-
신기루처럼 사라지는 중간체의 모습 최초 공개
아이는 청소년기를 거쳐 성인이 된다. 화학반응도 반응물에서 생성물이 생겨나는 일종의 성장 과정에서 중간 단계인 ‘중간체’가 만들어진다. 사진과 영상으로 기록할 수 있는 사람의 청소년기와 달리, 화학반응 도중 빠르게 생성되었다가 사라지는 중간체의 모습을 기록하는 것은 매우 어렵다.
우리 대학 화학과 장석복 특훈교수 (IBS 분자활성 촉매반응 연구단장) 연구팀은 기초과학연구원 김동욱 연구위원, 우리 대학 화학과 임미희 교수 연구팀과의 협업으로 자연에 풍부한 탄화수소를 고부가가치의 물질인 질소화합물로 변환시키는 화학반응에서 생겼다가 사라지는 ‘전이금속-나이트렌’ 촉매 중간체의 구조와 반응성을 세계 최초로 규명했다.
질소화합물은 의약품의 약 90%에 포함될 정도로 생리 활성에 중요한 분자다. 제약뿐만 아니라 소재, 재료 분야에서도 중요한 골격이 된다. 현대 화학자들이 석유․천연가스 등 자연에 풍부한 탄화수소를 질소화합물로 바꾸는 아민화 반응(질소화 반응)을 효율적으로 진행할 수 있는 촉매 개발에 집중하는 이유다.
장석복 교수 연구팀은 2018년 다이옥사졸론 시약과 전이금속(이리듐) 촉매를 활용하여 탄화수소로부터 의약품의 원료가 되는 락탐을 합성하는 촉매반응을 개발한 바 있다(Science). 당시 아민화 반응을 유발하는 핵심 중간체가 바로 전이금속-나이트렌이라는 분석을 내놓았고, 이후 세계 120여 개 연구팀이 다이옥사졸론 시약을 활용한 아민화 반응 연구를 이어갔다. 하지만 계산화학적으로 구조를 파악할 뿐, 전이금속-나이트렌 중간체의 모습을 직접 관찰한 적은 없었다.
제1저자인 정회민 연구원은 “촉매 화학반응이 진행되며 어떤 촉매 중간체를 거쳐 가는지를 규명하는 것은 반응의 진행 경로를 면밀히 이해하는 동시에 더욱 효율이 높은 차세대 촉매를 개발하는데 중요한 단서가 된다”고 설명했다.
대부분의 촉매반응은 용액 상태에서 이뤄진다. 용액 내 분자들은 끊임없이 다른 분자와 상호작용하기 때문에 전이금속-나이트렌과 같이 빠르게 반응하고 사라지는 중간체를 규명하는 일은 매우 어려웠다. 이 한계를 극복하기 위해 연구팀은 고체상태의 시료에 빛을 쬐며 분자 수준에서 일어나는 구조 변화를 단결정 엑스선(X-ray) 회절 분석을 통해 관찰하는 광 결정학 분석을 활용하자는 아이디어를 냈다.
우선, 연구팀은 빛에 반응하는 로듐(Rh) 기반 촉매를 새롭게 제작했다. 이 촉매와 다이옥사졸론 시약이 결합한 복합체는 빛을 받으면 탄화수소에 아민기를 도입하는 과정에서 전이금속-나이트렌을 형성할 것으로 예상했다. 이 과정을 포항 가속기연구소의 방사광을 활용한 광 결정학 방법으로 분석한 결과, 기존 관찰된 적 없는 ‘로듐-아실나이트렌’ 중간체의 구조와 성질을 세계 최초로 확인할 수 있었다.
더 나아가, 로듐-아실나이트렌 중간체가 다른 분자와 반응하는 과정도 광 결정학으로 분석했다. 즉, 고체 시료에서 화학 결합이 끊어지며 중간체가 생성되고, 중간체가 다시 다른 물질과 반응해 새로운 화학 결합을 형성하는 전 과정을 마치 카메라가 사진을 찍듯이 포착했다는 의미다.
연구를 이끈 장석복 단장은 “그간 그 존재가 제안되었을 뿐, 입증된 적 없는 아민화 반응의 핵심 중간체의 모습을 최초로 공개했다”며 “현재 밝혀낸 로듐-아실나이트렌 중간체의 구조와 친전자성 반응성을 바탕으로, 여러 산업에서 쓰이는 차세대 촉매 반응을 개발할 수 있을 것”이라고 말했다.
연구결과는 7월 21일(한국시간) 최고 권위의 국제학술지 ‘사이언스(Science, IF 56.9)’온라인판에 실렸다. (논문명: Mechanistic snapshots of rhodium-catalyzed acylnitrene transfer reactions.)
2023.07.21
조회수 5548
-
초고효율 진청색 OLED 구현 기술 개발
우리 대학 전기및전자공학부 유승협 교수 연구팀이 경상국립대학교(총장 권순기) 화학과 김윤희 교수 연구팀과의 협력을 통해, 세계 최고 수준의 높은 효율을 갖는 진청색 유기발광다이오드(organic light-emitting diode, OLED) 소자를 구현하는 데 성공했다고 3일 밝혔다.
유승협 교수 연구실의 김형석 박사(現 규슈 대학 연수연구원), 경상국립대학교 천형진 박사(現 임페리얼 칼리지 런던 연수연구원), KAIST 이동균 박사과정(유승협 교수 연구실)이 공동 제1 저자로 수행한 이번 연구는 국제 학술지 ‘사이언스 어드밴시스(Science Advances)’2023년 5월 31일 자 온라인판에 게재됐다. (논문명: Toward highly efficient deep-blue OLEDs: Tailoring the multiresonance-induced TADF molecules for suppressed excimer formation and near-unity horizontal dipole ratio). (DOI: https://www.science.org/doi/10.1126/sciadv.adf1388)
OLED는 스마트폰, 태블릿과 같은 모바일 기기는 물론 프리미엄 TV나 모니터 등의 첨단디스플레이 기술로 활용되고 있는 발광소자로, 화질이 선명하고, 두께가 얇으며, 폴더블이나 롤러블 디스플레이 등에 핵심인 유연한 소자의 제작이 가능한 점 등 여러 고유한 장점을 갖고 있다. 이들 응용에서는 빛의 삼원색을 이루는 적·녹·청 광원의 충분한 효율과 수명을 확보하고 동시에 높은 색 순도의 삼원색을 확보하는 것이 매우 중요한데, 청색 OLED 소자에서 이 세 요건을 동시에 확보하는 기술은 대표적인 난제로 여겨지고 있다.
연구팀은 이에 고효율 진청색 OLED 소자 구현에 초점을 맞춰, 양자점 디스플레이 수준의 뛰어난 색 순도 구현이 가능한 차세대 발광체인 다중 공명 효과 기반 열 활성화 지연 형광체의 설계에 주목했다. 해당 효과를 이용한 붕소계 재료는 뛰어난 색 순도 구현의 장점을 갖고 있으나, 평평한 분자구조로 인해 분자 간 강한 상호작용이 생겨 낮은 농도에서만 진청색이 가능한 한계가 있어, OLED 소자의 충분한 효율 확보를 위해 발광 분자의 농도를 높이면 발광체 자체가 가진 색 순도 장점을 충분히 살리지 못하는 어려운 문제가 있다.
연구팀은 합성이 매우 까다로운 것으로 알려진 기존의 붕소계 재료에 비해 합성 과정을 단순화하면서 이성질체 합성을 최소화해 낮은 수율을 개선했을 뿐만 아니라, 분자 동역학 관점에서 분자 간 상호작용을 억제할 수 있는 분자구조를 성공적으로 규명하고, 이를 분자 설계를 통해 구현함으로써 색 순도와 효율이 저하되는 난제를 해결했다. 해당 연구가 그간 시행착오를 반복하며 경험적으로 이루어졌던 것과 달리, 연구팀은 종합적이고 분석적인 방법론을 정립, 최대 효율을 이끌어 낼 수 있는 구조를 이론적으로 예측했으며, 설계한 고효율 유기 발광 소재를 이용한 소자 구조에 접목해 35% 이상의 최대 외부 양자효율을 가진 진청색 OLED 구현에 성공했다. 이는 해당 파장에서의 진청색 OLED 단위 소자의 효율 중 세계 최고 수준의 결과다.
유승협 교수는 “고효율의 진청색 OLED 기술의 확보는 OLED 디스플레이를 궁극의 기술로 완성하는데 필수적인 과제 중 하나로서, 이번 연구는 난제 해결에 있어 소재-소자 그룹 간의 체계적인 융합 연구와 협업의 중요성을 잘 보여주는 사례”라고 말했다.
이번 연구는 산업통상자원부의 디스플레이 혁신공정 플랫폼 구축사업, 과기정통부의 미래소재디스커버리 사업, 중견연구자사업, 그리고 삼성미래기술육성사업의 지원을 받아 수행됐다.
2023.07.03
조회수 5930
-
광반도체 소자 집적도 100배 이상 높이다
라이다(LiDAR) 및 양자 센서·컴퓨터와 같은 복잡한 광학 시스템을 하나의 작은 칩으로 만들어 줄 수 있어 세계적으로 많은 연구와 투자가 이루어지고 있는 차세대 반도체 기술이 집적 광학 반도체(이하 광반도체) 기술이다. 기존의 반도체 기술에서 5나노, 2나노 등의 단위로 얼마나 작게 만드느냐가 관건이었는데, 광반도체 소자에서 집적도를 높이는 것은 성능, 가격, 에너지 효율 등을 결정짓는 핵심적인 기술이라 말할 수 있다.
우리 대학 전기및전자공학부 김상식 교수 연구팀이 광반도체 소자의 집적도를 100배 이상 높일 수 있는 새로운 광 결합 메커니즘을 발견했다고 19일 밝혔다.
하나의 칩당 구성할 수 있는 소자 수의 정도를 집적도(集積度)라고 하는데, 집적도가 높을수록 많은 연산을 할 수 있고 공정 단가 또한 낮춰준다. 하지만 광반도체 소자의 집적도를 높이기는 매우 어려운데, 이는 빛의 파동성으로 인해 근접한 소자 사이에서 광자 간에 혼선(crosstalk)이 발생하기 때문이다.
기존 연구에서는 특정 편광에서만 빛의 혼선을 줄여줄 수 있었는데, 연구팀은 이번 연구에서 새로운 광 결합(coupling) 메커니즘의 발견으로써 기존에는 불가능이라 여겨졌던 편광 조건에서도 집적도를 높이는 방법을 개발했다.
김상식 교수가 교신저자로 주도하고 미국 텍사스 공과대학 재직 당시 지도하던 학생들과 함께한 이번 연구는 국제학술지‘라이트: 사이언스 앤 어플리케이션(Light: Science & Applications)’ [IF=20.257]에 6월 2일 字 게재됐다. (논문명: Anisotropic leaky-like perturbation with subwavelength gratings enables zero crosstalk).
김상식 교수는 “이번 연구가 흥미로운 점은 기존에는 오히려 빛의 혼선을 크게 해줄 거라고 여겨졌던 누설파(leaky wave, 빛이 옆으로 잘 퍼지는 특성을 가짐)를 통해 역설적으로 혼선을 없애준 점이다”라며 “이번 연구에서 밝혀진 누설파를 이용한 광 결합 방법을 응용한다면 더욱 작고 노이즈가 적은 다양한 광반도체 소자를 개발할 수 있을 것이다”라고 말했다.
김상식 교수는 광반도체의 집적도에 있어서 전문성과 연구 업적을 인정받는 연구자다. 선행 연구를 통해 반도체 구조물을 파장보다 작은 크기로 패턴화해 빛이 옆으로 퍼지는 정도를 제어할 수 있는 무손실 메타물질(all-dielectric metamaterial)을 개발했고, 실험을 통해 이를 입증해 광반도체 집적도에 있어서 세계적인 기록을 보유하고 있다. 이러한 연구는 ‘네이처 커뮤니케이션즈(Nature Communications) 9, 1893 (2018)’와 ‘옵티카(Optica) 7, 881-887 (2020)’에 보고됐다. 김 교수는 이러한 성과를 인정받아 미국 국립과학재단(National Science Foundation, NSF)에서 NSF 커리어 어워드(NSF Career Award)와 재미한인과학기술자협회에서 젊은과학기술자상을 수상한 바 있다.
한편 이번 연구는 한국연구재단 우수신진연구 사업 및 미국 NSF의 지원을 받아 수행됐다.
2023.06.19
조회수 4946
-
단일 센서만으로도 혼합 가스 분류가 가능한 초저전력, 초소형 전자코 개발
우리 대학 기계공학과 박인규 교수, 기계공학과 윤국진 교수 공동 연구팀이 ‘단일 센서만으로도 혼합 가스 분류가 가능한 전자코 시스템'을 개발하는 데 성공했다고 13일 밝혔다. 일반적으로 금속산화물 저항변화식 가스센서는 반응성을 가진 가스들에 비선택적인 응답을 보이기 때문에 가스들을 선택적으로 판별하는 것이 어려웠다. 특히, 두 가지 이상의 서로 다른 가스들이 섞인 혼합가스를 실시간으로 분류하는 것은 가스센서의 실상황 활용도를 높이는 것에 반드시 필요한 기술이나 아직까지 해결되지 못했다. 가스센서에 선택성을 부여하기 위해 센서 어레이와 패턴인식 알고리즘을 적용한 전자코 시스템이 활발히 연구중이나, 전자코에 사용되는 센서의 수가 많아질수록 전체 시스템의 소모전력과 부피 또한 필연적으로 증가하였다.
공동 연구팀은 전자코에 사용되는 개별 센서의 소모전력을 최소화하고, 적은 수의 센서만으로도 선택적 가스감지가 가능한 기술 개발에 집중하였다. 기존의 저항변화식 가스센서는 고온의 줄히팅으로 가스감지소재인 금속산화물을 가열하기 때문에 소모전력이 수십 mW로 높았다. 공동 연구팀은 마이크로 크기의 초소형 LED 기반의 광원일체형 가스센서를 개발하여 줄히팅 방식 대비 소모전력을 백 분의 일 이하 수준으로 줄였다. 이후 LED의 광량을 불규칙하게 주기적으로 변화시키며 구동하는 가변 광조사 기법을 적용하였다. 서로 다른 타겟가스들은 LED의 광량이 변화함에 따라 각기 다른 유니크한 응답 패턴을 나타내기 때문에 이 현상을 응용하면 동일 시간 내에 수집할 수 있는 센서 데이터가 훨씬 많아지고 풍부해진다. 결론적으로 가변광조사 기법으로 마이크로 LED 가스센서를 구동하고 데이터전처리와 딥러닝 알고리즘을 적용하여 단일 센서만으로도 선택적 가스판별이 실시간으로 가능한 전자코 시스템을 개발하였다. 센서의 크기는 5 × 5 mm2 초소형이고 평균 소모전력은 0.53 mW이고 에탄올과 메탄올이 혼합된 상황에서 각 가스의 종과 농도를 실시간으로 구별해낼 수 있었다.
연구책임자인 기계공학과 박인규 교수는 "본 연구에서 제안된 가변광조사 구동 기법은 빠른 ON/OFF가 가능하고 상온 동작하여 열적/기계적 내구성이 우수한 마이크로 LED 가스센서에 최적인 원천 기술이고, 이 기법을 활용하여 하나의 센서만으로도 우수한 선택성을 가진 전자코 시스템을 개발할 수 있었다“라고 기술에 대한 자신감을 밝혔다. 또한 ”단일 센서만을 사용하기 때문에 소모전력과 시스템 부피가 최소화되었고, 특히 혼합가스의 각 성분과 농도를 실시간으로 판별해내는 기술은 실상황에서 매우 활용성이 높을 것“이라고 연구의 의미를 설명했다.
기계공학과 조인철 박사와 이기철 박사과정이 공동 제1 저자로 참여하고 한국연구재단의 지원으로 수행된 이번 연구 결과는 네이처 (Nature) 자매지인 `빛 : 과학과 응용 (Light: Science & Applications)' (impact factor=20.257)에 2023년 4월 18일 字 정식 게재됐다. (논문명: Deep-learning-based gas identification by time-variant illumination of a single micro-LED-embedded gas sensor)
2023.06.14
조회수 5900
-
암세포를 정상세포로 되돌리는 치료원리 최초 규명
지난 수십 년간 많은 의생명과학자들의 집중적인 암 연구에도 불구하고 여전히 국내 사망원인 1위는 암이다. 현재의 암 치료가 한계를 갖는 본질적인 이유는 모든 치료방식이 암세포의 사멸만을 목표로 하여서 결국 암세포의 내성 획득으로 인한 암의 재발 및 정상세포 사멸로 인한 부작용을 피할 수 없기 때문이다. 이에 암세포를 특정한 상황에서 정상세포 또는 정상과 유사한 세포로 되돌릴 수 있는 암가역화(cancer reversion) 현상에 기반한 새로운 항암 치료기술이 제시되었으나, 아직 실제적인 개발은 거의 시도되지 못했다.
우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 시스템생물학 연구를 통해 암세포를 죽이지 않고 성질만을 변환시켜 정상세포로 되돌릴 수 있는 암 가역화의 근본적인 원리를 규명하는 데 성공했다고 8일 밝혔다.
조광현 교수 연구팀은 정상세포가 외부자극에 부합하는 세포반응을 일으키는 것과 달리 암세포는 외부자극을 무시한 채 통제불능의 세포분열 반응만을 일으킨다는 것에 주목하였다. 컴퓨터 시뮬레이션 분석을 통해 특정 조건에서 유전자 돌연변이에 의해 왜곡된 입출력 관계가 정상적인 입출력 관계로 회복(가역화)될 수 있음을 발견했으며, 분자세포실험을 통해 이와 같은 입출력 관계의 회복이 실제 암세포에서 나타난다는 것을 입증했다.
우리 대학 주재일 박사, 박화정 박사가 참여한 이번 연구결과는 와일리(Wiley)에서 출간하는 국제저널 `어드밴스드 사이언스(Advanced Science)' 6월 2일 字 온라인판 논문으로 출판됐다. (논문명: Normalizing input-output relationships of cancer networks for reversion therapy)
조광현 교수 연구팀은 암세포의 왜곡된 입출력 관계가 정상세포의 정상적인 입출력 관계로 회복될 수 있는 이유는 생명체의 오랜 진화과정에서 획득된 세포내 유전자 조절 네트워크의 견실성(robustness)과 중복성(redundancy)에 기인한다는 것을 규명했다. 또한 암 가역화를 위한 조절 타겟으로 유력한 유전자들이 존재한다는 것을 발견했고 이 유전자들을 조절하면 실제로 암세포의 왜곡된 입출력 관계가 정상적인 입출력 관계로 회복된다는 것을 암세포 분자세포실험을 통해 증명했다.
이번 연구성과는 실제 암세포가 정상세포로 가역화 될 수 있는 현상이 우연한 것이 아니며, 암세포 가역화를 유도할 수 있는 타겟을 체계적으로 탐색하고 이를 조절하는 약물을 개발함으로써 혁신 항암제의 개발이 가능함을 보여준 것이어서 그 의미가 크다.
조광현 교수는 "현행 항암치료의 한계를 극복할 수 있는 새로운 암 가역치료 전략에 대한 근본적인 원리를 밝히는 데 성공함으로써 암 환자의 예후와 삶의 질을 모두 증진시킬 수 있는 혁신 신약 개발의 가능성을 높이게 되었다ˮ라고 말했다.
조광현 교수 연구팀은 암세포를 정상세포로 되돌리는 가역치료 개념을 최초로 제시한 뒤 2020년 1월에 대장암세포를 정상 대장세포로 되돌리는 연구결과를 발표했고, 2022년 1월에는 가장 악성인 유방암세포를 호르몬 치료가 가능한 유방암세포로 리프로그래밍하는 연구에 성공한 바 있다. 그리고 2023년 1월에는 전이 능력을 획득한 폐암 세포를 전이 능력이 제거되고 약물 반응성이 증진된 세포 상태로 되돌리는 가역화 연구에 성공한 바 있다. 하지만 이와 같은 성과들은 서로 다른 암종에서 개별적으로 연구되어진 사례연구였기 때문에, 어떠한 공통된 원리로 암가역화가 여러 암종에서 발생가능한지는 밝히지 못했다. 이번 연구 결과는 이러한 암가역화의 보편적인 원리와 진화적 기원을 밝힌 최초의 연구다.
한편 이번 연구는 과학기술정보통신부와 한국연구재단의 중견연구사업 등의 지원으로 수행됐다.
2023.06.08
조회수 8326
-
파킨슨병 발병 3차원 게놈 지도 최초 제시
파킨슨병은 60세 이상 인구의 1.2% 이상 발병하는 흔한 퇴행성 뇌 질환으로 급격한 인구 고령화에 따라 전 세계적으로 발병률이 증가하고 있어, 2040년 약 1,420만 명의 환자가 발병할 것으로 예측되고 있다. 현재 파킨슨병의 다양한 발병 원인이 명확하게 규명되지 않은 상황에서, 비정상적으로 발생하는 후성 유전학적 특징들이 파킨슨병 발병에 관여하는 것을 최초로 확인되어 화제다.
우리 대학 생명과학과 정인경 교수 연구팀이 미국 국립보건원(National Institute of Health, NIH) 산하 국립노화연구소(National Institute on Aging, NIA) 엘리에자 매슬리아(Eliezer Masliah) 교수와의 공동연구를 통해 전 세계 최초로 파킨슨병 발병 뇌 조직의 단일세포 3차원 후성유전체 지도를 작성하고, 이를 토대로 656개의 파킨슨병 연관 신규 유전자들을 제시했다고 8일 밝혔다.
이번 연구에서 연구팀은 최신 개발된 단일세포 유전체 기술과 3차원 후성 유전체 기술을 접목하여 신경세포 뿐 아니라 뇌 환경 유지에 주요한 역할을 하는 것으로 알려진 신경교세포 (희소돌기아교세포, 미세아교세포 등)의 후성유전적 변화들이 3차원 게놈 구조를 통해 파킨슨병 발병에 관여하는 것을 밝혔다. 이러한 비정상적인 후성유전학적 특징들은 파킨슨병의 원인 또는 진행에 관여하는 유전자 발현 조절에 핵심적인 역할을 하기 때문에, 본 연구 결과는 차후 진단과 치료 연구에 중요한 단서를 제공하게 될 것이라고 연구팀은 전했다.
이번 연구를 수행한 생명과학과 이정운 박사는 단일세포 수준에서 환자 뇌조직을 분석한 결과 기존의 신경세포에 국한된 연구에서 한발 나아가, 신경교세포 또한 파킨슨병에 중요한 역할을 할 수 있다는 단서를 제시하였다는 점에서 중요한 발견이라고 밝혔다.
이번 연구 결과는 국제 학술지, ‘사이언스 어드벤시스(Science Advances, IF=14.14)'에 4월 14일 게재됐다. (논문명 : Characterization of altered molecular mechanisms in Parkinson’s disease through cell type-resolved multi-omics analyses)
교신 저자인 정인경 교수는 "이번 연구 결과는 퇴행성 뇌 질환의 표적 발굴에 있어 3차원 후성유전체 지도 작성의 중요성을 보였기에 차후 다양한 복합유전질환 규명에도 중요하게 활용될 것이다ˮ라고 말했다.
한편 이번 연구는 서경배과학재단, 보건복지부, 과학기술정보통신부의 지원을 받아 수행됐다.
2023.05.08
조회수 5732
-
유기용매 정제용 분리막 원천기술 개발
기후변화 대응을 위한 친환경 공정 기술 개발의 필요성이 확대됨에 따라 화학 및 제약 산업에서의 저에너지 분리 공정은 지속가능한 개발에 있어 중추적 역할을 담당하고 있다. 특히, 제약 산업의 경우 고품질의 의약품 제조를 위해 고순도의 유기용매 사용이 필수적이며, 이에 따라 유기용매의 고효율 분리 공정에 대한 요구가 꾸준히 증가하고 있는 실정이다.
우리 대학 생명화학공학과 최민기 교수 연구팀이 2차원 다공성 탄소 기반의 유기용매 정제용 초고성능 나노여과막을 개발했다고 3일 밝혔다.
기존의 유기용매 분리 공정은 혼합물을 이루는 물질 간의 끓는점 차이를 이용하여 분리하는 증류법이 사용되어 대용량의 혼합물을 끓여야 하는 만큼 막대한 에너지가 소모되는 단점이 있었다.
반면, 분리막 기술은 단순히 압력을 가하는 것만으로 유기용매의 선택적 투과가 가능하고 유기용매보다 크기가 큰 입자들을 효과적으로 제거할 수 있다. 특히, 열이 가해지지 않으므로 공정에서 요구되는 에너지 및 비용을 절감할 수 있고 가열 과정 중 고부가가치 생성물의 화학적 변성 위험성을 배제할 수 있다는 장점이 있다.
연구팀은 고성능 분리막의 개발을 위해 2차원 마이크로 다공성 탄소 물질을 합성하고 이를 분리막으로 제조하는 기술을 개발했다. 대표적인 2차원 탄소 물질 그래핀은 얇고 안정적이며 기계적 강성이 높아 이상적인 분리막 재료이지만, 촘촘히 배열된 탄소 원자들로 인해 어떠한 물질도 투과시키지 못한다. 이에 추가적인 구멍을 뚫어 분리막으로 활용하려는 시도들이 있었으나, 균일한 크기의 마이크로 기공을 고밀도로 뚫는 데는 여전히 기술적 어려움이 존재하는 실정이다.
이에 최민기 교수 연구팀은 2 나노미터(nm) 이하의 작은 마이크로 기공을 갖는 결정성 알루미노실리케이트 물질인 제올라이트를 주형으로 활용해 분리막에 사용할 2차원 마이크로 다공성 탄소 물질을 합성했다. 대부분의 제올라이트는 3차원적으로 연결된 마이크로 기공 구조를 지니지만 일부는 2차원적 기공 연결구조를 지니며 특히 연속적인 탄소 골격이 자랄 수 있는 충분한 공간을 제공할 수 있다는 점을 활용했다.
연구팀은 이러한 2차원적 기공 연결구조를 지니는 제올라이트 내부에 탄소를 채워 넣은 후, 제올라이트만을 선택적으로 녹여냄으로써 판 형태의 2차원 탄소 물질을 합성하는 데 성공했다. 합성된 탄소는 기존 제올라이트의 마이크로 기공 구조를 그대로 본뜬 골격 구조를 지니며, 극도로 균일한 크기의 마이크로 기공들이 벌집 구조로 빽빽하게 배열돼 있다. 해당 기공 밀도는 기존에 보고되어온 다공성 그래핀과 비교해 수십 배 이상 높은 수치다.
연구팀은 합성된 2차원 탄소 시트들을 적층시켜 얇은 두께의 분리막을 제조했다. 해당 분리막을 유기용매 나노여과에 적용한 결과, 탄소 시트의 기공 크기보다 큰 유기 용질은 효과적으로 걸러내며, 작은 유기용매는 자유롭게 투과시킴으로써 고순도의 유기용매를 얻을 수 있었다. 특히, 해당 분리막은 높은 기공 밀도 덕분에 기존의 분리막들과 비교해 비약적으로 높은 유기용매 투과도를 보이므로 유기용매의 대량 정제에 매우 적합하다.
연구를 주도한 최민기 교수는 "극도로 균일한 크기의 마이크로 기공이 초고밀도로 존재하는 2차원 다공성 탄소의 합성 방법은 세계적으로 보고된 바가 없던 새로운 개념이다ˮ라며, "이번 연구에서 개발한 탄소 물질은 분리막뿐만 아니라, 배터리나 축전지와 같은 전기화학적 에너지 저장 장치 및 화학적 센서 등 다양한 분야에서 활용이 가능할 것으로 기대된다ˮ라고 말했다.
우리 대학 응용과학연구소 김채훈 박사가 제1 저자로 참여한 이번 연구 결과는 세계적 권위지인 `사이언스 어드밴시스(Science Advances)'에 지난 2월 10일 게재됐다. (논문명: Bottom-up synthesis of two-dimensional carbon with vertically aligned ordered micropores for ultrafast nanofiltration)
한편 이번 연구는 삼성전자 미래기술육성센터의 지원을 받아 수행됐다.
2023.04.03
조회수 7085
-
반도체 소자 내의 복잡한 움직임을 관측할 수 있는 초고속 카메라 개발
우리 대학 김정원 교수 연구팀이 반도체 소자 내의 미세 구조와 동적 특성을 고해상도로 측정할 수 있는 초고속 카메라 기술을 개발하였다고 밝혔다.
기존에는 볼 수 없었던 반도체 소자 내에서의 빠르고 불규칙적인 복잡한 움직임을 이제 초고속 카메라로 관측할 수 있게 되었다.
기계공학과 나용진 박사가 제 1저자로 참여하고 기계공학과 유홍기, 이정철 교수팀 및 한국표준과학연구원(KRISS) 서준호, 강주식 박사팀이 참여한 공동연구팀의 이번 논문은 국제학술지 ‘빛: 과학과 응용(Light: Science & Applications)’ [IF=20.257] 2월 15일 字에 게재됐다. (논문명: Massively parallel electro-optic sampling of space-encoded optical pulses for ultrafast multi-dimensional imaging)
최근 마이크로 및 나노 소자들의 복잡도와 기능성이 급격하게 향상됨에 따라 이들 소자 내의 미세 구조와 동적인 움직임을 실시간으로 정확하게 측정해야 할 필요성이 급증하고 있다. 미세 구조 측정 측면에서는 다양한 3차원 집적회로와 소자들의 발전으로 더 큰 웨이퍼 영역에 대해 더 높은 분해능 및 측정속도를 가지는 계측 기술이 반도체 산업에서 중요해지고 있다. 한편 동적 특성의 측정은 마이크로 및 나노 소자 내에서의 물리현상들을 이해하고 다양한 응용 분야들로 발전시키는 데 중요하다. 특히 다양한 역학 현상의 관측을 위해서는 더 높은 해상도, 더 빠른 측정속도 및 더 큰 측정범위를 필요로 하지만 기존의 측정 기술들은 여러가지 한계들을 가지고 있었다.
이번 연구는 기존의 한계를 극복한 새로운 초고속 카메라 기술을 개발하였다. 100펨토초(10조분이 1초) 정도의 매우 짧은 펄스폭을 가지는 빛 펄스를 1000개 이상의 다른 색을 가지는 펄스들로 쪼갠 후, 각기 다른 색을 가진 펄스들을 이용하여 서로 다른 공간적 위치에서의 높낮이를 정밀하게 측정할 수 있는 기술이다. 구현한 기술은 초당 2.6억개의 픽셀들에 대한 높낮이의 차이를 최고 330피코미터(30억분의 1미터) 수준까지 측정할 수 있을 정도로 빠르고 정밀하다. 연구팀은 이를 이용하여 복잡한 3차원 형상을 고속으로 정밀하고 정확하게 측정할 수 있는 초고속 카메라 기능을 선보였고, 기존의 측정 기술로는 관측하기 어렵던 복잡하고 비반복적인 고속의 동역학 현상들을 성공적으로 관측할 수 있었다.
이번에 개발한 초고속 카메라 기술의 고속 형상 이미징 속도와 높은 공간 분해능을 이용하면 반도체 공정이나 3D 프린팅 과정을 실시간으로 모니터링하며 공정을 제어할 수 있어 점점 고도화 및 집적화 되는 공정의 수율을 크게 향상시킬 수 있을 것으로 기대된다. 또한 다양한 진폭이 존재하면서 동시에 매우 빠른 순간 속도를 갖는 미세 구조의 움직임을 포착할 수 있음을 보여, 기존에 관찰하지 못했던 복잡한 비선형(nonlinear) 및 과도(transient)의 물리 현상들을 탐구하는 차세대 계측 기술로 발전할 수 있을 것으로 기대된다.
김정원 교수는 “이번 연구에서는 1차원적인 선 모양의 빛을 스캔해서 움직이는 방식으로 2차원 표면의 높낮이를 측정하였으나, 향후에는 2차원 표면의 높낮이를 스캔 없이 한번에 측정할 수 있는 방식으로 기술을 발전시킬 예정”이라고 밝혔다.
한편 이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 중견후속연구, 선도연구센터, 기초연구실 및 중견연구 사업의 지원을 받아 수행됐다.
2023.03.02
조회수 7565
-
저농도 폐수에서 암모니아 생산 기술 개발
현대사회에서 우리의 삶을 위협하는 탄소 순환 불균형에 못지않게 부각되는 질소 순환 문제가 중요한 이슈다. 특히 질산염은 수질 오염, 산성비, 그리고 최근 기승을 부리는 미세먼지의 생성 원인으로도 알려져 있으며, 암모니아는 주로 농업용 비료, 플라스틱, 폭발물, 의약품, 선박용 청정원료, 수소 운반체, 암모니아 발전 등 다양한 산업군에 쓰이는 유용한 자원이다.
우리 대학 신소재공학과 강정구 교수 연구팀이 전기를 이용해 저농도 질산염 수용액으로부터 암모니아를 생산하는 고효율 촉매를 개발했다고 8일 밝혔다.
연구팀이 개발한 전기 촉매는 구리 금속 폼(Cu foam)과 니켈-철 층상이중수산화물(NiFe Layered double hydroxide)의 복합체로 구성돼 있다. 구리 폼은 질산염을 선택적으로 흡착하고, 니켈-철 층상이중수산화물은 화학이나 생체반응을 통해 반응 중 생성된 중간체 수소 라디칼을 생성해 구리 폼에 전달함으로써 질산염이 암모니아로 바뀌도록 효율적으로 진행한다. 구리, 철, 니켈 모두 귀금속과 비교해 지구에 풍부하고 비교적 저렴하므로 연구팀이 개발한 기술은 친환경적이고 경제적인 원천기술이다.
이 기술은 질산염을 통해 직접적으로 암모니아를 생산할 수 있을 뿐 아니라, 기존 질산염 환원의 가장 큰 문제였던 저농도 질산염 수용액에서도 좋은 성능을 갖는다. 실제 하천이나 강물, 혹은 여러 질산염을 배출하는 저농도 폐수를 이용해 암모니아를 생산할 수 있어 경제적이고 실용적이다는 특성을 가진다.
김건한 박사 (現 옥스퍼드 대학교 화학과, KAIST 신소재공학과 졸업생)가 제1 저자로 참여하고, 더모트 오헤어 교수 (옥스퍼드 대학교 화학과) 연구팀이 공동으로 참여한 강정구 교수 연구팀의 이번 연구 결과는 에너지 및 환경 분야 국제 학술지 `에너지 환경 과학(Energy & Environmental Science, IF 39.71)' 1월 24일 字 온라인 게재됐다. (논문명: Energy-efficient electrochemical ammonia production from dilute nitrate solution)
현재 암모니아 생산은 대부분 `하버-보쉬 공정'을 통해 생산된다. 이 공정은 고온, 고압의 합성 조건을 전제로 하기 때문에 안전성에서 문제를 갖고 있을 뿐만 아니라 값비싼 수소 기체를 반응물로 이용하기 때문에 경제성 문제를 동시에 유발한다. 이에 대한 대안으로, 친환경적이며 값싸고 풍부한 질소 기체를 직접 전기 환원시키는 전기화학적 질소 환원법도 수용액에 대한 낮은 용해도와 강한 질소-질소 삼중결합 때문에 발생하는 낮은 효율로 큰 문제를 겪고 있다.
반면, 전기에너지를 이용해 질산염을 암모니아로 환원시키는 전기화학적 질산염 환원법은 수용액에 잘 녹는 질산염과 상대적으로 더 약한 질소-산소 결합에너지로 질소 환원법보다 더 높은 효율을 가지고 있다. 하지만, 기존의 질산염 전기 촉매의 경우, 경쟁 반응인 물 환원 반응으로 인해 암모니아로의 환원 효율이 떨어진다는 단점을 가지고 있다. 또한, 실제 하천이나 강물, 혹은 여러 질산염을 배출하는 폐수의 경우, 약 10mM(밀리몰) 이하 낮은 농도의 질산염을 포함하고 있는데, 저농도에서 촉매 특성이 급격히 떨어진다는 특성이 있다.
이에 강정구 교수 연구팀은 표면적이 넓은 구리 금속 폼을 호스트로 사용하여 저농도의 질산염이 효율적으로 흡착될 수 있도록 했다. 한편, 호스트인 구리 금속 폼에 수소 라디칼 생성이 가능한 니켈-철 층상이중산화물을 포함하는 `구리 금속 폼/니켈-철 층상이중수산화물' 복합체를 형성하였는데, 니켈-철 층상이중수산화물의 전기전도도가 낮아 질산염 환원이 일어나는 전압에서 수소-수소 결합을 통한 수소가스 (H2)를 생성하지 않고 효율적으로 수소 라디칼 (H)을 물로부터 만들 수 있었다.
강정구 교수는 "친환경적인 전기에너지를 이용해 질산염 환원법으로 암모니아를 생성하는 경우, 주로 메탄 리포밍을 통해 생산되는 값비싼 수소 기체를 이용하며 고온/고압의 반응 조건으로 유발되는 안전성 문제를 가진 하버-보쉬 공정을 효과적으로 대체할 수 있다ˮ라고 소개하면서 "특히, 반응 자리와 수소 라디칼 자리가 분리된 촉매 구조를 통해 저농도 질산염에서도 효율적으로 암모니아를 생성할 수 있기 때문에, 실제 강물, 하천, 공장 폐수에 포함돼있는 질산염을 농축시키는 과정 없이도 효율적으로 암모니아를 생산할 수 있어 질산염을 통한 암모니아 생산의 상용화에 이바지할 것이다ˮ고 말했다.
한편 이번 연구는 과학기술정보통신부 나노 및 소재기술개발사업 미래기술연구실의 지원을 받아 수행됐다.
2023.02.08
조회수 7671
-
‘라이보’ 로봇, 해변을 거침없이 달리다
우리 대학 기계공학과 황보제민 교수 연구팀이 모래와 같이 변형하는 지형에서도 민첩하고 견고하게 보행할 수 있는 사족 로봇 제어기술을 개발했다고 26일 밝혔다.
황보 교수 연구팀은 모래와 같은 입상 물질로 이루어진 지반에서 로봇 보행체가 받는 힘을 모델링하고, 이를 사족 로봇에 시뮬레이션하는 기술을 개발했다. 또한, 사전 정보 없이도 다양한 지반 종류에 스스로 적응해가며 보행하기에 적합한 인공신경망 구조를 도입해 강화학습에 적용했다. 학습된 신경망 제어기는 해변 모래사장에서의 고속 이동과 에어 매트리스 위에서의 회전을 선보이는 등 변화하는 지형에서의 견고성을 입증해 사족 보행 로봇이 적용될 수 있는 영역을 넓힐 것으로 기대된다.
기계공학과 최수영 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 로보틱스(Science Robotics)' 1월 8권 74호에 출판됐다. (논문명 : Learning quadrupedal locomotion on deformable terrain)
강화학습은 임의의 상황에서 여러 행동이 초래하는 결과들의 데이터를 수집하고 이를 사용해 임무를 수행하는 기계를 만드는 학습 방법이다. 이때 필요한 데이터의 양이 많아 실제 환경의 물리 현상을 근사하는 시뮬레이션으로 빠르게 데이터를 모으는 방법이 널리 사용되고 있다.
특히 보행 로봇 분야에서 학습 기반 제어기들은 시뮬레이션에서 수집한 데이터를 통해서 학습된 이후 실제 환경에 적용돼 다양한 지형에서 보행 제어를 성공적으로 수행해 온 바 있다.
다만 학습한 시뮬레이션 환경과 실제 마주친 환경이 다른 경우 학습 기반 제어기의 성능은 급격히 감소하기 때문에, 데이터 수집 단계에서 실제와 유사한 환경을 구현하는 것이 중요하다. 따라서, 변형하는 지형을 극복하는 학습 기반 제어기를 만들기 위해서는 시뮬레이터는 유사한 접촉 경험을 제공해야 한다.
연구팀은 기존 연구에서 밝혀진 입상 매체의 추가 질량 효과를 고려하는 지반 반력 모델을 기반으로 보행체의 운동 역학으로부터 접촉에서 발생하는 힘을 예측하는 접촉 모델을 정의했다.
나아가 시간 단계마다 하나 혹은 여러 개의 접촉에서 발생하는 힘을 풀이함으로써 효율적으로 변형하는 지형을 시뮬레이션했다.
연구팀은 또한 로봇의 센서에서 나오는 시계열 데이터를 분석하는 순환 신경망을 사용함으로써 암시적으로 지반 특성을 예측하는 인공신경망 구조를 도입했다.
학습이 완료된 제어기는 연구팀이 직접 제작한 로봇 `라이보'에 탑재돼 로봇의 발이 완전히 모래에 잠기는 해변 모래사장에서 최대 3.03 m/s의 고속 보행을 선보였으며, 추가 작업 없이 풀밭, 육상 트랙, 단단한 땅에 적용됐을 때도 지반 특성에 적응해 안정하게 주행할 수 있었다.
또한, 에어 매트리스에서 1.54 rad/s(초당 약 90°)의 회전을 안정적으로 수행했으며 갑작스럽게 지형이 부드러워지는 환경도 극복하며 빠른 적응력을 입증했다.
연구팀은 지면을 강체로 간주한 제어기와의 비교를 통해 학습 간 적합한 접촉 경험을 제공하는 것의 중요성을 드러냈으며, 제안한 순환 신경망이 지반 성질에 따라 제어기의 보행 방식을 수정한다는 것을 입증했다.
연구팀이 개발한 시뮬레이션과 학습 방법론은 다양한 보행 로봇이 극복할 수 있는 지형의 범위를 넓힘으로써 로봇이 실제적 임무를 수행하는 데에 이바지할 수 있을 것으로 기대된다.
제1 저자인 최수영 박사과정은 "학습 기반 제어기에 실제의 변형하는 지반과 가까운 접촉 경험을 제공하는 것이 변형하는 지형에 적용하는 데 필수적이라는 것을 보였다ˮ 라며 "제시된 제어기는 지형에 대한 사전 정보 없이 기용될 수 있어 다양한 로봇 보행 연구에 접목될 수 있다ˮ 라고 말했다.
한편 이번 연구는 삼성전자 미래기술육성센터의 지원을 받아 수행됐다.
2023.01.26
조회수 8213
-
근긴장이상증 음악가들에게 희망을
우리 대학 뇌인지과학과 김대수 교수는 지난 11월 19일 세계보건기구 (WHO, the World Health Organization) 후원으로 개최된 ‘근긴장이상증 음악가들을 위한 컨퍼런스’와 근긴장이상증 환자인 주앙 카를로스 마틴의 카네기 홀 공연에 참석하여 근긴장이상증 치료제 소식을 알렸다.
2022년 11월 19일 ‘기적의 콘서트’가 카네기 홀에서 열렸다. 피아니스트 주앙 카를로스 마틴(João Carlos Martins)은 70, 80년대 세계적인 피아니스트로 주목받았으나 갑자기 찾아온 손가락 근긴장이상증으로 음악을 접어야 했다. 2020년 산업 디자이너였던 바타 비자호 코스타(Ubiratã Bizarro Costa)가 개발한 바이오닉 글러브를 끼고 다시 노력한 결과 60년만에 82세의 나이로 카네기홀에 다시 서게 된 것이다.
당일 공연에 그는 NOVUS NY 오케스트라와 협연으로 바하의 음악을 지휘하였으며 이후 직접 피아노로 연주하여 관객들의 감동을 이끌어 냈다. 특히 공연 중간에 김대수 교수를 포함 근긴장이상증 연구를 하는 과학자들의 이름을 호명하는 등 희귀질환 음악가들을 위한 치료제 개발에 힘써 줄 것을 당부하였다.
음악가 근긴장이상증 (Musician's distonia)은 음악가의 1%에서 3%까지 영향을 미치는 것으로 간주되며, 모든 근긴장이상증의 5%를 차지한다. 근긴장이상증으로 연주가 불가능하게 된 음악가들은 스트레스와 우울증에 시달리며 극단적인 선택을 하게 되는 경우도 있다. 음악가들이 근긴장이상증에 취약한 원인으로는 악기연주를 위해 과도한 몰입과 연습, 그리고 완벽주의적 성격, 유전적 요인 등이 알려져 있다. 현재 보튤리넘 톡신 (보톡스)로 이상이 생긴 근육을 억제하는 방법이 쓰이고 있지만 근육기능을 차단하게 되면 결국 악기를 연주할 수 없게 된다. 주앙 카를로스 마틴 자신도 여러 번의 보톡스 시술과 세 번의 뇌수술 등을 받았으나 치료효과가 없었다. 새로운 치료제가 필요한 이유다.
김대수 교수 연구팀은 근긴장이상증이 과도한 스트레스에 의해 유발되는 것에 착안하여 근긴장이상증 치료제 NT-1을 개발하였다. NT-1은 근긴장 증상의 발병을 뇌에서 차단하여 환자들이 근육을 정상적으로 활용할 수 있게 된다. 김대수 교수 연구팀은 근긴장이상증 치료제 개발 연구성과를 2021년 `사이언스 어드밴시스(Science Advances)' 저널에 게재하였으며 이 논문을 보고 주앙 카를로스 마틴은 자신의 공연과 UN 컨퍼런스에 김대수 교수를 초청하였다.
2022년 11월 18일, 카네기홀 공연에 앞서 열린 희귀질환 극복을 위한 UN 컨퍼런스에서 세계보건기구 (WHO) 의 정신건강 및 약물 남용 연구소 책임자인 데보라 케스텔 박사는“근긴장이상증이 잘 알려지지 않았지만 이미 세계적으로 널리 퍼져 있는 질환으로서 사회적인 관심과 연구자들의 헌신을 필요로 한다”면서 컨퍼런스의 취지를 밝혔다. 김대수 교수는 “NT-1은 뇌에서 근긴장이상증 원인을 차단하는 약물로서 음악가들이 악기를 연주하는 것을 방해하지 않을 것이다. 2024년 까지 한국에서 임상허가를 받을 것으로 목표로 한다”고 발표했다.
NT-1 약물은 현재 교원창업기업인 ㈜뉴로토브 (대표, 김대수)에서 개발 중이다. 임상테스트를 위한 약물 합성이 완료되었고 다양한 동물 실험결과 효능과 안전성이 우수하다는 결과를 얻었다. 병원에 가서 시술을 하고 며칠이 지나야 치료효과를 볼 수 있는 보톡스와 달리, NT-1 은 복용한지 1 시간 내에 치료효과를 보인다. 이른바 “먹는 보톡스”로서 다양한 긴장성 근육질환 및 통증에 효능을 보일 것으로 예상된다.
2022.12.27
조회수 9054
-
세계 최고 빠른 속도로 철제 벽면과 천장을 보행하는 사족 로봇 개발
우리 대학 기계공학과 박해원 교수 연구팀이 철로 이뤄진 벽면과 천장을 빠른 속도로 이동할 수 있는 사족 보행 로봇을 개발했다고 26일 밝혔다.
박 교수 연구팀은 이를 위해 전자기력을 온-오프(on-off)할 수 있는 영전자석(Electropermanent Magnet)과 고무와 같은 탄성체에 철가루와 같은 자기응답인자를 섞어 만든 탄성체인 자기유변탄성체(Magneto-Rheological Elastomer)를 이용해 자석의 접착력을 빠르게 끄거나 켤 수 있으면서도 평탄하지 않은 표면에서 높은 접착력을 지니는 발바닥을 제작해, 연구실에서 자체 제작한 소형 사족 보행 로봇에 장착했다. 이러한 보행 로봇은 배, 교량, 송전탑, 대형 저장고, 건설 현장 등 철로 이루어진 대형 구조물에 점검, 수리, 보수 임무를 수행하는 등 폭넓게 이용될 수 있을 것으로 기대된다.
기계공학과의 홍승우, 엄용 박사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 로보틱스(Science Robotics)' 12월호에 표지를 장식하는 논문으로 출판됐다. (논문명 : Agile and Versatile Climbing on Ferromagnetic Surfaces with a Quadrupedal Robot)
기존의 벽면을 오르는 등반 로봇은 바퀴나 무한궤도를 이용하기 때문에, 단차나 요철이 있는 표면에서는 이동성이 제한되는 단점을 가졌다. 이에 반해 등반용 보행로봇은 장애물 지형에서의 향상된 이동성을 기대할 수 있으나, 이동 속도가 현저히 느리거나 다양한 움직임을 수행할 수 없다는 단점이 있었다.
보행 로봇의 빠른 이동을 가능하게 하려면 발바닥은 흡착력이 강하면서도 흡착력을 빠르게 온-오프 스위칭할 수 있어야 한다. 또한, 거칠거나 요철이 있는 표면에서도 흡착력의 유지가 필요하다.
연구팀은 이러한 문제를 해결하기 위해 영전자석과 자기유변탄성체를 보행 로봇의 발바닥 디자인에 최초로 이용했다. 영전자석은 짧은 시간의 전류 펄스로 전자기력을 온-오프할 수 있는 자석으로 일반적인 전자석과 달리 자기력의 유지를 위해 에너지가 들지 않는다는 장점이 있다. 연구팀은 사각형 구조 배열의 새로운 영전자석을 제안해, 기존 영전자석과 비교해 스위칭에 필요한 전압을 현저하게 낮추면서도 보다 빠른 스위칭이 가능하게 했다.
또한, 연구팀은 자기유변탄성체를 발바닥에 씌어, 발바닥의 자기력을 현저히 떨어트리지 않으면서도 마찰력을 높일 수 있었다. 이렇게 제안한 발바닥은 무게는 169그램(g)에 불과하지만 약 *535뉴턴(N)의 수직 흡착력, 445뉴턴(N)의 마찰력을 제공해 무게 8킬로그램(kg)의 사족보행로봇에 충분한 흡착력을 제공할 수 있음을 확인했다.
*535N을 kg으로 환산하면 54.5kg, 445N을 kg으로 환산하면 45.4kg이다. 즉, 수직 방향으로 최대 54.5kg, 수평 방향으로는 최대 45.4kg 정도의 외력이 가해져도 (혹은 이에 해당하는 무게 추가 매달려도) 발바닥이 철판에서 떨어지지 않는다.
연구팀이 제작한 사족 보행 로봇은 초속 70센티미터(cm)의 속도로 직벽을 고속 등반하였고, 최대 초속 50센티미터(cm)의 속도로 천장에 거꾸로 매달려 보행할 수 있었다. 이는 보행형 등반 로봇으로는 세계 최고의 속도다. 또한, 연구팀은 페인트가 칠해지고, 먼지, 녹으로 더러워진 물탱크의 표면에서도 로봇이 최대 35센티미터(cm)의 속도로 올라갈 수 있음을 보여, 실제 환경에서의 로봇의 성능을 입증했다. 로봇은 빠른 속도를 보여줄 뿐 아니라, 바닥에서 벽으로, 벽에서 천장으로 전환이 가능하고, 벽에서 돌출돼 있는 5센티미터(cm) 높이의 장애물도 무난히 극복할 수 있음을 실험적으로 보였다.
연구팀이 개발한 새로운 등반 사족 보행 로봇은 배, 교량, 송전탑, 송유관, 대형 저장고, 건설 현장 등 철로 이루어진 대형 구조물의 점검, 수리, 보수에 폭넓게 활용될 수 있을 것으로 기대된다. 특히 이러한 곳에서의 작업은 추락, 질식 등의 심각한 위험성이 존재하고 있어, 자동화의 필요성이 시급한 곳이다.
공동 제1 저자인 기계공학과 엄용 박사과정은 "영전자석과 자기유변탄성체으로 구성된 발바닥과 등반에 적합한 비선형 모델 예측제어기를 이용해, 지면뿐만 아니라 벽과 천장을 포함한 다양한 환경에서도 보행 로봇이 민첩하게 움직일 수 있음을 보였고 이는 보행 로봇의 이동성과 작업 공간을 2D에서 3D로 확장하는 초석이 될 것이다ˮ라며 “이러한 로봇은 조선소와 같은 철제 구조물에서 위험하고 힘든 작업을 수행하는 데 활발히 사용될 수 있을 것이다ˮ라고 말했다.
한편 이번 연구는 한국연구재단 개인기초연구사업(중견)과 한국조선해양의 지원을 받아 수행됐다.
2022.12.26
조회수 9255