< (왼쪽부터) KAIST 최벽파 교수, 이화여대 이상헌 교수, KAIST 장규선 학생, 막스플랑크 연구소 김세호 박사 >
우리 대학 신소재공학과 최벽파 교수 연구팀이 이화여자대학교 화학신소재공학과 이상헌 교수 연구팀과 공동연구를 통해 원자 단층 촬영 기술을 활용해 나노입자 표면에 존재하는 리간드 분자의 3차원 분포를 최초로 규명했다고 9일 밝혔다.
리간드(Capping ligand)는 금속 나노입자 합성 시 발생하는 유기 분자로서, 입자 간 응집을 방지할 뿐만 아니라 입자의 형태와 각종 특성까지 조절한다는 사실이 밝혀지며 나노입자의 합성 및 설계에 있어 그 중요성이 점점 더 커지고 있다.
신소재공학과 장규선 박사과정과 독일 막스 플랑크 연구소 김세호 박사가 공동 제1 저자로 참여한 이번 연구는 국제학술지인 `네이처 커뮤니케이션즈(Nature Communications, IF: 14.919)' 7월 14일 字 온라인판에 게재됐다. (논문명: Three-dimensional atomic mapping of ligands on palladium nanoparticles by atom probe tomography)
복잡한 구조의 유기 분자로 이루어진 리간드의 공간적 분포를 분석하기 위해서는 원자단위의 공간 분해능과 경량 원소에 대한 높은 검출 민감도를 가지며 3차원 분석이 가능한 기술이 필요하다. 이러한 분석 기술의 부재로 인해 현재까지 나노입자 표면에 존재하는 리간드 분포를 3차원에서 관찰한 사례는 존재하지 않으며, 이로 인해 입자 합성과정에서 리간드의 거동은 상당 부분 미지의 영역으로 남아있다. 예를 들어, 할라이드 리간드인 브롬(Br) 이온의 경우 정육면체 형태의 금속 나노입자 형성을 촉진하는 것으로 알려져 있으나, 여러 논문에서 이와 다른 결과를 보고하고 있다.
최벽파 교수 연구팀은 원자 단층 촬영 현미경(Atom probe tomography)을 활용해 서로 다른 할라이드 리간드를 통해 합성된 두 종류의 팔라듐 나노입자 표면에 존재하는 세트리모늄 리간드(Cetrimonium chloride)의 3차원 분포를 원자단위에서 관찰하는 데 성공했다.
원자 단층 촬영 현미경은 아주 얇은 바늘 모양으로 가공된 시편 표면의 원자들을 고전압 또는 고에너지 펄스를 가해 차례차례 증발시켜 검출기에 충돌시키고, 검출기에 기록된 원자의 충돌 위치와 충돌 순서, 그리고 충돌 원자의 질량 대 전하 비를 이용해 시편의 3차원 원자 분포를 재구성하는 분석 기술이다.
이러한 원자 단층 촬영 기술은 3차원 원자단위 분석 및 화학적 정량 분석이 가능할 뿐 아니라, 옹스트롬(100억 분의 1미터) 단위의 공간 분해능과 모든 원소에 대해 동일한 ppm 단위의 우수한 검출 감도를 갖고 있어 최근 재료 분석 분야에서 큰 주목을 받고 있다.
< 그림 1. 투과 전자현미경과 원자 단층 촬영 현미경으로 분석한 팔라듐 나노입자와 리간드 분포 >
연구팀은 리간드의 3차원 분포에 대한 단층 촬영 데이터로부터 각각의 나노입자 표면에 존재하는 세트리모늄 리간드의 밀도를 계산했다. 이를 통해 연구진은 세트리모늄 리간드와 할라이드 리간드 사이에 기존에 알려지지 않았던 상호작용이 존재하며, 이러한 서로 다른 리간드 사이의 상호작용이 나노입자의 최종 형태와 산화 저항 특성을 결정할 뿐 아니라 기존의 연구 결과들이 합치되지 않았던 원인이었음을 규명했다.
최벽파 교수는 "이번 연구는 기존에 상반됐던 연구 결과들을 모두 포용할 수 있는 실험적, 이론적 결과를 제시했다는 점에서 의의가 있다ˮ며, "해당 연구를 통해 얻은 결과는 나노입자 합성에 대한 근본적인 이해를 높이고, 우수한 특성을 가진 나노입자를 설계하는데 응용될 수 있으리라 기대한다ˮ고 밝혔다.
< 그림 2. 이번 연구에서 밝힌 할라이드와 세트리모늄 리간드 사이 상호작용과 그에따른 입자모양과 산화저항 특성의 변화 >
한편 이번 연구는 한국연구재단 과학기술분야 기초연구사업인 중견연구자지원사업의 지원을 통해 수행됐다.
장기 선택적 약물 전달 기술은 치료 효과를 극대화하고 부작용을 최소화할 수 있어 큰 기대를 받고 있다. 그러나 현존하는 기술로는 간, 비장, 폐와 같은 대식세포가 활발히 활동하는 장기에만 약물을 전달하는 것이 가능하나 콩팥, 심장, 뇌와 같은 장기로의 약물 전달은 도전적인 과제로 알려져 있다. 우리 대학 생명과학과 전상용 교수와 화학과 이희승 교수 공동연구팀이 체내에서 여러 생물학적 상호작용에 관여하는 당질 층을 모방한 인공 탄수화물 나노입자(Glycocalyx-mimicking nanoparticle, GlyNP) 수십 종을 합성하여 이를 다양한 장기로의 특이적 약물 전달과 치료를 가능하게 하는 새로운 나노의약 개발에 성공했다고 3일 밝혔다. 연구팀은 다섯 가지의 단당류 단위체를 기반으로 한 조합적인 패턴을 구현해 ‘인공 탄수화물 나노입자(GlyNP)’ 라이브러리 수십 종을 합성했고, 이를 직접 동물 체내에서 선택성을 평가해 간, 신장, 비장, 폐,
2024-05-03간 건강을 위협하는 질환인 비알콜성 지방간 질환과 그 진행 형태인 비알콜성 지방간염의 현재 표준 진단 방법은 주로 간 조직을 채취하는 간 생검에 의존하고 있어 환자의 위험 부담이 크며, 질병의 진행 단계를 추적하는 데 어려움이 있었다. 우리 대학 생명과학과 전상용 교수와 바이오및뇌공학과 박성홍 교수 공동연구팀이 활성산소에 반응해 자기공명영상(MRI) 신호가 증강되는 MRI 영상 조영제를 개발했고 한 번의 MRI 촬영으로 손쉽게 비알콜성 지방간염의 진행 정도를 모니터링하고 진단하는 기술을 세계 최초로 개발했다고 2일 밝혔다. 비알콜성 지방간염은 간세포 손상, 염증, 그리고 최종적으로 간경화로 진행될 수 있는 질환으로, 간 내 활성산소 수준의 증가와 밀접한 관련이 있다. 활성산소는 간세포의 산화 스트레스를 유발하고, 비알콜성 지방간염의 진행을 촉진하는 주요 요인 중 하나로 알려져 있다. 이에 착안해 연구팀은 비알콜성 지방간염의 진행을 비침습적으로 모니터링할 수 있는 새로운
2024-04-02열선, 스프레이 및 오일 주기적 도포, 기판 디자인 변경 등 없이도 금나노입자의 광열 효과를 산업현장에 적용할 수 있는 방빙/제빙 필름 코팅 기술이 개발되었다. 우리 대학 기계공학과 김형수 교수 연구팀(유체 및 계면 연구실)과 화학과 윤동기 교수 연구팀(연성 물질 나노조립 연구실)의 공동융합연구를 통해 단순 증발만으로 금 나노막대 입자를 사분면으로 균일하게 패터닝 할 수 있는 원천 기술을 확보하고, 이를 이용해 결빙 방지 및 제빙 표면을 개발했다고 3일 밝혔다. 최근 다양한 코팅 기법을 이용해 목표물 표면의 성질을 제어하려는 연구가 많이 진행되고 있으며, 특히, 기능성 나노 재료 패터닝을 통한 방식이 큰 주목을 받고 있다. 이 중에서도 금 나노 막대(GNR)는 생체 적합성, 화학적 안정성, 비교적 쉬운 합성, 표면 플라즈몬 공명이라는 안정적이면서도 독특한 특성으로 인해 유망한 나노물질 중 하나로 여겨지고 있다. 이때, 금 나노 막대의 성능을 극대화하려면 높은 수준의 증착 필
2024-01-03대면적의 빛을 활용하고 대기 중의 환경에서 0.02초 이내에 연료전지 등 차세대 에너지 저장 및 발전에 광범위하게 적용되는 고엔트로피 촉매 및 단일원자 촉매의 합성을 세계 최초로 구현했다. 우리 대학 전기및전자공학부 최성율 교수 연구팀과 신소재공학과 김일두 교수 연구팀이 공동연구를 통해 강한 빛을 다양한 탄소 기반 소재에 조사해, 0.02초 이내에 나노입자 촉매와 단일원자(single atom) 촉매를 진공 시설이 없는 대기 조건에서 합성하고 우수한 촉매 성능을 구현하는데 성공했다고 6일 밝혔다. 연구팀은 2022년 4월 제논 램프 빛을 조사해 금속산화물의 상(phase) 변화와 표면에 촉매 입자가 생성될 수 있음을 최초로 밝혔고 그 후속으로 소재의 광열효과를 유도하는 합성법에 대한 연구를 진행했다. 이에 초고온(1,800~3,000oC)과 빠른 승/하온 속도(105 oC/초)를 통해 기존의 합성법으로는 구현할 수 없는 촉매 입자를 합성하는 데 성공했다. 이번 기술은
2023-12-06위장관에 발병하는 만성적인 염증성 장 질환은 아직 뚜렷한 원인이 밝혀지지 않아 비스테로이드성 항염증제들과 주사용 항체 치료제들을 이용한 치료법이 일반적이지만 면역약화 등의 부작용들로 인해 치료에 어려움이 있다. 우리 대학 생명과학과 전상용 교수와 화학과 이희승 교수 공동연구팀이 장 내 당질층을 모사한 탄수화물 나노입자에 생체 내에서 항산화 및 항염증 작용을 하는 빌리루빈을 결합해 ‘항염증 탄수화물 나노입자(Anti-inflammatory Glycocalyx-mimicking nanoparticles)‘ 수십 종을 합성하고 이를 염증성 장 질환 치료에 적용함으로써 탁월한 효능을 보이는 의약을 개발했다고 2일 밝혔다. 세포막은 다양한 형태의 당 사슬 집합체인 당질층(glycocalyx)으로 둘러싸여 있다. 염증성 장 질환이 있는 사람의 장 조직에서는 정상인들과 다른 당질층이 형성되어 있다. 이러한 당질층은 우리 몸이나 음식에 많이 존재하는 탄수화물을 이루
2023-08-02