< (왼쪽부터) 신소재공학과 이태훈 석사, 김진오 박사, 박충성 박사과정, 스티브박 교수, 김일두 교수 >
우리 대학 신소재공학과 스티브 박, 김일두 교수 공동연구팀이 세계 최초로 차세대 *전도성 금속유기골격체(이하 c-MOF) 재료 중 하나인인 니켈-헥사이미노트리페닐렌 (Ni3(HITP)2) 고품질 다공성 나노 박막을 유체 제어 기술로 제작하였다고 밝혔다. 연구팀은 공정 과정에서 *탈양성자화를 필요로 하는 재료들의 새로운 박막 합성 방법을 제시하였으며, 그동안 한계로 남아있던 대면적 박막 제작을 넘어서 높은 투명도와 유연성, 그리고 최고 수준의 민감도를 가지는 이산화황 가스 센서 제작을 성공하는 성과를 이뤘다.
☞ 전도성 금속유기골격체(Conductive Metal-Organic Framework, c-MOF): 금속유기골격체는 금속 이온과 유기 연결물질(리간드)가 연결되어 구조체를 이루는 다공성 고분자 재료이다. 이 중, 2D 구조를 가지며 전도성을 가지는 전도성 금속유기골격체는 최근 다양한 분야에 응용되고 있는 차세대 재료이다.
☞ 탈양성자화(Deprotonation): 산-염기 반응을 통해 양성자(H+)를 제거하는 반응을 말한다.
신소재공학과 이태훈 석사, 김진오 박사, 박충성 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 재료 분야 권위 학술지인 `어드밴스드 머티리얼스(Advanced Materials)'에 내지 삽화와 함께 3월 24일 字 게재됐다. (논문명: Large-area synthesis of ultrathin, flexible, and transparent conductive metal-organic framework thin films via a microfluidic-based solution shearing process)
c-MOF는 다공성, 전기적 특성 제어, 전기전도성 등의 재료적 특성을 기반으로 트랜지스터, 전극, 가스 센서 등의 분야에서 차세대 신소재로 각광받고 있다. 특히, Ni3(HITP)2는 c-MOF 중에서도 최고 수준의 전기전도도를 가지고 있어 지속적으로 연구가 진행되었으나, 합성의 어려움으로 고품질 박막 제조는 난제로 남아있었다.
공동연구팀은 미세 유체(Microfluidic) 시스템을 도입하여 Ni3(HITP)2 나노 박막 제작 신기술을 개발했다. 공정을 두 단계 과정으로 분리해 비정질(Amorphous) 박막을 우선적으로 제작한 후 추가 공정을 통해 결정화(Crystallization)를 진행하여 이전 연구들의 한계점을 극복했다. 이번 연구에서는 여기서 더 나아가 유연 소재로의 활용 가능성 및 높은 투명도(최대 약 88%)를 확인해 다기능 차세대 재료로의 가능성을 확인했다.
미세 유체 시스템을 활용한 이 공정은 연속적이고 일정한 용액의 공급을 기반으로 박막 제작 속도와 기판의 온도 등 다양한 변수(Parameter) 제어를 통하여 진행됐다. 특히, 미세 유체 반응기와 기판 사이에 수백 마이크로미터(㎛) 수준의 단차(Gap)를 주어 균일한 계면(Meniscus)을 형성해 일정한 용매 증발을 야기해 균일한 박막 제조가 가능하다. 이를 통해, 수십 나노미터 영역의 두께 제어가 가능함을 검증함과 동시에 박막 결정의 고배향성을 확인했다고 연구팀은 밝혔다. 결정의 배향성은 센서 성능과 투명 소재에 중요한 역할을 하여 박막의 성능을 향상시켜준다.
< 그림 1. 이번 연구에서 개발된 Ni3(HITP)2 나노 박막 합성법의 개념도 및 박막 사진 >
공동연구팀은 배향성을 가지는 해당 c-MOF 나노 박막을 사용해 날숨 내의 바이오마커(Biomarker)로 쓰이는 가스 중 하나인 이산화황 (H2S) 기체만을 선택적으로 검출할 수 있는 가스 센서를 개발하는 데 성공했으며, 기존에 보고된 본 재료 기반 최고 성능의 가스 센서 대비 약 30.2배의 성능을 확인했다. 뿐만 아니라, 가스 센서는 유연한 특성을 가지며 습한 환경에서도 높은 민감도를 보여 마스크에 적용이 가능한 점 등 그 파급효과가 클 것으로 예상된다.
공동 제1 저자인 이태훈 석사, 김진오 박사, 박충성 박사과정은 "이번 연구에서 후처리 공정의 도입으로 비정질 박막에서 전도성을 가지는 높은 결정성의 박막으로 빠르고 정교하게 결정화될 수 있다는 것을 보였다ˮ며, "이는 고품질 나노 박막 제작에 한계점을 가지고 있던 다양한 재료에 응용 가능함을 의미하며, 이를 토대로 개발된 가스 센서는 앞서 언급한 다양한 기능을 통해 관련 산업에도 기여할 것으로 기대한다ˮ라고 말했다.
< 그림 2. 국제학술지 어드밴스트 머터리얼즈 표지 >
우리 대학이 최근 각광 받는 뉴로모픽 컴퓨팅, 차세대 이차전지, 고효율 태양전지, 광촉매, CO2 전환 기술을 포함한 미래 유망 나노 소재의 최신 연구 동향을 알아보고 비전을 전망하는 'ACS 나노 서밋 2024를 개최했다.7월 1일부터 이틀간 대전 본원에서 열린 이번 행사에는 나노재료과학 분야의 권위 있는 학술지인 'ACS 나노'의 편집위원단 18인이 대거 참여했다. 우리 대학 신소재공학과는 2020년부터 차세대 유망 소재 분야의 세계적인 석학들을 초청해 혁신적인 성과를 공유하는 '이머징 소재 심포지엄'을 매년 개최해 국내·외 학계에서 명성을 얻어왔다. 올해는 'ACS 나노'의 서밋 행사와 협력해 유망 나노 소재 최신 연구를 생생히 전달했다. 특히, 행사 첫날인 1일 오전에는 플렉서블 및 나노바이오 소재 분야의 글로벌 석학으로 손꼽히는 시아오동 첸(Xiadong Chen) 난양공대 교수가 '고신뢰성 유연 소자 제조'를 주제로 강연했다. 이와 함께, 17
2024-07-02대면적의 빛을 활용하고 대기 중의 환경에서 0.02초 이내에 연료전지 등 차세대 에너지 저장 및 발전에 광범위하게 적용되는 고엔트로피 촉매 및 단일원자 촉매의 합성을 세계 최초로 구현했다. 우리 대학 전기및전자공학부 최성율 교수 연구팀과 신소재공학과 김일두 교수 연구팀이 공동연구를 통해 강한 빛을 다양한 탄소 기반 소재에 조사해, 0.02초 이내에 나노입자 촉매와 단일원자(single atom) 촉매를 진공 시설이 없는 대기 조건에서 합성하고 우수한 촉매 성능을 구현하는데 성공했다고 6일 밝혔다. 연구팀은 2022년 4월 제논 램프 빛을 조사해 금속산화물의 상(phase) 변화와 표면에 촉매 입자가 생성될 수 있음을 최초로 밝혔고 그 후속으로 소재의 광열효과를 유도하는 합성법에 대한 연구를 진행했다. 이에 초고온(1,800~3,000oC)과 빠른 승/하온 속도(105 oC/초)를 통해 기존의 합성법으로는 구현할 수 없는 촉매 입자를 합성하는 데 성공했다. 이번 기술은
2023-12-06오랜 기간에 걸쳐 생체 구조체를 형틀로 삼아 다양한 무기물을 증착 및 성장시킴으로써 생체 모방 재료를 합성하는 연구들이 이루어져 왔는데, 이를 생체 형틀법이라고 한다. 이런 생체 형틀법은 생체에 있는 특정 구조체에 사용되어 오랜 시간 동안 에너지, 광학, 마이크로로봇, 의료 분야 등에 응용되어 왔다. 특히 생체 구조체를 사용하고 모방했다는 점에서 인체 내 활용이 용이하여 인공장기나 상처 치유 분야로 많이 연구되었다. 우리 대학 신소재공학과 장재범, 김일두 교수 연구팀이 생체 형틀법을 이용해 세포외 기질을 구성하는 여러 단백질 중 원하는 특정 단백질만을 선택해 해당 단백질 구조체를 모방한 금속 필름을 합성하고 전기 전달 특성을 확인하는 것에 성공했다고 16일 밝혔다. 세포외 기질이란 세포 밖에 존재하며 세포의 분화, 성장, 이동에 중요한 역할을 수행할 뿐만 아니라 생체 조직과 기관(organ)의 구조적·기계적 특성 유지에 필수적인 생체 구조물이다. 이러한 세포
2023-11-17우리 대학이 중소·중견 기업의 글로벌 경쟁력 강화를 위한 '2022 KAIST 테크페어(Tech Fair)'를 이달 27일 서울 코엑스에서 개최한다. 한국무역협회(KITA, 회장 구자열)와 공동 주관하는 이번 행사는 KAIST의 기술을 연구자들이 직접 소개하고 수요자들과 기술 관련 최신 정보를 공유·교환하는 교류의 장으로 마련됐다. 이를 위해, KAIST가 선정한 사업화 유망 기술이전 설명회가 진행된다. ▴액체금속 기반 스트레처블 전극 프린팅 및 패터닝 기술(신소재공학과 스티브박 교수) ▴빅데이터 스트림 이상치 초고속 탐지 기술(전산학부 이재길 교수) ▴차량 엣지 기반 상황인식 신뢰도 평가 시스템(전산학부 이동만 교수) ▴네트워크 시스템 보안을 위한 프로토콜 다이얼렉트(전산학부 강병훈 교수) ▴인간처럼 생각하는 뇌 기반 인공지능 기술(바이오및뇌공학과 이상완 교수) ▴유기반도체 나노입자를 이용한 EUV*/BEUV** 포토레지스트(신소재공학과 조힘찬 교
2022-09-19우리 대학이 5월 31일 오전 10시부터 대전 본원 학술문화관(E9) 5층에 있는 정근모 콘퍼런스홀에서 ‘2022년 KAIST 리서치데이(Research Day)’를 개최했다. ‘리서치데이’행사는 주요 연구성과 소개를 통해 R&D 분야의 정보교류 기회를 제공하고, 상호 협력·소통하는 연구 문화조성으로 연구자들의 응집력을 높여 융합연구를 활성화한다는 취지로 지난 2016년부터 매년 개최하는 교내 연구자들의 축제다. 올해 행사에서는 연구부문 우수교원과 대표 연구성과 10선을 뽑아 포상한다. 이와 함께 최고 연구상인 ‘연구대상’ 수상자인 김일두 교수(신소재공학부)가 ‘초고감도 플렉서블 화학센서’를 주제로 강연에 나선다. 환경 안전 및 헬스케어에 대한 관심이 높아지면서 극미량의 분자를 신속하게 검출하여 위험 신호를 알리거나, 호흡가스 분석만으로 질병을 조기 진단하는 휴대형
2022-05-31