-
김희탁 김상욱 교수, 멤브레인 필요 없는 새로운 물 기반 전지 개발
우리 대학 생명화학공학과 김희탁 교수와 신소재공학과 김상욱 교수 공동 연구팀이 전기화학 소자의 핵심 부품인 멤브레인을 사용하지 않고도 에너지 효율 80% 이상을 유지하면서 1천 번 이상 구동되는 새로운 개념의 물 기반 아연-브롬 전지를 개발했다.
이번 연구를 통해 일본, 미국의 수입에 의존해 온 다공성 분리막이나 불소계 이온교환막을 사용하지 않는 기술로, 해당 기술에 대한 대외 의존도를 낮출 수 있을 것으로 기대된다.
이주혁 박사과정과 변예린 박사후연구원이 공동 1 저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced materials)’12월 27일자 표지논문에 선정됐다.(논문명: High-Energy Efficiency Membraneless Flowless Zn-Br Battery: Utilizing the Electrochemical-Chemical growth of Polybromides)
최근 태양광, 풍력 등 신재생에너지의 불안정한 전력 공급을 해결하기 위해 전기 에너지를 미리 저장했다가 필요한 시간대에 사용할 수 있는 에너지저장장치(ESS)가 주목받고 있다.
현재는 리튬이온전지가 에너지저장장치용 이차전지로 사용되고 있으나 발화성 유기 전해액 및 리튬계 소재로 인한 발화의 위험성을 지니고 있다. 지난 2017년부터 올해 10월까지 총 21건의 에너지저장장치 화재사고가 발생했으며, 전체 에너지저장장치 시설 1천 490개 중 35%인 522개의 가동이 중단되기도 했다.
이러한 이유로 물을 전해질로 사용한 비 발화성 물 기반 이차전지 기술이 에너지저장장치용 차세대 이차전지로 주목받고 있다. 특히 다양한 물 기반 전지 기술 중 아연과 브롬을 활물질로 사용하는 아연-브롬 레독스 흐름 전지는 높은 구동 전압 및 높은 에너지 밀도를 가져 1970년대부터 지속해서 개발돼왔다.
그러나 아연-브롬 레독스 전지는 브롬이 아연과 반응해 전지 수명을 단축시키는 문제로 인해 상용화가 지연됐다. 이러한 반응을 억제하기 위해 펌프를 이용해 브롬이 함유된 전해질을 외부 탱크로 이송해 왔으나, 이는 펌프 구동을 위한 에너지 소모 및 브롬에 의한 외부 배관이 부식되는 문제를 동반한다.
브롬을 포획하는 전해질 첨가제 및 브롬의 이동을 차단할 수 있는 멤브레인에 대한 개발이 진행됐으나, 가격증가 및 출력 저하의 문제점이 발생했다.
김희탁 교수와 김상욱 교수 공동 연구팀은 일본, 미국에 의존하던 값비싼 멤브레인 소재와 어떠한 첨가제도 사용하지 않는 새로운 물 기반 아연-브롬 전지를 개발했다.
전해질 내의 이온과 외부 전기회로 사이의 전자를 주고받는 한정된 역할만 수행하던 전극의 기능에 멤브레인과 첨가제가 담당하던 브롬을 포획할 수 있는 기능을 추가했다.
질소가 삽입된 미세기공 구조를 전극 표면에 도입해 미세기공 내부에서 비극성 브롬을 극성 폴리브롬화물로 전환한 뒤, 질소 도핑 카본과 폴리브롬화물간 쌍극자-쌍극자 상호 작용을 통해 폴리브롬화물을 기공 내부에 고정했다.
이 기술은 멤브레인의 기능을 전극이 담당하므로 고가의 멤브레인이 필요 없으며, 브롬을 외부 탱크가 아닌 전극 내부에 저장함으로써 펌프 및 배관을 제거할 수 있어 가격 저감 및 에너지 효율을 증대했다.
연구팀이 개발한 다기능성 전극을 이용한 멤브레인을 사용하지 않는 물 기반의 아연-브롬 전지는 리튬-이온 전지보다 45배 저렴할 뿐 아니라, 에너지 효율 83% 이상을 보이며 1천 사이클 이상 운전이 가능하다.
김상욱 교수는 “차세대 물 기반 전지의 한계를 극복하기 위한 나노소재 기술을 이용한 새로운 해결책을 제시했다”라고 말했다.
김희탁 교수는 “이번 연구를 통해 기존보다 안전하고 경제적인 에너지저장장치의 개발이 가속화되기를 기대한다”라고 말했다.
이번 연구는 KAIST 나노융합연구소, 에너지클라우드 사업단, 과학기술정보통신부 리더연구자지원사업인 다차원 나노조립제어 창의연구단의 지원을 받아 수행됐다.
그림 1. 브롬 활물질을 전극내부에서 폴리브롬화물로 전환하여 저장하는 다기능성 전극의 메커니즘의 모식도와 멤브레인을 장착하지 않고 구동되는 전지의 실제 모습
그림 2. 질소가 도핑된 미세기공이 코팅된 다기능성 전극의 제조 과정
2020.01.08
조회수 17111
-
김지한 교수, 인공지능 이용한 다공성 물질 역설계 기술 개발
〈 김지한 교수 연구팀 〉
우리 대학 생명화학공학과 김지한 교수 연구팀이 인공지능을 활용해 원하는 물성의 다공성 물질을 역설계하는 방법을 개발했다.
김백준, 이상원 박사과정이 공동 1 저자로 참여한 이번 연구결과는 국제 학술지 ‘사이언스 어드밴시스(Science Advances)’ 1월 3일 자 온라인판에 게재됐다. (논문명 : Inverse Design of Porous Materials Using Artificial Neural Networks)
다공성 물질은 넓은 표면적과 풍부한 내부 공극(孔劇)을 가지고 있어 촉매, 기체 저장 및 분리, 센서, 약물 전달 등 다양한 분야에서 활용되고 있다.
기존에는 이러한 다공성 물질을 개발하기 위해 반복적인 실험을 통한 시행착오를 거치면서 시간과 비용이 많이 소모됐다. 이러한 낭비를 줄이기 위해 가상 구조를 스크리닝해 다공성 물질 개발을 가속화 하려는 시도들이 있었지만, 데이터베이스에 존재하지 않는 새로운 구조를 발견하지 못한다는 문제가 있었다.
최근에는 인공지능 기반의 역설계로 원하는 물성을 가진 물질을 개발하는 연구가 주목받고 있지만, 지금까지의 연구들은 단순한 소형 분자들 위주로 적용되고 있으며 복잡한 다공성 물질을 설계하는 연구는 보고되지 않았다.
김지한 교수 연구팀은 인공지능 기술과 분자 시뮬레이션 기술을 활용해 다공성 물질의 한 종류인 제올라이트 구조를 설계하는 방법을 개발했다.
연구팀은 인공지능 생성모델인 적대적 생성 신경망(GAN, Generative Adversarial Network)과 기존 분자 시뮬레이션에서 활용되는 3차원 그리드 데이터를 활용해 복잡한 다공성 물질의 특성을 인공지능이 학습하고 생성할 수 있도록 구조를 개발했다.
개발된 인공신경망 생성모델은 3차원 그리드로 이루어진 구조 정보와 흡착 물성 데이터를 같이 학습하게 되며, 학습 과정 안에서 흡착 물성을 빠르게 계산할 수 있다. 이를 통해 에너지 저장 소재의 특성을 효율적으로 학습할 수 있음을 증명했다.
또한, 연구팀은 인공지능 학습 과정에서 기존의 알려진 제올라이트 구조 중 일부를 제외해 학습시켰고, 그 결과 인공지능이 학습하지 않았던 구조들도 생성할 수 있음을 확인했다.
김지한 교수는“인공지능을 이용해 다공성 물질을 설계한 최초의 사례이다”라며 “기체 흡착 용도에 국한된 것이 아니라 다른 물성에도 쉽게 적용할 수 있어 촉매, 분리, 센서 등 다른 분야의 물질 개발에도 활용될 것으로 기대한다”라고 말했다.
이번 연구는 BK21, 한국연구재단 중견 연구자 지원 사업 그리고 에너지 클라우드 사업단의 지원을 받아 수행됐다.
□ 그림 설명
그림 1. 인공지능 기반 다공성 물질(제올라이트) 생성 개요도
2020.01.07
조회수 12852
-
김상현 교수, 6만 ppi 초고해상도 디스플레이 제작기술 개발
〈 김상현 교수 연구팀(왼쪽 위 두번째 김상현 교수) 〉
우리 대학 전기및전자공학부 김상현 교수 연구팀이 반도체 공정 기술을 활용해 기존 마이크로 LED 디스플레이의 해상도 한계를 극복할 수 있는 6만 ppi(pixel per inch) 이상의 초고해상도 디스플레이 제작 가능 기술을 개발했다.
금대명 박사가 1 저자로 참여한 이번 연구는 국제학술지 ‘나노스케일(Nanoscale)’ 12월 28일자 표지 논문으로 게재됐다. (논문명 : Strategy toward the fabrication of ultrahigh-resolution micro-LED displays by bonding interface-engineered vertical stacking and surface passivation).
디스플레이의 기본 단위인 LED 중 무기물 LED는 유기물 LED보다 높은 효율, 높은 신뢰성, 고속성을 가져 마이크로 크기의 무기물 LED를 픽셀 화소로 사용하는 디스플레이(마이크로 LED 디스플레이)가 새로운 디스플레이 기술로 주목받고 있다.
무기물 LED를 화소로 사용하기 위해서는 적녹청(R/G/B) 픽셀을 밀집하게 배열해야 하지만, 현재 적색과 녹색, 청색을 낼 수 있는 LED의 물질이 달라 각각 제작한 LED를 디스플레이 기판에 전사해야 한다. 따라서 마이크로 LED 디스플레이에 관련한 대부분 연구가 이런 패키징 측면의 전사 기술 위주로 이루어지고 있다.
그러나 수백만 개의 픽셀을 마이크로미터 크기로 정렬해 세 번의 전사과정으로 화소를 형성하는 것은 전사 시 사용하는 LED 이송헤드의 크기 제한, 기계적 정확도 제한, 그리고 수율 저하 문제 등 해결해야 할 기술적 난제들이 많아 초고해상도 디스플레이에 적용하기에는 한계가 있다.
연구팀은 문제 해결을 위해 적녹청 LED 활성층을 3차원으로 적층한 후, 반도체 패터닝 공정을 이용해 초고해상도 마이크로 LED 디스플레이에 대응할 수 있는 소자 제작 방법을 제안함과 동시에 수직 적층시 문제가 될 수 있는 색의 간섭 문제, 초소형 픽셀에서의 효율 개선 방안을 제시했다.
연구팀은 3차원 적층을 위해 기판 접합 기술을 사용했고, 색 간섭을 최소화하기 위해 접합 면에 필터 특성을 갖는 절연막을 설계해 적색-청색 간섭 광을 97% 제거했다.
이러한 광학 설계를 포함한 접합 매개물을 통해 수직으로 픽셀을 결합해도 빛의 간섭 없이 순도 높은 픽셀을 구현할 수 있음을 확인했다. 연구팀은 수직 결합 후 반도체 패터닝 기술을 이용해 6만 ppi 이상의 해상도 달성 가능성을 증명했다.
또한, 초소형 LED 픽셀에서 문제가 될 수 있는 반도체 표면에서의 비 발광성 재결합 현상을 시간 분해 광발광 분석과 전산모사를 통해 체계적으로 조사해 초소형 LED의 효율을 개선할 수 있는 중요한 방향성을 제시했다.
김상현 교수는 “반도체 공정을 이용해 초고해상도의 픽셀 제작 가능성을 최초로 입증한 연구로, 반도체와 디스플레이 업계 협력의 중요성을 보여주는 연구 결과이다”라며 “후속 연구를 통해 초고해상도 미래 디스플레이의 기술 개발에 힘쓰겠다”라고 말했다.
이번 연구는 한국연구재단 이공분야 기초연구사업 기본연구, 기후변화대응기술개발사업 등의 지원을 받아 수행됐다.
□ 그림 설명
그림 1. 1um 크기를 가진 마이크로 단일 LED 가 실제로 배열된 모습을 보여주는 이미지, 1 um, 0.6 um 크기를 가진 LED를 광 여기 방법을 통해 적색 발광이 되는 모습을 보여주는 이미지(작은 사진). 이는 작아진 LED에서도 적색 발광특성이 잘 발현됨을 보여줌.
그림 2. 나노스케일 커버 이미지: 본 제작 방법의 사용 예시를 보여줌
2020.01.06
조회수 17306
-
김일두 교수, 물 몇 방울로 전기 만들어내는 기술 개발
〈 배재형 박사과정, 김일두 교수, 윤태광 박사 〉
우리 대학 신소재공학과 김일두 교수 연구팀이 아주 소량의 물(0.15ml) 또는 대기 중의 수분을 자발적으로 흡수하는 조해성 물질을 활용해 전기에너지를 생성하는 친환경 발전기를 개발했다.
연구 결과는 나노과학 분야의 권위적인 학술지 ‘ACS Nano’ 11월 26일자 논문으로 발표됐다. 또한, 환경 분야의 권위 학술지인 에너지 및 환경과학 (Energy & Environmental Science) 온라인판에 게재됐으며, 1월호 후면 표지 논문으로 발표될 예정이다.
ACS Nano 연구는 증산 작용을 활용한 자가발전기의 원리를 규명한 논문으로 윤태광 박사와 배재형 박사과정 학생이 제 1 저자로 참여했으며, 테크니온 재료공학과의 아브너 로스칠드(Avner Rothschild) 교수가 공저자로 참여했다.
Energy & Environmental Science 논문은 조해성염을 활용하여 대기중의 수분 흡수를 통해 지속적으로 에너지를 생성하는 발전기에 관한 연구내용으로 제 1 저자인 배재형 박사과정과 윤태광 박사의 주도하에 진행이 됐고, 생명화학공학과의 서봉임 박사 , 김지한 교수가 공저자로 참여했다.
김 교수 연구팀은 전도성 탄소 나노 입자가 코팅된 면(cotton)섬유 표면에 소량의 물을 떨어뜨리면 젖은 영역과 마른 영역으로 나뉘게 되면서 작은 양의 전기에너지가 발생하는 것을 발견했다.
이를 통해 물이 완전히 증발하기 전까지 수소 이온이 천천히 이동하며 약 1시간 동안 발전이 가능함을 확인했지만, 물이 완전히 증발하게 되면 전기 발생이 멈추게 된다. 지속적인 발전을 위해서는 주기적으로 물을 떨어뜨려야 하는 실용성 측면에 문제가 있다.
연구팀은 발전 시간을 늘리기 위해 대기 중의 물을 스스로 흡수한 후 천천히 방출하는 조해성 물질 중 하나인 염화칼슘(CaCl2)에 주목했다. 탄소 입자가 코팅된 면섬유의 한쪽 면에 염화칼슘을 묻혔더니, 습도 20% 이상에서는 자발적인 수분 흡착으로 전력이 지속해서 유지되는 결과를 얻었다.
이렇게 개발한 자가발전기 6개를 직렬로 연결해 전압 4.2V, 에너지 밀도 22.4mWh/cm3를 얻어 LED 전구(20mW)의 불을 켜는 데 성공했다.
태양광, 풍력 발전 등 친환경 발전기들이 외부의 환경적인 요소에 제약을 많이 받는 것에 비해 연구팀이 개발한 발전기는 20∼80% 습도 구간에서는 외부에서 물을 공급해 주지 않더라도 전기를 만들어 낼 수 있어 다양한 사물인터넷, 웨어러블 기기 등에 활용할 수 있을 것으로 기대된다.
김 교수는 "움직이기만 해도 생기는 땀이나 대기 중 흩날리다 사라지는 수분을 에너지원으로 활용할 수 없을까? 라는 의문에서 연구를 시작했다"라며, "조해성 염이 포함된 자가발전기는 일반 대기 환경에서 2주 이상 발전하는 성능을 보임을 확인했고, 사물인터넷용 지속 전력 공급원 또는 자가 발전기 크기 증대를 통해 이차전지를 충전하는 용도 등으로 활용할 수 있다"라고 말했다.
이번 연구 성과는 삼성전자미래육성재단 과제(SRFC-MA1802-05)의 지원으로 진행됐다.
□ 그림 설명
그림1. 물의 증산작용을 이용한 자가 발전기
그림2. 식물의 증산 과정을 통해 수분이 순환하는 원리를 모사하여, 수분의 순환을 전기 에너지로 변환하는 발전기
2019.12.16
조회수 14640
-
박인규 교수, 헬스 모니터링용 고감도 유연 압력센서 개발
우리 대학 기계공학과 박인규 교수 연구팀에서 생체 신호 및 신체 압력 모니터링에 활용이 가능한 액체 금속 기반 웨어러블 유연 압력 센서를 개발했다.
이 기술을 통해 맥박, 혈압 등 다양한 중요 생체 신호를 연속적으로 모니터링하고 욕창과 같은 압력으로 인해 비롯한 여러 질병을 예방할 수 있는 시스템으로 활용할 수 있을 것으로 기대된다.
김규영 박사과정이 1저자, 오용석 연구교수가 공동 교신저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스트 헬스케어 머터리얼스(Advanced Healthcare Materials)’11월 21일자 표지논문에 게재됐다. (논문명: Highly Sensitive and Wearable Liquid Metal‐Based Pressure Sensor for Health Monitoring Applications: Integration of a 3D‐Printed Microbump Array with the Microchannel)
최근 헬스케어에 대한 관심이 커짐에 따라 웨어러블 유연 센서 개발이 활발히 진행되고 있다. 기능성 소재를 기반으로 다양한 고감도의 유연 센서가 많이 개발되고 있지만, 기존 고체 소재 기반 센서는 웨어러블 디바이스로 활용되기에 신축성, 신호 반복성 및 안정성 측면에서 한계를 보인다.
이러한 점을 보완하기 위해 현재 액체 소재 기반 유연 센서가 다양하게 개발되고 있다. 액체 전극 중에서도 특히 갈린스탄(Galinstan)과 같은 액체 금속은 신축성에 제한이 없으며, 무독성, 높은 전기 전도도, 전기/기계적 안정성 등의 특징으로 신축성 소자 및 웨어러블 디바이스 요소로써 활용도가 매우 높다.
하지만 기존의 액체 금속 기반 유연 압력 센서는 안정적이지만 매우 감도가 낮아 맥박이나 신체 압력 모니터링과 같은 수 kPa 수준의 작은 범위의 압력 측정에 활용하기 어려웠다.
이번 연구에서는 다중물질 3D 프린팅 기술을 활용해 단단한 마이크로 범프 구조물을 액체 금속 채널에 배치하여 작은 압력에도 신호 변화가 크게 나타날 수 있는 구조를 개발했다. 이러한 구조를 통해 마이크로 범프가 없는 일반 액체 금속기반 압력 센서보다 6배 이상의 높은 감도를 얻고 고체 기반 유연 압력 센서 수준의 감도를 얻을 수 있었다.
또한, 개발된 유연 압력 센서는 1만 회 이상의 인장, 굽힘 등 다양한 물리 변형에도 안정적인 신호 회복을 보이고, 다양한 환경 요인(온도, 습도)에도 안정적인 감지 성능을 보여 웨어러블 디바이스로써 활용될 수 있는 큰 가능성을 보였다.
연구팀은 이러한 성능을 바탕으로 평상시와 운동 시의 맥박, 혈압을 측정하여 그 변화를 연속적으로 감지해 건강 상태를 모니터링할 수 있음을 확인했다.
센서가 부착된 양말과 무선 통신 시스템을 구축하여 누워있는 사람의 다양한 자세 변화 도중 나타나는 신체 압력 및 그 변화를 원격으로 모니터링할 수 있었다.
박인규 교수는 “개발한 고감도 및 고신뢰성 액체 금속기반 유연 압력 센서를 통해 다양한 생체 건강 정보를 연속적으로 수집할 수 있었다. 이를 이용하여 다양한 헬스 케어/헬스 모니터링 어플리케이션, 특히 욕창과 같이 압력으로 인해 나타나는 다양한 질병 관리 및 예방 분야에 활용될 수 있을 것으로 기대된다.”라고 말했다.
이번 연구는 한국연구재단의 중견 연구 과제(올인원 스마트 스킨을 위한 웨어러블 멀티센서 시스템 핵심기술 연구)와 선도연구센터지원 사업 (초정밀 광 기계기술 연구센터)의 지원을 통해 수행됐다.
□ 그림 설명
그림1. Advanced Healthcare Materials 표지
그림2. 마이크로 범프가 집적된 액체 금속 기반 유연 압력 센서
그림3. 높은 감도와 안정적 성능의 유연 센서 및 신체 압력 측정 어플리케이션
2019.12.11
조회수 14329
-
박영진 교수, 현대자동차그룹과 함께 능동형 노면 소음 저감기술(RANC) 개발
〈 박영진 교수 〉
우리 대학 기계공학과 박영진 교수 연구실(시스템동역학 및 응용제어 연구실)과 현대자동차그룹이 협업해 개발한 ‘능동형 노면 소음 저감기술(이하 RANC)’이 상용화된다.
현대차그룹은 지난 11일 도로에서 발생해 실내로 유입되는 노면 소음을 크게 줄여주는 ‘RANC’를 개발했다고 밝혔다. RANC 핵심 요소기술인 센서 위치 및 신호 선정 방법에 대해 한국과 미국에 특허 출원을 완료했다.
RANC는 주행 시 발생하는 노면 소음을 낮추는 기술이다. 시스템은 가속도 센서, DSP(Digital Signal Processor, 음향신호 분석을 위한 제어 컴퓨터), 마이크, 앰프, 오디오 등으로 구성된다. 시스템을 최대한 단순하게 하도록 오디오는 별도의 오디오 시스템이 아닌 차에 원래 내장된 오디오를 활용한다.
먼저 가속도 센서가 진동의 전달 경로에 위치해 노면 소음을 유발하는 진동을 취득한다. 여기서 진동 전달 경로를 정확히 파악하기 위한 가속도 센서의 위치가 굉장히 중요하다. 연구팀은 수많은 테스트를 통해 최적의 센서 위치를 찾을 수 있었다.
박영진 교수 연구실은 지난 1993년부터 4년간 G7 국가 과제로 현대자동차와 도로 소음을 능동적으로 줄이는 연구를 수년간 수행하고 이 결과를 국제 학술지에 게재했다. 이후 네이처(Nature)에서 2002년 ‘Noise quietens driving’이라는 제목의 기사의 뉴스로 게재해 실제 차량에서 최초로 도로 소음을 줄이는 연구가 성공했음을 알렸다. 하지만 당시 주변 기술들의 부재(차량용 디지털 앰프 및 DSP 등)와 가격 요인 등으로 인해 상용화에는 실패했다.
그 후 2013년부터 박 교수 연구팀은 1건의 기술이전과 8건의 산학과제가 포함된 관련 연구를 수행했으며, 이를 기반으로 현대자동차 NVH 리서치랩 (전문위원 이강덕 박사; 항공공학 박사, 1996년)은 옵토멕 (설립자 김경수 교수; 기계공학 박사, 1999년), ARE (김현석 대표; 기계공학 박사, 1998년), 위아컴, 번영 등과 협업해 순수 국내 기술로 RANC 시스템의 개발에 성공했다.
박영진 교수 연구실은 선행연구 단계에서는 이론 기반 연구 및 연구팀의 구성 등 주도적으로 연구를 이끌었으며, 현대자동차 주도로 진행된 상용화 단계에서는 미래 지향적인 연구와 자문역할을 수행했다.
현대자동차그룹은 세계 최초로 RANC 기술의 상용화를 위해 글로벌 차량 오디오 전문업체인 하만과 협업해 완성도를 높여 RANC를 제네시스 브랜드 첫 번째 스포츠유틸리티차량(SUV) ‘GV80’에 적용한다.
박영진 교수는 “부임 초기에 중점적으로 한 연구가 20년이 더 지나 상용화가 이루어지는 것을 볼 수 있어 엔지니어로서 행복하고 특히 연구실의 졸업생들과 함께 노력해 상용화에 기여할 수 있어서 감개가 무량하다”라고 말했다.
2019.12.02
조회수 12681
-
장영재 교수, 스마트 팩토리 교육 노하우 국내 IT 기업에 기술 이전
우리 대학 산업및시스템공학과 장영재 교수가 최근 레고 기반 '스마트 팩토리' 교육 노하우를 국내 제조 IT 전문기업 큐빅테크에 기술이전 했다.
그동안 현대중공업, LG전자, 한국타이어 등 기업과의 산학협력을 통한 기술 활용이나 이탈리아 밀란 폴리텍, 독일 하노버 대학 등 같은 교육기관 간에 기술 이전을 시행한 선례는 있으나 우리 대학의 창의 수업을 기업에 기술이전 한 사례로서는 최초다.
'제조 프로세스 혁신 (IE251)'은 산업및시스템공학과 학부생들의 필수 교과목 중 하나로 스마트팩토리의 모형을 레고로 만들어 학생들이 직접 설계, 제작해 시연까지 하는 것이 특징이다.
장영재 교수 연구팀은 스마트 팩토리의 기술적 바탕은 물론 국내 제조 현실을 반영해 실제로 응용할 수 있게 커리큘럼을 구성했다. 또한, 관련 하드웨어 및 소프트웨어도 함께 개발했으며 제조 수업에서 한 단계 나아가 학부 AI 과목에도 활용하고 있다.
장영재 교수의 연구 내용은 국제 학술지인 『Engineering Education Journal』 에도 게재되었으며 글로벌 소프트웨어 기업인 매스웍스(Mathworks) 교육혁신 Grant Award도 수상한 바 있다.
참고 동영상 바로 보기 => ( https://www.youtube.com/watch?v=_-s_pwGoqr4&feature=youtu.be )
2019.11.29
조회수 10846
-
류호진 교수, 방사성 요오드 처분 신소재 기술 개발
우리 대학 원자력및양자공학과 류호진 교수 연구팀이 초장수명의 방사성 요오드를 안정적으로 저장하고 처분할 수 있는 신소재 기술을 개발했다.
연구팀의 기술은 세라믹 소재의 저온 소결 신기술을 이용한 것으로, 방사성 요오드-129처럼 반감기가 매우 긴 휘발성 방사성 동위원소를 안전하게 고정할 수 있어 방사성폐기물의 장기 처분 안전성을 높일 수 있을 것으로 기대된다.
무흐무드 하산 박사가 1 저자로 참여한 이번 연구는 환경공학 분야 국제 학술지 ‘유해물질저널(Journal of Hazardous Materials)’ 11월 11일 자 온라인판에 게재됐다.
동위원소 생산시설이나 사용 후 핵연료 처리시설에서 발생하는 방사성 핵종 중 반감기가 매우 긴 원소들을 안전하게 포집한 후 처분하기 위해서는 방사성 원소들과 화학적 결합력이 우수하면서 내구성과 안정성이 높은 매질을 사용해야 한다.
현재 고준위 폐기물의 처분을 위해 유리 등의 매질을 사용하고 있으나 끓는 점이 낮은 요오드는 고온의 용융 공정에서 휘발되면서 대기로 유출될 가능성이 있다.
특히 요오드-129는 반감기가 1천 500만 년 이상으로 이러한 초장수명 방사성 동위원소를 장기 처분할 수 있는 방사성폐기물 고화체의 제조공정 및 신소재 개발이 필요하다.
류 교수 연구팀은 방사성폐기물 고화체용 신소재 개발을 선도하는 미국, 유럽 등에서 시도하고 있는 고온에서의 소결 공정과는 달리, 300도 미만에서 치밀화될 수 있는 저온 소결 공정을 이용해 세라믹 매질을 개발했다. 연구팀의 매질은 요오드가 함유된 소달라이트 세라믹 매질로 화학적 안정성을 높이는 데 성공했다.
연구팀의 기술은 최근 미국을 중심으로 발표되고 있는 용매 기반 저온 소결 공정과 달리 용매를 사용하지 않는 친환경적인 고유의 저온 소결 공정으로, 관련 기술의 특허 출원 및 등록에 성공했다.
이를 기반으로 연구팀은 방사성 요오드 처분용 세라믹 재료 외에도 방사성 세슘 흡착용 세라믹 필터 등 방사성 이온 제염 및 환경 복원을 위한 세라믹 신소재의 저온 소결 기술을 고도화하기 위한 연구를 계속 진행할 예정이다.
류 교수는 “전통적으로 1천 도 이상 고온에서 소결되던 세라믹 재료를 300도 미만의 매우 낮은 온도에서도 치밀화 할 수 있음을 증명했다”라며 “원자력 분야 외에도 바이오 임플란트 소재, 연료전지 전해질 등 다양한 첨단 분야에서 저온 소결 기술을 적용할 수 있을 것으로 기대된다”라고 말했다.
이번 연구는 과학기술정보통신부 한국연구재단의 원자력연구기반확충사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 저온 소결에 의한 세라믹 소결 기술 개요
2019.11.20
조회수 9763
-
이정용 교수, 유기고분자-양자점 기반 하이브리드 태양전지 개발
〈 이정용 교수 〉
우리 대학 EEWS 대학원 이정용 교수 연구팀과 캐나다 토론토 대학교 전기 및 컴퓨터 공학부 테드 사전트(Ted Sargent) 교수 공동 연구팀이 유기 단분자 물질 도입을 통한 고효율, 고 안정성 유무기 하이브리드 태양전지 제작 기술을 개발했다.
연구팀이 개발한 유기 고분자-양자점 하이브리드 태양전지는 단순 성능 개선을 넘어 기존의 구조에서 성능이 제한된 문제점을 해결할 수 있는 구체적인 방안을 제시하고, 차세대 에너지원으로써 하이브리드 태양전지에 적용할 수 있을 것으로 기대된다.
백세웅, 전선홍 박사, 김병수 박사과정 및 앤드류 프로페(Andrew H. Proppe) 박사가 공동 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 에너지(Nature Energy)’ 11월 11일 자 온라인판에 게재됐다. (논문명: Efficient hybrid colloidal quantum dot/organic solar cells mediated by near-infrared sensitizing small molecules)
높은 기계적 특성 및 흡광 계수를 갖는 유기 고분자와 근적외선 영역을 흡수할 수 있는 콜로이달 양자점을 이용해 제작되는 하이브리드 태양전지는 용액공정으로 제작할 수 있고 두 물질의 장점을 모두 취할 수 있다는 점에서 많은 관심을 받아왔다.
하지만 유기 고분자-양자점 기반의 하이브리드 구조는 낮은 광전변환 효율과 안정성 측면에서 기존의 차세대 태양전지들과 경쟁하기에 부족한 점이 있다.
낮은 전하추출 능력과 그로 인해 발생하는 재결합 문제로 인해 최근까지도 10% 이하의 낮은 광전변환 효율에 머무르는 하이브리드 태양전지의 성능 개선이 필요한 실정이다.
연구팀은 문제 해결을 위해 고분자와 양자점의 매개체 역할을 할 수 있는 새 유기 단분자 구조를 도입했다. 이렇게 유기 단분자 매개체 도입된 유기 고분자-양자점 하이브리드 구조는 기존의 구조보다 다양한 강점을 가진다.
우선 기존의 유기 고분자에서 생성된 엑시톤을 원활하게 추출할 수 있으며, 상호 보완적인 흡광 대역이 형성돼 추가적인 전류 향상을 얻을 수 있고, 계단형 에너지 레벨을 형성해 에너지 및 전하를 효과적으로 운반할 수 있다.
이러한 강점을 통해 연구팀은 13.1%의 광전변환 효율을 달성했으며, 이는 기존의 유기 고분자와 양자점을 이용하는 하이브리드 태양전지보다 30% 이상 높은 효율이다. 그뿐만 아니라 제작 후 약 1천 500시간 이후에도 초기 효율의 90% 성능을 유지했으며, 최대전력조건에서 약 150시간 이후에도 초기 효율의 80% 이상의 성능을 유지했다.
이 교수는 “단분자를 도입해 기존의 하이브리드 구조의 고질적인 한계를 극복하고 고효율의 차세대 태양전지를 구현했다”라며 “개발한 고효율 태양전지는 최근 주목받고 있는 웨어러블 전자기기를 넘어서 모바일, IoT, 드론 및 4차산업에 적용 가능한 차세대 에너지 동력원으로써 주목받게 될 것이다”라고 말했다.
이 연구는 한국연구재단 중견연구자지원사업, 기후변화대응기술개발사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 새롭게 제시한 하이브리드 소재 구조의 작동 원리
2019.11.19
조회수 13274
-
신병하 교수, 홀 효과 한계 보완한 새 반도체 분석기술 개발
〈 신병하 교수, 배성열 박사과정 〉
우리 대학 신소재공학과 신병하 교수와 IBM 연구소의 오키 구나완(Oki Gunawan) 박사 공동 연구팀이 반도체 특성 분석의 핵심 기술인 홀 효과(Hall effect)의 한계를 넘을 수 있는 새로운 반도체 정보 분석 기술을 개발했다.
이번 연구는 140년 전에 처음 발견된 이래로 반도체 연구 및 재료 분석의 토대가 된 홀 효과 측정에 대한 새로운 발견으로 향후 반도체 기술 개발에 이바지할 수 있을 것으로 기대된다.
신병하 교수와 오키 구나완 박사가 교신 저자로, 배성열 박사과정이 2 저자로 참여한 이번 연구 결과는 국제 학술지‘네이처(Nature)’ 10월 07일 자 온라인판에 게재됐으며 11월 07일 정식 게재됐다. (논문명: Carrier-Resolved Photo Hall Effect)
1879년 에드윈 홀(Edwin Hall)이 발견한 홀 효과는 물질의 전하 특성(유형, 밀도, 이동성 또는 속도)에 대한 중요한 정보를 제공한다. 이는 반도체 소자를 이해하고 설계하는 데 필요한 가장 기본적인 특성들이다.
이러한 이유로 홀 효과는 지난 100년이 넘는 시간 동안 가장 일반적인 반도체 특성 분석 기법의 하나며 전 세계의 반도체 연구기관에서 보편적으로 사용되고 있다.
그러나 현재까지의 분석 기법으로는 홀 효과를 통해 다수 운반체(Majority carrier)와 관련한 특성만 파악할 수 있고, 태양 전지와 같은 소자의 구동 원리 파악에 필수인 소수 운반체(Minority carrier) 정보는 얻을 수 없다는 한계를 가지고 있었다.
연구팀은 문제 해결을 위해 ‘포토 홀 효과(Carrier-Resolved Photo-Hall" (CRPH))’ 기술을 개발했다. 이 기술을 사용하면 한 번의 측정으로 다수 운반체 및 소수 운반체에 대한 많은 정보를 동시에 추출할 수 있다.
기존 홀 측정에서는 세 가지 정보를 얻을 수 있었다면 연구팀의 새로운 기술은 실제 작동 조건을 포함한 여러 광도에서 광여기 전하의 농도, 다수 운반체 및 소수 운반체의 전하 이동도, 재결합 수명, 확산 거리 등 최대 일곱 개의 중요한 정보를 얻을 수 있다.
연구팀의 이 기술은 태양 전지, 발광 다이오드와 같은 광전자 소자 분야에서 사용 가능한 신소재 개발 및 최적화에 핵심적인 역할을 할 것으로 기대된다.
신 교수는 “지난 2년간의 연구가 좋은 결심을 맺게 되어 기쁘고, 이 기술을 통해 새로운 광소자 물질의 전하 수송 특성을 이해하고 더 나은 소자를 개발하는 데 큰 도움이 되리라 믿는다”라고 말했다.
이번 연구는 한국연구재단 기후변화대응기술개발사업, 산업통상자원부와 한국에너지기술평가원(KETEP) 에너지기술개발사업의 지원을 통해 수행됐다.
□ 그림 설명
그림1. 포토 홀 효과 개념도
2019.11.14
조회수 13357
-
이성주 교수, 앱 시제품 제작 생산성 200배 향상 기술 개발
〈 박수영 연구원, 이성주 교수 〉
〈 김동휘 연구원 〉
우리 대학 전산학부 이성주 교수 연구팀 스마트폰 앱 개발에서 필수적인 시제품 제작 과정을 획기적으로 줄여 생산성을 200배 이상 높일 수 있는 기술을 개발했다.
김동휘, 박수영 박사과정, 고지훈 석사과정, 미국 버팔로 대학 스티브 고(Steve Ko) 교수가 참여한 이번 연구 결과는 인간-컴퓨터 상호작용, 사용자 인터페이스 분야 국제학회 ACM UIST에서 10월 21일 발표됐다. (논문명 : X-Droid: A Quick and Easy Android Prototyping Framework with a Single-App Illusion)
새로운 아이디어가 스마트폰 앱으로 만들어지기까지는 수많은 시간과 자원, 인력이 필요하지만 정작 앱을 만들어도 소비자의 수요를 충족시키지 못하거나 시장의 흐름을 놓치면 자원만 낭비하는 경우가 많다.
이러한 이유로 보통은 정식으로 제품을 개발하기 전에 작은 규모로 시제품을 먼저 개발해 시장성을 시험해보곤 한다. 아이디어와 신제품이 범람하는 환경에서 시제품을 빠르고 정확하게 만드는 것이 개발사 입장에서는 매우 중요한 일이다.
시제품 제작에 특화된 도구도 많아 쓰이는 도구, 서비스가 수천 가지가 넘는다. 이는 그만큼 업계에서 시제품 구현에 관심이 많고 수요가 많다는 것을 뜻한다.
그러나 기존에 존재하던 수많은 도구의 도움을 받더라도 결국 기능은 직접 구현해야 한다. 디자인이나 아이디어를 차용할 수는 있어도 프로그램은 시중에 공개되지 않은 이상 전부 직접 만들어야 한다.
이성주 교수 연구팀이 개발한 기술은 바로 이러한 한계를 극복했다. 연구팀은 이미 수백만 개에 달하는 스마트폰 앱들이 시장에 출시된 점에 착안해 새 앱 시제품을 만들 때 기존 앱의 기능을 추출해 활용할 수 있도록 하는 데 성공했다.
앱 개발자는 이 기술을 활용해 다양한 시제품 앱들을 만들어 시험해보고 가장 유용한 안을 선정해 정식으로 개발할 수 있다. 만약 다른 앱에서 추출한 기능을 포함한 시제품 앱을 그대로 출시하고자 한다면 기능을 추출해온 앱 개발자의 동의가 필요하지만, 배포하지 않고 내부에서 시험하는 것만으로도 정식 개발의 실패 가능성을 크게 줄일 수 있다.
연구팀의 기술은 기존 앱에서 필요한 기능이 있을 때 그 앱을 시연하면 자동으로 해당 기능이 추출되고 개발자가 활용할 수 있는 프로그램 코드로 변환된다.
예를 들어 스마트폰 사용자의 수면을 감지해 자동으로 알림을 끄는 기능의 시제품을 만들기 위해서는 수면 상태를 추적하는 복잡한 기술이 필요하지만, 연구팀의 기술을 활용하면 단순히 시중의 수면 분석 앱으로부터 해당 기능을 추출해 시제품 제작에 활용할 수 있다.
연구팀은 현직 스마트폰 앱 개발자와의 실험을 통해 최소 1만 줄 이상의 프로그램 코드 작성이 필요한 개발 과정을 연구팀이 개발한 기술을 적용하면 불과 50여 줄의 코드 작성으로도 시제품을 개발할 수 있음을 확인했다.
이는 시제품 앱 개발에 필요한 프로그램 작성이 200배가량 줄어든 것으로 기존의 스마트폰 앱들을 활용하고 기계가 자동으로 프로그램을 작성하도록 함으로써 개발 비용을 획기적으로 줄인 것이다.
이성주 교수는 “기존 다른 앱의 기능을 코드 없이도 구현할 수 있는 기술로 시연을 통한 프로그래밍 기술을 활용하고 또 다른 앱과의 상호작용이 모두 백그라운드에서 이루어지게 하는 기술이다”라며 “개발자가 실제로는 자신의 앱과 다른 앱을 동시에 다루지만 마치 한 개의 앱으로 작업하는 듯한 효과가 있었으며, 새 앱 기능을 손쉽고 빠르게 구현해 더 많은 유용한 앱 출현을 기대할 수 있게 됐다”라고 말했다.
이번 연구는 한국연구재단 차세대정보컴퓨팅기술개발사업과 산업통상자원부, 한국산업기술진흥원 국제공동기술개발사업의 지원을 통해 수행됐다.
연구에 대한 설명과 시연이 담긴 비디오를 다음 링크에서 확인할 수 있고, ( https://www.youtube.com/watch?v=5pF5kGq-lDU ) 자세한 정보는 프로젝트 웹사이트에서 볼 수 있다. ( https://nmsl.kaist.ac.kr/projects/xdroid/ )
□ 그림 설명
그림1. 연구팀이 개발한 기술이 구현된 개발자 도구
2019.11.12
조회수 15872
-
정재웅 교수, 상황에 따라 딱딱해지고 유연해지는 전자기기 개발
〈 정재웅 교수, 변상혁 박사과정, 이주현 석사과정 〉
우리 대학 전기및전자공학부 정재웅 교수 연구팀이 사용 목적과 신체 적용 여부에 따라 딱딱한 형태와 부드러운 형태를 하나의 전자기기에서 선택적으로 구현함으로써 기기의 모양과 유연성을 변화시킬 수 있는 기술을 개발했다.
연구팀이 개발한 기술은 딱딱한 형태의 전자기기와 유연 기기의 경계를 허물어 활용도, 사용 편의성, 휴대성, 생체적합성을 모두 극대화할 수 있어 소비 전자제품뿐 아니라 생체의학, 로봇 공학 등의 다양한 분야에 혁신적 변화를 일으킬 것으로 기대된다.
변상혁 연구원과 한국전자통신연구원의 심주용 박사가 1저자로 참여하고 이주현, 라자 콰지(Raza Qazi) 연구원 등이 참여한 이번 연구는 국제 학술지 ‘사이언스 어드밴시스(Science Advances)’ 11월 1일 자에 게재됐다. (논문명: Mechanically transformative electronics, sensors, and implantable devices).
일반적으로 전자기기는 사용 목적에 따라 특정 강성을 갖도록 설계된다. 스마트폰, 노트북은 딱딱한 형태로 손에 쥐거나 테이블 위에 놓고 사용하기 적합하고, 최근 활발히 개발되는 유연 신축성 전자기기는 착용성이 뛰어나 웨어러블 형태로 활용되고 있다.
하지만 딱딱한 형태의 전자기기는 신체에 착용 시 각종 불편함을 일으키고, 생체이식 시 조직 파괴나 염증 등을 유발할 수 있다. 반면 유연 신축성 전자기기는 외력을 견디지 못하고 쉽게 모양이 변하기 때문에 몸에서 탈착 시 일반적인 전자기기와 같이 편리하게 사용하기 어렵다는 단점을 가진다.
연구팀은 갈륨(Gallium)과 중합체(polymer)를 이용한 합성물질을 제작해 온도에 따라 강성률 변화가 가능한 전자 플랫폼을 구현했다. 이를 유연 신축성 전자회로와 결합해 강성률이 변화 가능한 새로운 형태의 전자기기를 구현했다.
갈륨은 이번 연구의 핵심 소재로, 금속임에도 불구하고 생체 온도(29.8℃)에서 녹는점을 가져 신체 탈부착 시 고체와 액체 간의 상태 변화가 가능하다. 이러한 점에 기반해 갈륨을 중합체에 내장해 온도에 따라 강성률 변화가 가능한 전자 플랫폼을 제작했다.
연구팀은 전자기기의 강성도를 변화시킬 수 있는 특징을 활용해 다양한 적용 분야에서 기존 전자기기가 갖는 한계점을 극복할 수 있음을 증명했다. 예를 들어, 이 기술을 휴대용 전자기기에 적용해 평상시에는 딱딱한 형태로 손에 쥔 상태나 책상 위에서 이용하고, 이동 시 몸에 부착해 부드러운 웨어러블 기기 형태로 만듦으로써 휴대성을 높일 수 있음을 보여줬다.
또한, 강성을 변환시킬 수 있는 압력 센서를 개발해 목적에 따라 민감도와 압력 감지의 범위를 조절하는 데 성공했다. 그뿐만 아니라, 뇌 조직에 이식 시 부드럽게 변화하는 뇌 탐침을 개발해 기존 딱딱한 탐침 대비 뇌 손상 및 염증 반응을 최소화할 수 있었다.
이렇게 변형 가능한 전자기기 기술은 웨어러블, 임플랜터블, 센싱기기 및 로봇 등에 적용돼 다양한 목적과 상황에 유동적으로 사용될 수 있는 다목적 전자기기 시스템 개발을 이끌 수 있을 것으로 기대된다.
정 교수는 “평상시 딱딱한 형태의 전자기기로 쓰이나 몸에 부착 시 혹은 내부 장기에 이식 시 우리 신체 조직처럼 부드럽고 신축성 있게 변환될 수 있는 기기 플랫폼 기술 개발을 통해, 일반적인 전자기기와 유연 기기가 갖는 단점은 없애면서 사용 목적에 따라 각각의 장점을 극대화할 수 있는 전자기기를 개발했다”라며 “이 기술을 이용하면 전자기기의 활용 폭을 크게 넓힐 수 있을 것이다”라고 말했다.
이번 연구는 한국연구재단 신진연구자지원사업 및 기초연구실 지원사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 개발된 강성률 변화 가능한 전자기기의 개념도와 실제 구현사진
그림2. 딱딱한 모바일 기기와 부드러운 웨어러블 기기 간 변환이 가능한 전자기기 및 활용 예시
그림3. 압력 측정 민감도-동작 범위 튜닝이 가능한 압력 센서
그림4. 강성률 변화 가능 플랫폼을 활용한 뉴럴 프로브
그림5. 디바이스 개념을 보여주는 인포그래픽
2019.11.06
조회수 9705