-
실시간 나노 측정이 가능한 3D 표면예측 기술 개발
우리 대학 기계공학과 이정철 교수 연구팀이 현미경 사진을 이용해 나노 스케일 3D 표면을 예측하는 딥러닝 기반 방법론을 제시했다고 17일 밝혔다.
물리적 접촉 기반으로 나노 스케일의 표면 형상을 3D 측정하는 원자현미경은 웨이퍼 소자 검사 등 반도체 산업에서 사용되고 있다. 하지만, 원자현미경은 물리적으로 표면을 스캔하기 때문에 측정 속도*가 느리고, 고온 극한 환경에서는 작동할 수 없다는 단점을 지닌다.
* 측정 속도를 높이기 위해 표면 스캔 방식의 효율을 개선해 20 FPS(초당 프레임 수) 수준의 비디오 프레임 원자현미경이 개발됐지만, 측정 가능한 표면의 면적이 100제곱마이크로미터(μm2) 수준으로 제한되며, 극한의 환경에서는 여전히 작동이 제한된다.
이에 연구팀은 비접촉 측정 방법인 광 현미경에서 딥러닝을 이용하여 원자현미경으로 얻어질 수 있는 나노 스케일 3D 표면을 예측했다. 비슷한 개념인 사진에서 깊이를 예측하는 기술은 자율주행을 위해 많이 연구되고 있는 분야다. 연구팀은 이러한 기술이 적용되는 스케일을 일상생활 범위에서 나노 스케일 범위로 옮겨 인공지능 모델을 훈련했다. 인공지능 모델로는 입력 데이터에서 대상의 특징을 추출하고, 추출된 특징에서 출력 데이터를 표현하는 인코더-디코더 구조*를 활용했다. 연구팀이 제안한 모델은 광 현미경 사진을 하나의 변수로 표현하고, 이후 이 변수에서 현미경 사진을 3D 표면으로 계산하여 나타내는데 성공했다.
*인코더-디코더 구조: 입력 데이터에서 인공 신경망 혹은 합성곱 층을 이용하여 데이터의 크기 및 차원을 추출하며 특징을 추출하고 (인코더), 추출된 특징에서 출력 데이터를 생성하는 (디코더) 구조. 활용 목적에 따라 추출된 특징 혹은 출력 데이터가 사용됨.
연구팀은 제안된 방법론을 반도체 산업의 센서, 태양 전지 및 나노 입자 제작에 응용되는 저메니움(게르마늄) 자가조립 구조*의 공정 중 분석 및 검사를 위해 적용했다. 광 현미경 사진을 이용해 15% 오차 수준 이내에서 1.72배까지 더 높은 해상도의 높이 맵을 예측하였는데, 이를 기반으로 각 응용에 필요한 형상의 자가조립 구조가 만들어지도록 실시간으로 공정 과정을 검사하였다. 또한, 같은 딥러닝 모델로 어닐링(가열) 중 동적으로 변하는 표면 형상을 시뮬레이션 하여 공정 과정을 분석 및 최적화하여 기존 공정으로는 불가능했던 공동의 형상을 만들어냈다.
* 저메니움 자가조립 구조란, 저메니움 웨이퍼에 마이크로 단위 수직 구멍을 식각 후 고온 어닐링(가열)을 하면 생기는 표면 아래의 공동을 뜻한다. 가열과정 중 구멍이 식각된 표면이 닫히고, 이후 표면과 표면 아래 공동의 형상이 함께 변하는데 공동의 형상에 따라 각기 다른 용도로 활용된다. 연구팀은 이렇게 동적으로 변하는 구조의 표면 높이 맵을 예측했다.
이번 연구에서 제안된 딥러닝 기반 방법론은 원자현미경으로는 제한돼있던 나노 스케일 표면 높이 맵 측정을 1 제곱밀리미터(mm2) 까지의 넓은 표면에 대해 기존 원자현미경 측정 속도 대비 10배에 해당하는 200 FPS까지 측정 가능하도록 속도를 높였으며, 광학을 이용한 비접촉 관측이기에 극한의 열 환경에서도 측정이 가능한 방법을 제시한 데에 의의가 있다. 이번 연구는 광학 현미경 해상도의 물리적 한계인 빛의 파장 이하의 작은 나노 스케일에서 동적인 현상을 현미경만으로 분석할 수 있게 해, 공정 중 혹은 이후 표면 분석이 필요한 재료, 물리, 화학 등에서의 나노 스케일 연구를 촉진할 것으로 기대된다.
또한 학계 뿐 아니라 산업계에서도 쓰일 것으로 기대된다. 향후 반도체 사업에는 웨이퍼의 표면 분석 속도와 정확도를 개선함으로서, 반도체 공정 시 생산 속도와 정밀한 측정으로 수율 개선에 기여할 수 있다.
연구를 주도한 이정철 교수는 "개발된 기술은 시간에 따라 변화하는 반도체 표면 및 내부 구조에 대해 불연속적인 저해상도 광학 현미경 사진 몇 장만 이용해서, 연속적인 고해상도 원자현미경 동영상을 생성해내는 최초의 연구로서, 극한 공정 중 실시간 나노 측정을 대체하는 효과를 가져와 반도체 및 첨단센서 산업 발전에 기여할 것ˮ이라고 말했다.
한편, 이번 연구는 국제 학술지 어드밴스드 인텔리전트 시스템(Advanced Intelligent Systems)에 지난 12월 20일 字에 온라인 게재됐으며, 23년 1사분기의 표지 논문(Inside back cover) 중 하나로 선정됐다. 이번 연구는 한국연구재단의 중견연구자지원사업과 기초연구실 지원사업의 지원을 받아 수행됐다.
2023.01.17
조회수 5474
-
약물 상호작용 예측하는 美 FDA 수식, 틀렸다
여러 약물을 동시에 복용하면, 약물간의 상호작용에 의해 약효가 달라질 수 있다. 우리 대학 수리과학과 김재경 교수 연구팀(기초과학연구원 수리 및 계산 과학 연구단 의생명 수학 그룹 CI)은 채정우‧김상겸 충남대약대 교수팀과 공동으로 미국 식품의약국(FDA)이 사용을 권장하는 약물 상호작용 예측 수식이 부정확했던 원인을 규명하고, 정확도를 2배 이상 높인 새로운 수식을 제시했다.
체내 흡수된 약물은 간을 비롯한 여러 장기의 효소에 의해 대사되어 체내에서 사라진다. 두 가지 이상의 약을 함께 복용할 경우, 하나의 약이 다른 약의 대사를 변화시켜 체외 배설을 촉진하거나 억제할 수 있다. 목표로 한 치료 효과를 내지 못하거나 부작용이 발생할 가능성이 있다. 이를 ‘약물 상호작용(DDI)’이라고 한다.
약물 상호작용에 따라 약물의 제거 속도를 정확하게 예측하는 것은 의약품 처방 및 신약 개발에 있어 매우 중요하다. 의료진은 약물을 복합처방할 때 의약품 사용설명서에 명시된 약물 상호작용 정보를 토대로 처방을 내린다. 신약 개발 과정에서도 약물 상호작용을 필수로 연구하여 표시하도록 되어 있다.
FDA는 약물 상호작용을 평가하고, 다약제 복용 과정의 부작용을 최소화하기 위한 가이던스(Guidance‧지침서)를 1997년 처음 발행했다(2020년 1월 개정). 신약 개발과정에서 신약 후보물질과 시판된 모든 약물의 상호작용을 모두 평가하는 것이 현실적으로 불가능하기 때문에 FDA는 가이던스에서 제시한 수식을 활용해 약물 상호작용을 간접적으로 평가하도록 권고하고 있다.
문제는 이 수식의 정확도가 떨어진다는 점이다. FDA가 제시하는 수식은 효소의 반응속도를 설명하는 ‘미카엘레스-멘텐 식’을 기반으로 한다. 이 수식은 약물 대사에 관여하는 체내 효소의 농도가 낮다는 것을 전재로 한다. 연구진은 실제 간에서 약물 대사에 관여하는 효소 농도는 예측에 사용돼온 값보다 1000배 이상 높은 것으로 확인함으로써 기존 FDA 수식이 부정확한 원인을 찾았다.
채정우 충남대약대 교수는 “연구자들은 과학적인 근거가 부족한 인위적인 수를 곱하는 식으로 FDA의 수식을 보정해서 사용해왔다”며 “과거의 과학자들이 당시의 정설이던 천동설을 기반으로 행성의 움직임을 설명하기 위해 복잡한 궤도를 도입했던 것과 유사한 상황”이라고 말했다.
연구진은 수학-약학 협력연구를 통해 약물 상호작용을 설명할 수 있는 새로운 수식을 개발했다. 의심 없이 사용돼 온 기존 식 대신 효소의 농도에 상관없이 정확하게 약물의 대사 속도를 예측할 수 있는 새로운 수식을 유도했다.
이후, 새로 쓰인 수식을 이용해 약물 상호작용을 예측하고, 실제 실험으로 측정된 값과 비교했다. 그 결과, 인위적인 보정 없이도 예측 정확도가 2배 이상 증가한 것으로 확인됐다. 기존 FDA 수식은 약물 상호작용을 2배의 오차범위 내에서 예측한 비율이 38%인데 반해, 수정된 식은 80%에 달했다.
생물학적 제제를 제외한 대부분의 의약품은 FDA 가이던스에 따라 약물의 상호작용을 평가한다. 이 결과는 약효와 부작용에 직결된다. 정확한 수식을 활용한 약물 상호작용 연구 및 약물 처방이 필요한 이유다.
김상겸 충남대약대 교수는 “약물 상호작용 예측 정확도의 개선은 신약개발의 성공률과 임상에서의 약물 효율을 높이는데 기여할 것”이라며 “임상약리학 분야 최고의 저널에 논문을 발표한 만큼, 이번 연구결과에 따라 FDA 가이던스가 수정될 것으로 기대한다”고 말했다.
김재경 교수는 “수학과 약학의 협력 연구 덕분에 당연히 정답이라고 생각했던 수식을 수정하고, 인류의 건강한 삶을 위한 단서를 찾을 수 있었다”며 “미국 FDA 가이던스에 ‘K-수식’이 들어가길 꿈꿔본다”고 말했다.
이번 연구결과는 2022년 12월 15일(한국시간) 임상약리학 분야 권위지인 ‘임상약리학 및 약물치료학(Clinical Pharmacology and Therapeutics, IF 7.051)’ 온라인 판에 실렸다.
※ 논문명: Beyond the Michaelis-Menten: Accurate Prediction of Drug Interactions through Cytochrome P450 3A4 Induction
2023.01.09
조회수 5825
-
반도체 웨이퍼 절단 없는 두께 분석장비 개발
우리 대학 기계공학과 이정철 교수 연구팀이 근적외선의 간섭 효과를 이용해 실리콘 박막-공동 구조를 검사할 수 있는 웨이퍼 비파괴 분석 장비를 개발했다고 19일 밝혔다.
1 마이크로미터(이하 μm) 급의 두께를 갖는 박막-공동 구조는 압력센서, 마이크로미러, 송수신기 등의 다양한 미세전자기계시스템(MEMS) 소자로 사용된다. 이러한 MEMS 소자에서 박막의 두께와 공동의 높이는 소자 성능의 주요 설계 인자이기 때문에 소자의 거동 분석을 위해서는 제작된 구조의 두께 측정이 필수적이다. 하지만 최근까지 후속 공정에 사용할 수 없는 단점에도 불구하고 웨이퍼를 절단해 주사 전자 현미경과 같은 고해상도 현미경으로 두께를 측정하는 단면 촬영 기법이 사용됐다.
연구팀은 1μm 급의 두께를 갖는 실리콘 박막-공동 구조의 두께를 비파괴적으로 측정하기 위해 근적외선 간섭 현미경을 개발했다. 연구팀은 실리콘의 광특성과 빛의 간섭 길이를 고려해 근적외선 계측 장비를 설계 및 구축했으며 개발한 근적외선 간섭 현미경은 1μm 급과 서브 1μm 급의 단층 박막-공동 구조를 100 나노미터(nm) 미만의 편차로 측정했다. 이에 더불어 다중 반사로 인한 가상의 경계면을 특정하는 방법을 제안해 복층의 실리콘 박막-공동 구조에서 숨겨진 실리콘 박막의 두께 측정을 성공적으로 시연했다.
이번 연구는 국제학술지 `어드밴스드 엔지니어링 머터리얼즈(Advanced Engineering Materials)'에 지난 7월 14일 字에 온라인 게재됐으며 지난 10월 호의 후면 표지 논문(back cover)으로 선정됐다.
이번 연구는 실리콘 박막-공동 구조뿐만 아니라 기능성 웨이퍼인 실리콘 온 인슐레이터(Silicon-on-Insulator, SOI) 웨이퍼에서도 실리콘과 내부에 숨겨진 산화막의 두께를 성공적으로 측정함으로써 다양한 구조의 반도체 소자 비파괴 검사에 적용 가능함을 연구팀은 확인했다. 또한 연구팀은 적합한 파장 선택을 통해 실리콘뿐만 아니라 게르마늄 등 다른 반도체 물질의 비파괴 검사에도 적용할 수 있음을 밝혔다. 반도체 기판의 비파괴 검사 방법을 제안하는 이번 연구는 반도체 공정 중 소자 결함을 판별하기 위한 실시간 비파괴 검사에 적용될 수 있을 것으로 기대된다.
연구를 주도한 이정철 교수는 "개발된 기술은 널리 사용되는 적외선 광원을 사용해 비파괴 방식으로 반도체 물질 내부 구조를 측정한 점에서 기존 방법과 다르고, 안전하고 정밀한 장점 때문에 반도체 소재 및 소자 검사 속도를 향상하는 효과를 가져와 반도체 관련 산업과 우리 삶의 발전에 기여할 것이다ˮ라고 말했다.
한편 이번 연구는 한국연구재단의 중견연구자 지원사업과 기초연구실 지원사업의 지원을 받아 수행됐다.
2022.12.20
조회수 6232
-
리튬이차전지 실리콘 기반 음극의 수명과 관련된 전자전도도 퇴화를 나노스케일에서 영상화 성공
고에너지 밀도를 갖는 리튬이차전지 개발에 대한 수요가 폭발적으로 증가하면서, 실리콘 기반 음극 개발에 관한 연구가 활발히 이뤄지고 있다. 실리콘 활물질은 기존 음극 활물질인 흑연 대비 높은 용량 값(4200 mAh/g)을 가지고 있어, 고에너지 밀도를 가지는 리튬이차전지용 음극의 유력한 후보로 자리 잡고 있다.
하지만 충전 및 방전 간 400%에 달하는 높은 부피 팽창/수축률이 실리콘 활물질의 상업화를 방해하고 있다. 실리콘 기반 음극의 급격한 부피 변화는 특히 전극 내 전자 전달 시스템에 큰 악영향을 미치고 있으며, 이를 보완하기 위해 다양한 도전재 시스템을 적용하는 연구가 활발히 진행 중이다. 전극 내 전자 전도 채널의 확보는, 활물질 내 균등한 전기화학 반응을 유발하기 위해 필수적이지만, 이를 나노스케일 공간 분해능을 갖고 영상화하는 방법론에 관해서는 많은 연구가 진행되지 않은 실정이다.
우리 대학 신소재공학과 홍승범 교수 연구팀이 LG에너지솔루션과 협업해, 나노스케일 분해능으로 전극 내 전자 전도 채널을 왜곡 신호 없이 정량적으로 추출하는 방법론을 개발하는 데 성공했다고 8일 밝혔다. 연구팀은 전극 소재와 같이 표면 거칠기가 큰 시료에서 전도성 원자간력현미경(Conductive Atomic Force Microscopy, C-AFM) 운용 시 발생하는 왜곡 정보인 용량성 전류(capacitive current)의 원인을 규명하고, 피어슨 상관 분석 방법을 기반으로 해당 왜곡 정보를 제거했다. 이 방법론을 실리콘/흑연 기반 복합 음극에 적용해 도전재 성분에 따른 전자 전도 채널 영상화를 실시했으며, 이를 통해 단일벽 탄소나노튜브(Signle-Walled Carbon Nano Tube, 이하 SWNCT)가 적용된 전극의 전기적, 전기화학적 우수성을 입증하는 데 성공했다.
연구팀은 이번 연구를 통해 실리콘 기반 전극과 같이 활물질의 부피 변화가 큰 시스템에서는 기존의 점형 도전재 대비 선형의 구조적 장점을 갖고 있는 SWCNT가 안정적인 전자 전도 채널을 확보하는 데 유리함을 보였다. 또한 SWCNT가 포함된 복합 전극의 경우, 130 사이클 이후에도 활물질의 분쇄가 보다 억제됐음을 보여주며, 전자 전도 채널의 불균일성이 활물질의 구조적 안정성에도 영향을 미칠 수 있음을 가설을 들어 설명했다.
제1 저자인 신소재공학과 박건 박사과정은 "전자 전도 채널 불균일이 유발한 전극의 전기화학 특성 퇴화라는 주제로 후속 연구를 진행 중이다ˮ라며 "나노스케일 영상화를 기반으로 지금껏 관찰하지 못했던 현상을 탐구할 수 있어 즐겁다ˮ라고 말했다. 교신 저자인 홍승범 교수는 "왜곡 신호의 원인을 규명하고, 이를 정량적으로 제거하는 연구는 영상화 분야에서 매우 중요하다ˮ라며 "이번에 개발한 방법론이 전극 내 전자 전도 채널을 강화하는데 적용돼, 실리콘 기반 복합 음극의 고도화를 앞당기는 데 도움이 되면 좋겠다ˮ라고 말했다.
이번 연구는 국제 학술지 `에이씨에스 어플라이드 머티리얼즈 앤드 인터페이시스(ACS Applied Materials & Interfaces)'에 게재됐다. (논문명: Nanoscale Visualization of the Electron Conduction Channel in the SiO/Graphite Composite Anode)
한편 이번 연구는 LG에너지솔루션-KAIST 프론티어 리서치 랩(Frontier Research Lab)과 KAIST 글로벌 특이점 사업의 지원을 받아 수행됐다.
2022.11.08
조회수 7577
-
상상만으로 원하는 방향으로 사용가능한 로봇 팔 뇌-기계 인터페이스 개발
우리 대학 뇌인지과학과 정재승 교수 연구팀이 인간의 뇌 신호를 해독해 장기간의 훈련 없이 생각만으로 로봇 팔을 원하는 방향으로 제어하는 뇌-기계 인터페이스 시스템을 개발했다고 24일 밝혔다.
서울의대 신경외과 정천기 교수 연구팀과 공동연구로 진행된 이번 연구에서 정 교수 연구팀은 뇌전증 환자를 대상으로 팔을 뻗는 동작을 상상할 때 관측되는 대뇌 피질 신호를 분석해 환자가 의도한 팔 움직임을 예측하는 팔 동작 방향 상상 뇌 신호 디코딩 기술을 개발했다. 이러한 디코딩 기술은 실제 움직임이나 복잡한 운동 상상이 필요하지 않기 때문에 운동장애를 겪는 환자가 장기간 훈련 없이도 자연스럽고 쉽게 로봇 팔을 제어할 수 있어 앞으로 다양한 의료기기에 폭넓게 적용되리라 기대된다.
바이오및뇌공학과 장상진 박사과정이 제1 저자로 참여한 이번 연구는 뇌공학 분야의 세계적인 국제 학술지 `저널 오브 뉴럴 엔지니어링 (Journal of Neural Engineering)' 9월 19권 5호에 출판됐다. (논문명 : Decoding trajectories of imagined hand movement using electrocorticograms for brain-machine interface).
뇌-기계 인터페이스는 인간이 생각만으로 기계를 제어할 수 있는 기술로, 팔을 움직이는 데 장애가 있거나 절단된 환자가 로봇 팔을 제어해 일상에 필요한 팔 동작을 회복할 수 있는 보조기술로 크게 주목받고 있다.
로봇 팔 제어를 위한 뇌-기계 인터페이스를 구현하기 위해서는 인간이 팔을 움직일 때 뇌에서 발생하는 전기신호를 측정하고 기계학습 등 다양한 인공지능 분석기법으로 뇌 신호를 해독해 의도한 움직임을 뇌 신호로부터 예측할 수 있는 디코딩 기술이 필요하다.
그러나 상지 절단 등으로 운동장애를 겪는 환자는 팔을 실제로 움직이기 어려우므로, 상상만으로 로봇 팔의 방향을 지시할 수 있는 인터페이스가 절실히 요구된다. 뇌 신호 디코딩 기술은 팔의 실제 움직임이 아닌 상상 뇌 신호에서 어느 방향으로 사용자가 상상했는지 예측할 수 있어야 하는데, 상상 뇌 신호는 실제 움직임 뇌 신호보다 신호대잡음비(signal to noise ratio)가 현저히 낮아 팔의 정확한 방향을 예측하기 어려운 문제점이 오랫동안 난제였다. 이러한 문제점을 극복하고자 기존 연구들에서는 팔을 움직이기 위해 신호대잡음비가 더 높은 다른 신체 동작을 상상하는 방법을 시도했으나, 의도하고자 하는 팔 뻗기와 인지적 동작 간의 부자연스러운 괴리로 인해 사용자가 장기간 훈련해야 하는 불편함을 초래했다.
따라서 팔을 뻗는 상상을 할 때 어느 방향으로 뻗었는지 예측하는 디코딩 기술은 정확도가 떨어지고 환자가 사용법을 습득하기 어려운 문제점이 있다. 이 문제가 오랫동안 뇌-기계 인터페이스 분야에서 해결해야 할 난제였다.
연구팀은 문제 해결을 위해 사용자의 자연스러운 팔 동작 상상을 공간해상도가 우수한 대뇌 피질 신호(electrocorticogram)로 측정하고, 변분 베이지안 최소제곱(variational Bayesian least square) 기계학습 기법을 활용해 직접 측정이 어려운 팔 동작의 방향 정보를 계산할 수 있는 디코딩 기술을 처음으로 개발했다.
연구팀의 팔 동작 상상 신호 분석기술은 운동피질을 비롯한 특정 대뇌 영역에 국한되지 않아, 사용자마다 상이할 수 있는 상상 신호와 대뇌 영역 특성을 맞춤형으로 학습해 최적의 계산모델 파라미터 결괏값을 출력할 수 있다.
연구팀은 대뇌 피질 신호 디코딩을 통해 환자가 상상한 팔 뻗기 방향을 최대 80% 이상의 정확도로 예측할 수 있음을 확인했다.
나아가 계산모델을 분석함으로써 방향 상상에 중요한 대뇌의 시공간적 특성을 밝혔고, 상상하는 인지적 과정이 팔을 실제로 뻗는 과정에 근접할수록 방향 예측정확도가 상당히 더 높아질 수 있음을 연구팀은 확인했다.
연구팀은 지난 2월 인공지능과 유전자 알고리즘 기반 고 정확도 로봇 팔 제어 뇌-기계 인터페이스 선행 연구 결과를 세계적인 학술지 `어플라이드 소프트 컴퓨팅(Applied soft computing)'에 발표한 바 있다. 이번 후속 연구는 그에 기반해 계산 알고리즘 간소화, 로봇 팔 구동 테스트, 환자의 상상 전략 개선 등 실전에 근접한 사용환경을 조성해 실제로 로봇 팔을 구동하고 의도한 방향으로 로봇 팔이 이동하는지 테스트를 진행했고, 네 가지 방향에 대한 의도를 읽어 정확하게 목표물에 도달하는 시연에 성공했다.
연구팀이 개발한 팔 동작 방향 상상 뇌 신호 분석기술은 향후 사지마비 환자를 비롯한 운동장애를 겪는 환자를 대상으로 로봇 팔을 제어할 수 있는 뇌-기계 인터페이스 정확도 향상, 효율성 개선 등에 이바지할 수 있을 것으로 기대된다.
연구책임자 정재승 교수는 "장애인마다 상이한 뇌 신호를 맞춤형으로 분석해 장기간 훈련을 받지 않더라도 로봇 팔을 제어할 수 있는 기술은 혁신적인 결과이며, 이번 기술은 향후 의수를 대신할 로봇팔을 상용화하는 데에도 크게 기여할 것으로 기대된다ˮ고 말했다.
2022.10.24
조회수 7043
-
카이캐치(KaiCatch), 악성 동영상 위변조 탐지 기술 개발
우리 대학 전산학부 이흥규 명예교수 연구팀이 KAIST 창업기업인 ㈜디지탈이노텍의 후원으로 악성 위변조에 활용되는 프레임 업 변환, 보간법에 의해 생성된 프레임, 영상내 위변조 영역 등을 탐지하는 동영상 위변조 탐지 기술을 개발했다.
위변조 분야 최상위 저명 논문지인 Forensic Science International 11월호에 논문으로도 발표했다.
CCTV의 대량 보급과 함께 동영상은 수많은 분쟁시 주요 증거물로 사용되고 있다. 그러나 동영상에 대한 편집 도구 기술과 인공지능 기술 발전과 함께 동영상의 편집, 프레임 삭제 및 추가 등의 위변조를 포함하여 프레임 업 변환 이라는 기술을 사용하여 위변조 동영상을 고품질 영상으로 변환함으로써 위변조 동영상을 원본과 유사하게 변환함으로써 위변조 탐지를 더욱 어렵게 하는 악성 변조 기술 등도 등장하고 있다.
이번 연구에서는 동영상내 특정 영역들의 편집 변조를 포함하여 프레임 추가, 삭제, 프레임률 변환 탐지를 포함하여 공간정보와 시간정보를 연속적으로 활용하는 프레임-업 변환을 탐지하기 위해 프레임-업 특징들을 추출하는 4개 유형의 네트워크블럭들과 보팅(voting) 기능을 채택한 프레임-업 탐지 뉴럴 네트워크를 제시하였다.
개발된 기술은 특히 동영상의 극히 작은 영역들의 정보를 사용하여 무결성 여부를 판독하기 때문에 동영상 위변조 탐지를 고속으로 수행할 수 있어 기존 기술들과 비교하여 기술의 유용성과 실용성이 매우 뛰어나다.
이번 연구는 KAIST 윤민석 박사, ㈜네이버웹튠AI의 남승훈 박사 등이 참여하였으며 KAIST에서 위변조를 잡아낸다는 의미인 카이캐치(KaiCatch) 위변조 탐지 소프트웨어 기능을 동영상으로도 크게 확장 했다는 점에서 그 의미가 있다.
개발된 기술은 영상 위변조 분야 최상위 저명 논문지인 Forensic Science International 2022년 11월호(Vol 340)에 ‘Frame-rate Up-conversion Detection based on Convolutional Neural Network for Learning Spatiotemporal Features’ 논문으로 발표 되었다. 본 연구는 한국연구재단 창의도전연구기반지원사업과 KAIST 창업기업인 ㈜디지탈이노텍의 후원으로 수행하였다.
2022.10.20
조회수 7250
-
전기차 노면 소음과 모터 소음을 동시에 차단하는 초경량 차음 메타패널 개발
우리 대학 기계공학과 전원주 교수 연구팀이 전기차의 저주파 대역 노면 소음과 고주파 대역 모터 소음을 동시에 차단할 수 있는 신개념 음향 메타물질 기반 초경량 차음 메타패널을 개발했다고 18일 밝혔다.
음향 메타물질은 자연계에 존재하지 않는 음향학적 유효 물성(음의 질량, 음의 강성 등)을 갖도록 인공적으로 설계된 구조물로, 음향 은폐, 고투과-고집속, 완벽 차음/흡음 등 기존 재료로는 구현이 어려운 성능을 달성할 수 있는 특징이 있다.
내연기관을 대신해 전기모터를 동력원으로 사용하는 전기차는 기존의 내연기관 자동차에서 시끄럽다고 느끼던 엔진 소음이 더는 발생하지 않는다. 하지만, 엔진 소음에 의한 마스킹 효과가 사라지면서 오히려 저주파 대역의 노면 소음이 상대적으로 더 크게 들리거나 엔진을 대신하는 전기모터의 고주파 소음이 또렷하고 거슬리게 들리기도 한다.
미래 모빌리티의 한 축을 담당하고 있는 전기차가 단순히 하나의 운송 수단을 넘어 이동 중 휴식이나 레저 및 업무 활동 등 탑승자에게 필요한 맞춤형 서비스를 제공하는 개념으로 나아가고 있다는 점에서 전기차의 실내 정숙성을 확보하는 것이 매우 중요하다. 특히, 전기차 노면 소음과 모터 소음은 각각 저주파와 고주파로 나뉜 서로 다른 주파수 대역에서 나타날 뿐만 아니라 각각의 대역도 광대역이기 때문에, 이와 같은 소음을 동시에 효과적으로 차단할 수 있는 기술의 개발과 적용이 필요한 시점이다.
현재 상용화된 전기차에서는 소음 차단을 위해 폴리에스터, 열가소성 고무, EVA(에틸렌초산비닐 공중합체) 시트, 금속판 등의 전통적인 흡·차음재가 사용되고 있다. 하지만, 전통적인 흡·차음재의 성능은 재료 자체의 열/점성 소산 특성이나 질량 법칙(투과 손실 6dB(데시벨) 증가를 위해 질량 밀도가 2배 높아져야 함)에 의존하기 때문에 높은 차음 성능을 위해서는 재료의 무게 증가가 불가피하며, 이는 곧 전기차 배터리의 에너지 효율을 감소시키는 원인이 되고 있다.
따라서, 우수한 차음 성능을 발휘하면서도 경량화를 동시에 달성하는 것이 전기차 적용 측면에서 매우 중요한데, 기존의 음향학적 재료나 법칙의 한계를 넘어서야 한다는 점에서 학문적으로도 도전적인 문제였다.
전원주 교수 연구팀은 기존 기술의 한계를 극복함으로써 높은 차음 성능으로 전기차 노면 소음과 모터 소음을 동시에 차단할 수 있는 초경량 차음 메타패널을 개발했다.
연구팀이 개발한 메타패널은 저주파 대역(노면 소음)에서는 음의 유효 질량을 가지면서 고주파 대역(모터 소음)에서는 음의 유효 강성을 갖도록 설계됐으며, 면적밀도 1.51kg/m2의 매우 가벼운 무게로 100~1,750Hz의 넓은 주파수 대역에서 투과 손실 16.7dB(에너지 기준 98%) 이상 차단할 수 있음을 이론적으로 예측했고 제작과 실험을 통해 그 성능을 검증하는 데 성공했다. 이는 동일 차음 성능을 갖는 기존 기술과 비교해 20배 이상 가벼운 무게의 초경량화를 달성했다고 볼 수 있다. (그림 1 참고)
다중 스케일 격자 구조와 멤브레인(얇은 막)으로 구성된 차음 메타패널은 분리된 두 광대역에서 높은 투과 손실을 동시에 구현할 수 있다는 음향학적 특징이 있어, 전기차에 적용될 때 저주파 노면 소음과 고주파 모터 소음을 효과적으로 차단해낼 수 있을 것으로 기대된다. 특히, 메타패널의 기하학적 인자를 쉽게 조절함으로써 원하는 주파수 대역에서 높은 차음 성능을 달성할 수 있으므로, 전기차뿐 아니라 도심 항공 모빌리티(Urban Aerial Mobility, UAM) 등 다양한 미래 모빌리티에 적합하게 주파수 선택적 설계가 가능하다는 장점과 더불어 제작이 쉽다는 응용 측면의 장점도 갖고 있다.
우리 대학 기계공학과 김지완 박사과정(제1 저자), 최은지 박사과정(제2 저자)이 참여한 이번 연구 결과는 기계공학 분야 최상위권 국제 학술지인 `메카니컬 시스템 앤 시그널 프로세싱(Mechanical Systems and Signal Processing) (IF: 8.934, JCR 상위 4/137(2.55%)'에 지난 8월 30일 字 온라인 게재됐다. (논문명: Lightweight soundproofing meta-panel for separate wide frequency bands)
한편 이번 연구는 한국연구재단의 중견연구자지원사업과 글로벌프론티어사업-파동에너지극한제어연구단의 지원을 받아 수행됐다.
2022.10.18
조회수 7710
-
인공지능으로 화학반응을 예측하다
우리 대학 생명화학공학과 정유성 교수 연구팀이 화학자처럼 생각하는 인공지능을 개발했다고 4일 밝혔다. 연구팀이 개발한 인공지능은 유기 반응의 결과를 정확하게 예측한다.
유기 화학자는 반응물을 보고 유기 화학반응의 결과를 예상해 약물이나 유기발광다이오드(OLED)와 같이 원하는 물성을 갖는 분자를 합성한다. 하지만 실험을 통해 화학반응의 생성물을 직접 확인하는 작업은 일반적으로 시간과 비용이 많이 소모된다. 게다가 유기 화학 반응은 같은 반응물에서 다양한 생성물이 생길 수 있어 숙련된 유기 화학자라도 모든 화학반응을 정확하게 예측하지 못한다.
이런 한계를 극복하고자 인공지능을 이용해 유기 반응을 예측하는 연구가 활발하게 일어나고 있다. 대부분의 연구는 반응물과 생성물을 서로 다른 두 개의 언어로 생각하고 한 언어에서 다른 언어로 번역하는 언어 번역 모델을 사용하는 방법에 집중하고 있다. 이 방법은 예측 정확도는 높지만, 인공지능이 화학을 이해하고 생성물을 예측했다고 해석하기 어려워 모델이 예측한 결과를 신뢰하기 어렵다.
정 교수팀은 화학적 직관을 바탕으로 모델을 설계해서 모델이 예측한 결과를 화학적으로 설명을 할 수 있을 뿐 아니라, 공개 데이터베이스에서 매우 우수한 예측 정확도를 달성했다.
정 교수팀은 화학자가 반응 결과를 예측하는 방법에서 아이디어를 얻었다. 화학자는 반응 중심을 파악하고 화학반응 규칙을 적용해 가능한 생성물을 예측한다. 이 과정을 본떠서 공개 화학반응 데이터베이스로부터 화학반응 규칙을 도출했다. 화학반응 규칙을 바탕으로 분자의 화학 반응성을 예측하기 위해서, 분자를 그래프로 취급하는 그래프 신경망(Graph Neural Network, GNN) 모델을 개발했다. 이 모델에 반응물들을 넣으면 화학반응 규칙과 반응 중심을 식별해 생성물을 성공적으로 예측한다.
정 교수팀은 화학반응에서 널리 사용되는 미국 특허무역청(USPTO) 데이터를 이용해 유기 반응을 90% 이상의 정확도로 예측하는 데 성공했다. 개발된 모델은 실제 사용 시 모델에 높은 신뢰성을 제공하는 `예측의 불확실성'을 말할 수 있다. 예를 들어, 불확실성이 낮다고 간주되는 모델의 정확도는 98.6%로 증가한다. 모델은 무작위로 샘플링된 일련의 유기 반응을 예측하는 데 있어 소규모의 합성 전문가보다 더 정확한 것으로 나타났다.
이번 연구의 성공으로 연구팀은 다른 분야에서 좋은 성능을 보인 모델을 그대로 사용하던 기존 방법보다, 화학자가 생각하는 방법과 동일하게 신경망을 설계하는 전략이 더 합리적이고 우수한 성능을 보인다는 것을 입증했다. 연구팀은 이 연구를 활용하면 분자 설계 과정이 비약적으로 빨라질 것으로 기대하며, 새로운 화합물 개발에 실용적인 응용을 기대하고 있다. 정유성 교수팀은 현재 연구 성과의 특허 출원을 준비하고 있다.
우리 대학 생명화학공학과 첸수안(Shuan Chen) 박사과정이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 '네이처 머신 인텔리전스(Nature Machine Intelligence)'에 9월호 표지논문으로 선정돼 출판됐다.
한편 이번 연구는 산업통상자원부와 한국연구재단의 지원을 받아 수행됐다.
2022.10.04
조회수 13967
-
기저 질환이 없는 코로나19 환자의 중증 신규 유전적 위험 인자 규명
우리 대학 생명과학과 정인경 교수 연구팀이 서울대병원 강창경, 고영일, 분당서울대병원 송경호 교수, 경북대병원 문준호 교수, 국립중앙의료원 이지연 교수, 지놈오피니언 社로 이루어진 산·학·병 공동연구를 통해 기저 질환이 없는 저위험군의 신규 코로나19 중증 위험 인자를 발굴하고, 발굴된 인자의 과잉 염증반응에 대한 분자 메커니즘을 제시했다고 29일 밝혔다.
코로나19 바이러스(SARS-CoV2)는 지난 2년이 넘도록 확산하면서 전 세계적으로 6억 명 이상이 감염됐고, 이 중 6백만 명 이상이 사망했다. 이러한 심각성으로 인해 코로나19 바이러스의 병리에 관한 연구가 활발히 진행됐고, 단핵구(큰 크기의 백혈구, Monocyte)의 과잉 염증반응으로 인한 중증 진행 메커니즘 등이 밝혀졌다.
하지만 개별 코로나19 환자마다 면역 반응의 편차가 크게 나타나는 현상에 대해서는 앞서 찾은 연구 결과만으로는 전부 설명할 수 없다. 예를 들어 중증 코로나19 환자 중에서 당뇨병이나 고혈압 등의 기저 질환이 없는 경우도 빈번하기에 이들이 코로나19 감염 시 중증으로 진행될 수 있는 신규 위험 인자를 발굴하는 것은 환자 맞춤형 치료에 있어 매우 중요하다.
우리 대학 생명과학과 최백규, 박성완 석박사통합과정과 서울대병원 강창경 교수가 주도한 이번 연구에서는 기존의 기저 질환이 없는 중증 코로나19 환자의 중증 요인을 알아내기 위해, 국내 4개의 병원이 합동해 총 243명의 코로나19 환자의 임상 정보를 수집 및 분석했다. 연구팀은 그 집단의 임상적 특징을 밝히고, 단일세포 유전자 발현 분석과 후성유전학적 분석을 도입해 관찰된 임상적 특징과 중증 코로나19 내 과잉 염증반응 간의 유전자 발현 조절 메커니즘을 분석했다.
그 결과, 기저 질환이 없는 집단 내 중증 환자는 `클론성조혈증'이라는 특징을 가지고 있는 것을 관찰하였다. 이는 혈액 및 면역 세포를 형성하는 골수 줄기세포 중 후천적 유전자 변이가 있는 집단을 의미한다. 또한 단일세포 유전자 발현 분석을 통해 클론성조혈증을 가진 중증 환자의 경우 단핵구에서 특이적인 과잉 염증반응이 관찰되는 것을 확인했고, 클론성조혈증으로 인해 변화한 후성유전학적 특징이 단핵구 특이적인 과잉 염증반응을 일으키는 유전자 발현을 유도하는 것을 연구팀은 확인했다.
해외 연구단에서도 유사하게 클론성조혈증과 코로나19 간의 관련성에 주목한 연구들이 있었으나 코로나19와의 관련성을 명확히 밝히지 못했고, 과잉 염증반응으로 이어지는 분자 모델 역시 제시하지 못했다. 이에 반해 공동 연구팀은 생물정보학 기반 계층화된 환자 분류법과 환자 유래 다양한 면역 세포를 단 하나의 세포 수준에서 유전자 발현 패턴 및 조절 기전을 해석할 수 있는 단일세포 오믹스 생물학 기법을 적용해 클론성조혈증이 코로나19의 신규 중증 인자임을 명확하게 제시했다. 해당 연구 결과는 앞으로 기저질환이 없는 저위험군 환자라도 클론성조혈증을 갖는 경우 코로나19 감염 시 보다 체계적인 치료 및 관리가 필요함을 의미한다.
이번 연구 결과는 두 개의 국제 학술지, `헤마톨로지카(haematologica, IF=11.04)'에 9월 15일 字 (논문명: Clinical impact of clonal hematopoiesis on severe COVID-19 patients without canonical risk factors) 온라인 게재가 되었으며. ‘실험 및 분자 의학(Experimental & Molecular Medicine, IF=11.590)'에 지난 8월 1일 字 (논문명: Single-cell transcriptome analyses reveal distinct gene expression signatures of severe COVID-19 in the presence of clonal hematopoiesis) 게재 승인됐다.
이번 연구는 장기화된 코로나19 팬데믹 상황 속에서 연구계·의료계·산업계로 이루어진 연구팀 서로 간의 긴밀한 협력을 통해 코로나19 환자의 신규 중증 인자를 밝히고, 그에 대한 분자적 기전을 제시해 환자별 맞춤 치료전략을 제시한 연구로 중개 연구(translational research)의 좋은 예시로 평가받는다.
이번 연구를 수행한 우리 대학 최백규 석박사통합과정은 "최신의 분자실험 기법인 단일세포 오믹스 실험과 생물정보학 분석 기술의 융합이 신규 코로나19 중증 환자의 아형과 관련 유전자 조절 기전을 규명 가능케 하였다ˮ며, "다른 질환에도 바이오 데이터 기반 융합 연구 기법을 적용할 것이다ˮ고 말했다.
분당서울대병원 송경호 교수는 "이번 연구는 임상 현장에서 코로나 환자별 맞춤 치료 전략을 정립하는 데 있어서 중요한 정보를 제공한 연구ˮ라며 "앞으로도 중증 코로나19 환자의 생존율을 높이기 위해 임상 정보를 바탕으로 한 맞춤 치료전략 연구를 이어나가겠다ˮ라고 밝혔다.
지놈오피니언 대표를 겸임하고 있는 서울대병원 고영일 교수는 "회사에서 개발한 클론성조혈증 탐지 및 분석 기술이 코로나19 팬데믹 해결에 도움이 되어 보람차다ˮ면서 "앞으로도 새로운 바이오마커를 발굴 및 분석하는 기술을 개발해 인류의 건강한 삶에 지속적으로 기여하고 싶다ˮ고 말했다.
한편 이번 연구는 서경배과학재단과 과학기술정보통신부의 지원을 받아 수행됐다.
2022.09.29
조회수 7683
-
헌팅턴병 발병원인 제거를 위한 치료제 개발 방법 제시
우리 대학 생명과학과 송지준 교수 연구팀이 헌팅턴병(Huntington's disease)을 치료할 수 있는 새로운 개념의 방법을 제시했다고 2일 밝혔다.
헌팅턴병은 희귀 유전성 질환으로 근육 간 조정 능력 상실과 인지능력 저하, 정신적인 문제가 동반되는 신경계 퇴행성 질환이다. 이는 유전되는 퇴행성 뇌 질환이며 헌팅턴 단백질에 글루타민 아미노산이 여러 개가 연속적으로 확장되는 돌연변이로 인해 발병된다.
헌팅턴병은 약 1~3만 명 중 1명의 발병률을 가지고, 10여 년의 퇴행과정을 거쳐 죽음에 이르게 하는 병이다. 아미노산이 3,000개 이상 연결돼 만들어지는 거대 단백질인 헌팅틴(Huntingtin) 단백질은 질병을 일으키기는 하지만, 생체기능에 필수적인 단백질이고, 병을 일으키는 형태의 단백질만을 치료 표적으로 골라내는 것이 매우 중요하다.
송 교수 연구팀은 네델란드 프로큐알 테라퓨틱스(ProQR Therapeutics NV), 프랑스 그레노블 대학, 스웨덴 왕립 공대의 연구그룹이 참여한 국제 공동연구를 통해, 헌팅턴병을 유발하는 돌연변이 헌팅틴 단백질을 고유의 기능을 유지하면서 질병을 일으키지 않는 형태로 전환해 헌팅턴병을 치료하는 새로운 방법론을 제시했다. 이 결과는 헌팅턴병 치료제를 개발하는데 적용될 수 있을 것으로 기대된다.
우리 대학 생명과학과 김형주 연구원이 공동 제1 저자로 참여한 이번 연구는 국제 저명 학술지 `임상연구저널(Journal of Clinical Investigation Insights)' 온라인판에 출판됐다.
(논문명 : A pathogenic proteolysis-resistant huntingtin isoform induced by an antisense oligonucleotide maintains huntingtin function) https://elifesciences.org/articles/76823
연구팀은 알엔에이(RNA)의 일종인 안티센스올리고뉴클레오타이드(antisense oligonucleotide)를 이용해 생성이 유도된 헌팅틴 델타 12의 형태가, 헌팅턴병을 유발하는 주요 원인인 단백질 아미노산 말단부위로 인해 절단되지 않으면서도 헌팅틴 단백질 고유의 기능을 유지한다는 사실 밝혔다. 연구팀이 결과는 헌팅턴병 치료제 개발의 새로운 개념으로 이용될 수 있을 것으로 기대된다.
이번 연구를 주도한 생명과학과 송지준 교수는 "이번 연구는 한국을 포함한 4개국의 공동연구를 통해 이뤄진 것으로, 질병을 유발하는 헌팅틴 단백질을 정상상태로 유도하는 방법이 헌팅턴병 치료제 개발에 새로운 길을 열어줄 것으로 기대한다ˮ이라고 설명했다.
한편 이번 연구는 한국연구재단 글로벌연구실(Global Research Laboratory) 사업의 지원을 받아 수행됐다.
2022.09.02
조회수 5807
-
상호작용 가능한 바이오 기반 친환경 화학물질 합성지도 완성
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 미생물에서 화학물질을 생산하기 위한 바이오 화학반응을 총망라한 웹 기반의 합성 지도를 완성했다고 29일 밝혔다. 이번 연구는 국제학술지인 `생명공학 동향(Trends in Biotechnology)'에 8월 10일 字 게재됐다.
※ 논문명 : An interactive metabolic map of bio-based chemicals
※ 저자 정보 : 장우대(한국과학기술원, 공동 제1 저자), 김기배(한국과학기술원, 공동 제1 저자), 이상엽(한국과학기술원, 교신저자) 포함 총 3명
급격한 기후 변화와 환경오염에 대응하기 위해 석유화학 제품을 미생물을 활용해 생산하는 연구가 주목받고 있다. 미생물을 이용해 다양한 화학 물질, 재료, 연료 등을 합성하기 위해선 목표 물질의 생합성 경로를 탐색 및 발굴해 미생물 내에 도입하는 것이 우선돼야 한다. 또한, 다양한 화학물질을 효율적으로 합성하기 위해선 미생물을 이용한 생물공학적 방법뿐만 아닌 화학적 방법 또한 통합해 활용할 필요가 있다.
지난 2019년, 이상엽 특훈교수팀은 미생물을 이용해 화학물질을 합성할 수 있는 경로를 기존 화학반응 공정과 함께 정리한 지도를 국제학술지 ‘네이처 카탈리시스(Nature Catalysis)’에 발표한 바 있다. 당시 편찬한 지도는 네이처 측에서 포스터 형식으로 전 세계의 산업계 및 학계에 배포해 각 화학물질의 합성 경로를 한눈에 확인할 수 있도록 했다.
연구팀은 전 세계적인 관심을 바탕으로 지난번에 공개한 바이오 기반 화학물질 합성 지도를 업데이트 및 확장하고, 웹 기반으로 제작해 누구나 쉽게 접근하여 각 화학물질 합성을 위한 효율적인 경로를 빠르게 탐색할 수 있도록 했다. 사용자는 개발한 웹 기반의 합성 지도에서 제공하는 대화형 시각적 도구를 사용해 다양한 화학물질 생산으로 이어지는 생물학적 및 화학적 반응의 복잡한 네트워크를 분석할 수 있다. 또한, 이번 개편에서는 식품, 의약품, 화장품 등에 활용할 수 있는 다양한 천연물과 그 합성 경로를 추가해 지도의 활용성을 넓혔다. 발표한 바이오 기반 화학물질 합성지도는 http://systemsbiotech.co.kr 에서 확인할 수 있다.
공동 제1 저자인 생명화학공학과 장우대 박사와 김기배 박사과정생은 “기존 배포했던 합성 지도의 업데이트와 사용성 증대에 대한 요구를 반영하여 이번 연구를 진행했다”라고 말했으며, “이번 논문에서 정리한 생물공학적 방법과 화학공학적 방법을 통합한 화학물질 생산 전략과 전망은 미생물 세포 공장 구축 시 화학물질의 합성 경로 설계뿐만 아닌, 신규 물질의 생합성 경로 설계에도 유용하게 활용할 것으로 기대된다”라고 밝혔다.
이상엽 특훈교수는 “이번 연구에서 업데이트한 웹 기반 합성 지도는 기후 위기와 탄소중립에 대응하기 위한 바이오 기반 화학물질 생산 연구의 청사진으로서 역할을 할 것”이라고 밝혔다.
한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발 과제 지원을 받아 수행됐다.
2022.08.29
조회수 6625
-
심각한 염증 부작용 없앤 새로운 알츠하이머병 치료제 개발
우리 대학 생명과학과 김찬혁, 정원석 교수 공동연구팀이 알츠하이머병에 대한 새로운 형태의 단백질 치료제를 개발했다고 22일 밝혔다.
연구팀은 세포 포식작용에 관여하는 단백질을 응용한 `Gas6 융합단백질'을 제작하고 이를 통해 알츠하이머병을 유발하는 베타 아밀로이드 플라크(단백질 응집체)를 제거할 수 있는 새로운 형태의 치료제를 개발했다. 기존의 베타 아밀로이드를 표적으로 하는 항체 기반 치료제가 불확실한 치료 효과와 더불어 심각한 부작용을 일으키는 것이 보고되고 있는 가운데, 이를 근본적으로 극복할 수 있는 새로운 방식의 치료제를 연구팀은 제작한 것이다. 또한 해당 접근법은 향후 다양한 퇴행성 뇌 질환 및 자가면역질환 치료에 폭넓게 응용될 수 있을 것으로 기대된다.
생명과학과 박사과정 정현철, 이세영 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 메디슨 (Nature Medicine)' 8월 4일 字 온라인 출판됐다. (논문명 : Anti-inflammatory clearance of amyloid beta by a chimeric Gas6 fusion protein).
알츠하이머병은 기억상실과 인지장애를 동반하는 노인성 치매의 대표적 원인이다. 최근 국내 언론에 잘못 알려진 바와는 달리, 알츠하이머병은 뇌에 쌓이는 베타 아밀로이드 응집체 (비정상적으로 39~43개의 아미노산으로 잘려진 아밀로이드 조각들의 응집체)에 의한 시냅스 손상과 세포 독성으로 발병한다는 것이 학계 및 의료계의 정설이다. 이러한 정설에 의구심이 일었던 것은 아직까지 수많은 노력에도 불구하고 베타 아밀로이드를 제거하는 알츠하이머병 치료제가 성공적으로 개발되지 못했기 때문이었다. 최근 베타 아밀로이드를 표적으로 하는 항체 기반 치료제인 아두헬름이 사상 처음으로 알츠하이머병의 근원 치료제로써 2021년 6월 미국에서 FDA 승인이 이뤄졌으나, 치료 효과 및 부작용에 관한 논란이 여전히 지속되고 있다.
아두헬름과 같은 항체 기반의 치료제를 처방받은 알츠하이머병 환자들에게서 나타나는 가장 큰 부작용은 뇌 부종 (ARIA-E) 및 뇌 미세혈관출혈 (ARIA-H)이다. 이러한 부작용은 뇌 염증과 밀접하게 관련돼 있는데, 이는 항체 기반 치료제들이 면역세포에서 발현되는 Fc 수용체를 통해 필연적으로 염증반응을 일으키기 때문으로 알려져 있다. 이 Fc 수용체는 다른 한편으로는 면역세포가 항체에 의한 포식작용을 통해 베타 아밀로이드 응집체를 제거하는데 필수적인 기능을 한다. 따라서 심각한 염증 부작용을 근본적으로 예방하면서 베타 아밀로이드 응집체를 효과적으로 제거하는 치료제를 개발하는 것은 알츠하이머병 치료의 오랜 딜레마였다.
연구팀은 이러한 문제를 기존 항체의 틀에서 벗어나 새로운 기전의 단백질 치료제를 디자인함으로써 해결했다. 우리 몸에는 끊임없이 죽어 나가는 세포들을 제거하기 위한 특수한 포식작용 경로가 존재하는데, 연구팀은 이에 관여하는 Gas6라는 단백질을 인위적으로 조작해 베타 아밀로이드를 표적으로 하는 융합단백질을 제작했다. 연구팀은 실험을 통해 이 융합단백질(anti-Abeta-Gas6)이 뇌 안에서 선택적으로 베타 아밀로이드를 제거함과 동시에 염증반응을 오히려 억제한다는 것을 증명했다.
또한 알츠하이머 질병 쥐 모델을 통해 연구팀이 개발한 융합단백질이 미세아교세포와 별아교세포를 동시에 활용해 뇌 속에 축적된 베타 아밀로이드의 양을 현저하게 줄이는 것을 발견했다. 이는 기존의 항체 치료제가 미세아교세포를 통해서만 베타 아밀로이드를 줄일 수 있는 것에 비해 뚜렷한 이점으로 보인다. 동시에 연구팀은 Gas6 융합단백질이 항체 치료제에 의해서 더 악화되는 미세아교세포에 의한 과도한 시냅스 제거 현상을 획기적으로 억제할 수 있음을 밝혔다. 더 나아가, Gas6 융합단백질을 주입한 알츠하이머 질병 쥐 모델에서는 손상된 인지능력 및 기억력이 항체 치료제보다도 높은 수준으로 회복되는 결과도 확인했다.
추가로 기존의 항체 기반 치료제를 처방받은 알츠하이머 환자에게서 나타났던 부작용인 뇌 미세혈관 출혈도, Gas6 융합단백질을 주입한 알츠하이머 질병 쥐 모델에서는 현저하게 감소하는 것을 연구팀은 증명했다.
따라서 연구팀이 개발한 융합단백질은 새로운 형태의 작용기전을 적용한 최초의 알츠하이머 질병 치료제이며, 이러한 형태의 치료제는 다양한 퇴행성 뇌 질환 및 자가 면역질환에 적용될 수 있을 것으로 기대된다.
연구팀은 "지금까지 많은 항체 기반 치료제가 성공하지 못했던 이유는 뇌 조직 및 혈관에 쌓이는 베타 아밀로이드가 올바른 방식으로 청소되지 않았기 때문ˮ이라며 "Gas6 융합단백질을 통해서는 베타 아밀로이드가 염증반응 없이 청소되기 때문에 부작용이 낮을 뿐만 아니라 높은 인지기능의 향상도 기대할 수 있을 것ˮ이라고 말했다.
연구팀은 이번 Gas6 융합단백질 치료기술을 기반으로 2021년 8월에 일리미스테라퓨틱스(Illimis Therapeutics, 대표이사: 박상훈)를 설립했고, 향후 이를 통해 베타 아밀로이드를 표적으로 하는 알츠하이머 치료제(GAIA-Abeta, ILM01) 개발뿐 아니라, 표적을 타우 등으로 치환하는 치료제도 개발하여 다양한 확장 및 임상 개발을 계획하고 있다.
한편 이번 연구는 KAIST 글로벌 특이점 사업(프렙과제) 및 치매극복연구개발사업단 (KDRC, 단장: 묵인희)의 지원을 받아 수행됐다.
2022.08.22
조회수 7479