 공동연구로 참여한 이 연구성과는 미국화학회(ACS)가 발행하는 국제학술지 ACS 센트럴 사이언스(ACS Central Science) 지난 8월호에 실렸다.(논문명: Generative Adversarial Networks for Crystal Structure Prediction)
한편, 이번 연구는 과학기술정보통신부 산하 한국연구재단의 기초연구사업(중견연구) 지원을 받아 수행됐다.
2020.10.28
조회수 28948
-
물고기처럼 점액질 뿜어내는 선체로 선박 연비 높인다
우리 대학 기계공학과 성형진 교수가 이끄는 KAIST-POSTECH 공동연구팀이 미역, 미꾸라지 등 피부가 미끌미끌한 해초와 물고기의 점액질 분비 메커니즘에 착안해 선체의 표면 마찰력을 줄이는 방법을 고안해냈다. 그동안 표면에 골을 내 기름을 주입하는 등 여러 마찰력 저감 기술이 선을 보였으나 생체의 점액 분비 구조를 모방해 항력을 줄이는 구조를 제시한 것은 이번이 처음이다.
물살을 가르며 앞으로 나아가는 배는 물과의 마찰력을 이겨내기 위해 많은 에너지를 소비한다. 장거리 화물선은 운항 과정에서 유체 마찰로 잃어버리는 에너지만 해도 상당한 양에 이른다. 선박이 받는 전체 저항력의 60~70%가 물과 선체 사이의 마찰에서 비롯된다고 한다. 따라서 이 마찰력을 줄이면 그만큼 선박의 연료 소비량을 줄일 수 있다. 오늘날 세계 전체 운송물량의 약 90%는 해상운송이 맡고, 해운업이 전 세계 온실가스 배출량의 2.5%(연간 약 10억톤)를 배출하는 현실을 고려하면 선박 연료 소비 절감을 위한 신기술 기대감이 어느 때보다 높은 상황이다.
해초와 물고기에는 흐르는 물과의 마찰을 줄여주는 점액질을 분비하는 세포가 있다. 성형진 교수는 "포항의 방사광 가속기로 미꾸라지의 점액 분비 구조를 들여다본 결과, 아래는 넓고 위는 좁은 항아리 모양을 하고 있는 것을 확인했다"며 이런 구조가 모세관 현상을 일으켜 점액질을 끊임없이 분비해주는 것으로 보인다고 밝혔다. 모세관 현상이란 액체가 중력 등 외부 힘의 도움 없이 좁은 관을 따라 올라가는 현상을 말한다. 모세관 지름이 충분히 작을 때 액체의 표면장력(응집력)이 작용하면서 일어나는 현상이다. 나무에서 뿌리가 빨아들인 수분이 줄기를 거쳐 꼭대기의 잎까지 올라갈 수 있는 것이 이 모세관현상 덕분이다.
연구진은 미꾸라지의 점액 분비 시스템을 모방해 윤활유를 방출하는 항아리 형태의 미세구멍을 만들어 실험했다. 구멍의 바닥과 목 부분 비율을 여러가지로 바꿔가며 실험한 결과 윤활유가 지속적으로 방출되면서 물과의 마찰력이 줄어드는 것을 확인할 수 있었다. 구멍의 개방률(바닥 지름 대비 목 지름 비율)이 클수록 윤활유가 더 많이 방출되면서 선박의 표면을 따라 퍼져나갔다. 또 목 부분을 더 길쭉하게 늘려주면 윤활제가 표면에 조금 더 두텁게 퍼지는 효과가 있었다. 연구진은 실험 결과 마찰력이 약 18% 감소하는 것을 확인했다고 밝혔다. 마찰력이 줄어드는 만큼 선박의 연비는 좋아진다. 구멍 개방률 60%에서 마찰력 감소율이 가장 좋은 것으로 나타났다.
그러나 이 방법을 선박에 적용할 경우, 밖으로 배출된 윤활유가 바다를 오염시킬 수 있지 않을까? 성형진 교수는 이에 대해 생물의 점액 분비 조직처럼 윤활유도 아주 미세한 구멍을 통해 배출돼 표면을 덮기 때문에 생물에 해를 줄 만한 양이 바다로 흘러들어가지는 않는다고 말했다. 연구진이 실험에서 사용한 미세구멍의 지름은 불과 100나노미터(0.1마이크론 = 0.0001밀리미터) 정도였다. 연구진은 또 무해한 윤활유가 개발돼 있는 만큼 이런 윤활유를 쓰면 된다고 밝혔다. 연구진이 실험에서 사용한 윤활유는 듀폰의 크라이톡스(Krytox GPL 103)였다. 성형진 교수는 "한국에서도 홍합 추출물을 이용한 친환경 윤활유가 개발되고 있다"고 말했다.
이번 연구는 유체 역학에 바탕한 선체 표면의 윤활 원리와 최적 설계 구조를 밝힌 기초 연구다. 성 교수는 보도자료를 통해 "이번 연구를 통해 선체에 윤활 표면을 구현할 경우 얻을 수 있는 이점을 상당히 규명했다"며 연구 성과가 실제 선박에서도 구현될 수 있기를 기대했다.
이번 연구는 미국물리학회(AIP)가 발행하는 국제학술지 'Physics of Fluids' 에 '항력을 줄이는 윤활유 주입형 미끄럼표면(A lubricant-infused slip surface for drag reduction)'이란 제목으로 실렸다. NewScientist, Brietbart, MailOnline등 12개 세계영문과학잡지에 실렸으며, 한겨레신문의 미래창에 출간됐다. (2020.09.17.)
2020.10.05
조회수 24195
-
한국인의 자연스러운 감성 인식 인공지능을 위한 공공 DB 구축
기계적 인공지능을 뛰어넘는 감성 지능기술 기반의 미래산업 창출과 효율적인 동영상 요약 서비스 개발을 위한 공공 데이터베이스 구축 사업에 대학이 주도적으로 나선다.
문화기술대학원 박주용 교수 연구팀은 한국인의 감정을 인지할 수 있는 감성 기술과 지능형 영상 요약기술 개발을 위한 인공지능 빅데이터 구축 사업을 통해 코로나 이후 새로운 인공지능산업 창출에 적극적으로 나설 계획이라고 24일 밝혔다.
현재 인공지능은 질병 진단과 자율운전 등 인간의 기계적인 움직임과 판단력을 보완하는 영역에서 활용 폭을 넓히고 있다. 그러나 사람들의 미묘한 감정 표현 인식처럼 기계적으로 판단하기 어려운 문제를 해결하는 '감성 지능' 기술의 국내 수준은 아직 걸음마 단계라고 평가받고 있다. 미국이나 일본과 같은 선진국에서 '험인텔(Humintell)'과 같은 감성 인식 기술기반 서비스가 두각을 보이는 상황에서 이제 우리나라도 사람의 감정을 인지할 수 있는 인공지능 기술 개발을 위해 고품질의 한국인 고유의 감정 표현과 관련된 데이터 수집하고, 또 다양한 응용 서비스 개발에도 더욱 박차를 가해야 한다는 목소리가 커지고 있다.
박주용 교수 연구팀의 '감성 인식 인공지능 공공DB 구축사업'은 COVID-19로 인한 경기침체를 극복하고 코로나19 종식 이후 디지털 시대의 신산업 창출을 위해 과기정통부(장관 최기영)와 한국정보화진흥원(원장 문용식)의 '인공지능 학습용 데이터 구축(2차)' 사업 예산 및 KAIST가 주도하는 컨소시엄의 민간투자금 등 모두 46억 원의 재원으로 운용된다. 이를 위해 일반인과 전문배우 등 약 2,500명의 자발적 참여자로부터 감정 학습을 위한 얼굴 데이터 수집과 함께, K-pop과 K-드라마 등의 세계적 성공으로 수요가 급증하고 있는 환경에서 다양한 동영상 콘텐츠의 효과적인 영상 요약과 맞춤형 마케팅을 가능케 하는 영상 데이터 확보에 나선다.
이 사업은 우리 대학 문화기술대학원이 주관하고 메트릭스리서치(대표 나윤정), 액션파워(공동대표 조홍식/이지화), 소리자바(대표이사 안상현), 데이터헌트(대표이사 김태헌), 아트센터 나비미술관(관장 노소영), 리콘랩스(대표이사 반성훈)가 공동연구기관으로, 그리고 대홍기획(대표이사 홍성현)이 수요기관으로 참여한다. 이밖에 한국 소비자 광고심리학회가 자문하는 이 프로젝트에서 개발되는 데이터베이스, 인공지능 학습모델, 프로그래밍 코드 등 모든 연구결과는 공공재이기 때문에 누구나 연구와 사업에 사용이 가능하다.
특히 문화기술대학원 박주용, 이원재, 남주한 교수팀과 리콘랩스, 아트센터 나비미술관은 사용자의 심리적 건강을 추적할 수 있는 심리 일기장, 음악 영상의 하이라이트 생성을 위한 알고리즘, 서비스 사용자의 반응을 감지할 수 있는 앱 등 이번 사업을 통해 구축예정인 공공 데이터베이스를 활용하는 각종 응용 서비스를 설계하고 실험할 계획이다.
박주용 교수는 "인간을 감정을 이해하는 미래 인공지능 기술발전을 위해서는 고품질의 공공데이터 확보가 필수ˮ라고 전제하면서 "일상 사진을 공유하며 공감대를 찾는 소셜미디어 시대의 문화에 힘입어 새로운 산업을 창출하고 세계적 팬데믹으로 인한 위기 극복에 주도적인 역할을 하는 것은 KAIST의 당연한 책무"라고 강조했다.
2020.09.24
조회수 24884
-
고접착 패브릭 기반 웨어러블 에너지 하베스팅 기술 개발
우리 대학 신소재공학과 홍승범 교수 연구팀이 *핫프레싱 기술을 이용해 가격 경쟁력과 내구성이 높은 패브릭(천) 기반 웨어러블 압전 *에너지 하베스터 제조 방법을 개발하는 데 성공했다고 9일 밝혔다.
☞ 핫프레싱(hot pressing): 온도와 압력을 가해 두 물체를 단단히 점착시키는 공법
☞ 에너지 하베스팅(energy harvesting): 버려지는 에너지를 수집(수확)해 전기로 바꿔 쓰는 기술. 압전 에너지 하베스팅이란 압전체라는 물질을 이용, 생활 주변에서 버려지는 압력과 진동 같은 에너지를 사용 가능한 전기에너지로 변환해주는 것을 말한다.
홍 교수 연구팀 소속 김재규 박사과정 학생이 제1저자로 참여한 이번 연구는 지난 2019년 12월 23일 국내 특허 등록이 됐고, 국제 학술지 '나노 에너지(Nano Energy)' 이번 9월호에 게재됐다(5월 22일 온라인판에 게재). 이번 연구는 DGIST 에너지공학전공 이용민 교수팀과 우리 대학 신소재공학과 노광수·기계공학과 유승화 교수팀과의 협업을 통해 수행됐다. (논문명: Cost-effective and strongly integrated fabric-based wearable piezoelectric energy harvester)
오늘날 웨어러블 소자는 센서, 원동기, 디스플레이에서 에너지 하베스팅에 이르기까지 다양한 응용 분야에서 사용되고 있으며, 4차 산업혁명 도래 이후 소형에서 내장형으로 더욱 급속히 발전하고 있다. 이러한 흐름과 맞물려 기존 옷에 내장형으로 사용될 수 있고, 편안하고 내구성 좋은 패브릭(천)에 기반한 웨어러블 소자가 주목받고 있다.
이러한 장점에도 불구하고, 기존 패브릭 기반 웨어러블 소자는 복잡한 제조 방법과 설비 시설에 따른 공정 및 가격 측면에서 한계를 가져 아직 실용화 단계에 이르지 못하고 있다. 또한, 소자 내의 패브릭과 실제 구동 파트 사이의 결합력 및 효율 테스트의 부재는 소자의 내구성에도 의문을 갖게 한다. 이러한 문제를 보완하기 위해 간단하고 값싼 공정과 재료, 새로운 기계적 특성 분석 기술 등에 관한 연구가 활발히 진행되고 있다.
이번 연구에서는 복잡한 공정 및 설비 시설 대신 비교적 간단한 방법인 핫프레싱을 이용해 전도성 폴리에스터 패브릭과 압전 고분자 필름(Poly(vinylidene fluoride-co-trifluoroethylene), P(VDF-TrFE))이 결합된 패브릭 기반 웨어러블 압전 에너지 하베스터 제조 방법을 개발했다. 또한, 기존의 내구성 테스트 방법인 굽힘(bending) 테스트와 더불어 새롭게 도입한 `표면 및 계면 절단 분석시스템(SAICAS, Surface and Interfacial Cutting Analysis System)'을 이용해 패브릭과 고분자 필름 사이 계면 결착력을 측정함으로써 웨어러블 소자의 높은 기계적 내구성을 증명했다.
연구진이 개발한 제조 방법에서 제시하는 핫프레싱은 배터리나 연료전지 셀 제작에 주로 쓰이는 방법으로 2~3분 안에 완료될 정도로 빠르고 간단하며 동시에 높은 접착력을 얻을 수 있는 공정이다. 결정화 온도 근처 이하에서 고분자 필름을 패브릭에 접착시키면, 고분자 필름 표면이 *비정질화되면서 접촉면이 넓은 울퉁불퉁한 패브릭 표면에 빽빽이 접착되고, 날실과 씨실 사이로 새어 나와 못과 같은 형태로 되어 높은 계면 결합력을 가질 수 있게 된다. 이러한 핫프레싱을 이용해 개발된 웨어러블 소자는 기존 의류에 접착할 수 있는 응용 가능성을 가지고 있어 공정 단가를 낮출 수 있을 것으로 기대된다.
☞ 비정질(amorphous): 고체 물질로, 균일한 조성은 가지고 있으나, 원자 배열이 액체와 같이 흐트러져 있는 물질. 유리, 고무, 수지 따위가 있으며 반도체, 자성체, 고강도 재료 따위로 쓴다.
한편, SAICAS를 이용한 계면 결착력 분석은 마이크로 스케일에서 칼날을 이용해 정량적 및 정성적으로 힘을 측정하는 방법으로, 기존 계면 결착력 측정 방법(박리 테스트, 테이프 테스트, 마이크로신축성 테스트)보다 훨씬 정확한 분석 기법으로, 본 연구에서 처음으로 웨어러블 소자에 도입됐다. SAICAS를 이용한 계면 결착력 분석은 향후 고분자를 이용한 웨어러블 소자 내구성 테스트의 새로운 방법으로 쓰일 수 있을 것으로 기대된다.
홍승범 교수는 "본 연구에서 개발된 패브릭 기반 웨어러블 압전 에너지 하베스터 제조 기술은 패브릭 기반 소자의 실용화 가능성을 한 단계 높였고, 계면 결착력 분석을 통해 고내구성 웨어러블 소자의 디자인 방향을 제시했다ˮ며 "이 기술은 패브릭과 고분자를 이용한 다른 소자의 제조 공정 및 분석에도 새로운 기틀을 마련할 수 있을 것으로 전망한다ˮ라고 말했다.
이번 연구는 KAIST HRHRP 사업, 과학기술정보통신부 재원 한국연구재단 지원 기초연구사업과 중견연구사업, 웨어러블 플랫폼소재 기술센터 지원 및 KAIST 글로벌 특이점 연구사업 지원으로 수행됐다.
2020.09.09
조회수 28948
-
코로나19 해외유입 확진자 수 예측 기술 개발
최근 전 세계적으로 코로나바이러스감염증-19(COVID-19) 확진자 수가 2,000만 명을 넘어선 가운데 최근 국내에서도 코로나19 확진자 수가 급증해 2차 대유행 조짐을 보이면서 정부는 8월 23일부터 전국 대상으로 사회적 거리두기 단계를 2단계로 격상해 시행 중이다.
중앙재난안전대책본부(중대본)에 따르면 국내 코로나 누적 확진자 수는 8월 23일 오전 0시 기준으로 총 1만7,399명이다. 이 중 해외유입 감염자 수는 2,716명(8월 22일 오전 0시 기준)으로 전체 확진자의 약 16%를 차지한다. 대륙별로 보면 아시아(중국 외), 미주, 유럽, 아프리카 순이다. 지난 14일 이후 국내 지역 발생 신규확진자 수가 급증하고 있지만 향후 해외유입 확진자 수의 확산추세 또한 결코 장담할 수 없는 상황이다.
이런 가운데 우리 연구진이 해외유입 확진자 수를 예측할 수 있는 관련 기술을 개발했다. 우리 대학 산업및시스템공학과 이재길 교수 연구팀이 코로나19 해외유입 확진자 수를 예측하는 빅데이터‧인공지능(AI) 기술을 개발했다고 19일 밝혔다.
이재길 교수 연구팀이 개발한 이 기술은 해외 각국의 확진자 수와 사망자 수, 해외 각국에서의 코로나19 관련 키워드 검색빈도와 한국으로의 일일 항공편 수, 그리고 해외 각국에서 한국으로의 로밍 고객 입국자 수 등 빅 데이터에 인공지능(AI) 기술을 적용해 향후 2주간의 해외유입 확진자 수를 예측한다.
코로나19 확진자 수가 급증할수록 해외유입에 의한 지역사회 확산의 위험성도 항상 뒤따르기 마련이다. 이에 따라 이재길 교수 연구팀이 개발한 정확한 해외유입 확진자 수 예측기술은 방역 시설 및 격리 시설 확충, 고위험 국가 입국자 관리 정책 등에 폭넓게 응용 및 적용될 수 있을 것으로 기대가 크다.
우리 대학 지식서비스공학대학원에 재학 중인 김민석 박사과정 학생이 제1 저자로, 강준혁, 김도영, 송환준, 민향숙, 남영은, 박동민 학생이 제2~제7 저자로 각각 참여한 이번 연구는 최고권위 국제 학술대회 'ACM KDD 2020'의 'AI for COVID-19' 세션에서 오는 24일 발표된다. (논문명 : Hi-COVIDNet: Deep Learning Approach to Predict Inbound COVID-19 Patients and Case Study in South Korea)
해외유입 확진자 수는 다양한 요인에 의해서 영향을 받는다. 일반적으로 해외 각국에서의 코로나19 위험도와 비례하며, 해외 각국에서 한국으로의 입국자 수와도 비례한다. 그러나 코로나19 위험도와 입국자 수를 실시간으로 알아내기에는 많은 제약이 따르므로 연구진은 쉽게 구할 수 있는 종류의 빅데이터를 기반으로 하는 인공지능(AI) 모델을 구축하는 데 성공했다.
연구진은 기본적으로 해외 각국의 코로나19 위험도를 산출할 때, 보고된 확진자 수와 사망자 수를 활용했다. 그러나 이러한 수치는 진단검사 수에 좌우되기 때문에 코로나19 관련 키워드 검색빈도를 같이 입력 데이터로 활용해 해당 국가의 코로나19 위험도를 실시간으로 산출했다.
이와 함께 실시간 입국자 수는 기밀정보로서 외부에 공개되지 않기 때문에 매일 제공되는 한국에 도착하는 항공편수와 로밍 고객 입국자 수를 통해 이를 유추해냈다. 로밍 고객 입국자 수 데이터는 KT로부터 제공 받았지만 KT 고객 입국자만을 포함한다는 한계를 일일 항공편수를 함께 고려함으로써 이 문제를 해소했다.
이밖에 해외유입 확진자 수 예측을 위해서는 국가 간의 지리적 연관성도 매우 중요하게 고려해야 한다. 어느 특정 국가의 코로나19 발병이 이웃 국가로 더 쉽게 전파되며, 국가 간의 교류도 거리에 따라 영향을 받기 때문이다. 연구팀은 이러한 문제해결을 위해 지리적 연관성을 학습하도록 국가-대륙으로 구성되는 지리적 계층구조에 따라 우선 각 대륙으로부터의 해외유입 확진자 수를 정확히 예측함으로써 궁극적으로 전체 해외유입 확진자 수를 정확히 예측하도록 하는 인공지능(AI) 모델을 설계했다. 연구팀은 이 인공지능 모델을 'Hi-COVIDNet'라고 이름 붙였다.
이후 연구팀은 약 한 달 반에 걸친 단기간의 훈련 데이터만으로 생성된 `Hi-COVIDNet'을 통해 향후 2주 동안의 해외유입 확진자 수를 예측한 결과, 이 모델이 기존의 시계열 데이터기반의 예측 기계학습이나 딥러닝 기반의 모델과 비교했을 때 최대 35% 더 높은 정확성을 지니고 있음을 확인했다.
제1 저자인 김민석 박사과정 학생은 "이번 연구는 최신 AI 기술을 코로나19 방역에 적용할 수 있음을 보여준 사례ˮ 라면서 "K-방역의 위상을 높이는데 기여할 것으로 기대한다ˮ 고 밝혔다.
이번 연구는 KAIST 글로벌전략연구소(소장 김정호)의 코로나19 AI 태스크포스팀의 지원을 받았고, KT(담당 변형균 상무)와 과학기술정보통신부(담당 김수정 서기관)의 '코로나19 확산예측 연구 얼라이언스'를 통해 로밍 데이터 세트를 지원받아 이뤄졌다.
2020.08.23
조회수 36865