본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%84%A4%EC%9D%B4%EC%B2%98+%EC%BB%A4%EB%AE%A4%EB%8B%88%EC%BC%80%EC%9D%B4%EC%85%98%EC%A6%88
최신순
조회순
자패르 야부즈 교수, 물속 오염물질 선택적 제거 가능한 흡착제 개발
〈자패르 야부즈 교수〉 우리 대학 EEWS대학원 자패르 야부즈(Cafer T. Yavuz) 교수 연구팀이 물속의 유기 오염 물질을 선택적으로 제거할 수 있는 흡착제를 개발했다. 개발된 수(水)처리 흡착제는 불소를 기반으로 한 미소공성 고분자로 오염수 내의 물에 녹는 성질을 가진 미세 분자를 선택적으로 제거할 수 있다. 또한 값싸면서 손쉽게 합성할 수 있고 재생 가능하다는 장점을 갖는다. 이번 연구 결과는 네이처 자매지인 ‘네이처 커뮤니케이션즈 (Nature Communications)’ 11월 10일자 온라인 판에 게재됐다. 전 지구적 산업 개발과 지구 온난화로 인해 수자원의 오염은 가속화되고 있다. 농, 산업 분야에서 다양한 신소재를 개발하고 응용하면서 하수, 폐수에 유입되는 오염 물질의 종류 또한 다양해지고 있다. 특히 약물, 염료, 농약 등 크기가 작고 수용성이 높은 유기 분자들은 기존의 수(水)처리 공정을 통해 처리되지 않고 음용수(마실 수 있는 물)에 잔류해 인체에 피해를 줄 가능성이 높다. 기존의 수처리는 활성탄, 오존 분해, 역삼투 박막 등의 기술을 통해 이뤄진다. 이러한 기술들은 물에 잘 녹지 않는 성질을 갖고 크기가 큰 유기 분자를 대상으로 하기 때문에 잘 녹고 크기가 매우 작은 유기 분자들은 현재의 수처리 시스템으로는 제거가 어렵다. 또한 이러한 미세 분자들의 구조는 전하를 띠기 때문에 액상에서 분리가 어렵다. 연구팀은 새로운 흡착 기술을 이용해 이러한 작은 분자들을 제거하고자 했다. 수용액 내 용해된 유기 분자를 제거하기 위해선 미세한 크기의 유기 분자를 흡착할 수 있어야 한다. 그밖에 유기 분자를 선택적으로 흡착하기 위해 적절한 화학적 기능기의 도입이 가능해야 하고, 물속에서 사용하기 때문에 물에 대한 구조적 안정성이 높아야 한다. 연구팀은 위와 같은 조건을 충족하는 불소 기반의 다공성 유기 고분자 흡착제를 개발했다. 이 흡착제는 기공의 크기를 조절하는 방법을 통해 물에 존재하는 유기 분자 중 1~2 나노미터 미만의 미세 분자만을 특정해 흡착하는 성능을 보인다. 또한 화학적으로 유기 분자를 선택적으로 제거하기 위해서는 표적 물질과 강하게 상호작용할 수 있는 화학적 기능기가 필요하다. 불소 이온은 모든 원소 중 가장 전기 음성적이기 때문에 물속에서 전하를 띠는 유기 분자와 강하게 상호작용한다. 연구팀은 불소 기능을 함유함으로써 개발된 흡착제가 전하를 띠는 유기 분자를 중성인 분자보다 최대 8배 빠르게 흡착하고 제거함을 확인했다. 연구팀이 개발한 흡착제는 산업적 활용 가능성이 크고 회분식 공정 뿐 아니라 칼럼 공정을 통해서도 전하 및 크기에 따라 선택적 흡착이 가능하다. 야부즈 교수는 “불소 기능기가 가지는 전하의 선택성은 향후 담수화 재료 또는 수처리용 멤브레인 개발 등 다양한 기술에 응용 가능할 것이다”고 말했다. 변지혜 박사가 1저자로 참여한 이번 연구는 KAIST 하이리스크 하이리턴(High Risk High Return) 사업과 미래창조과학부의 중견연구자지원사업 및 기후변화대응사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 불소 기반의 다공성 고분자의 전하,크기 선택적 흡착 개념도 그림2. 불소 다공성 고분자 칼럼을 이용한 유기 분자의 분리 전, 후 농도 변화 관측 그림3. 유기 분자의 전하, 크기에 따른 불소 고분자의 흡착 특성
2016.11.29
조회수 14908
오일권, 유승화 교수, 전기로 물의 움직임을 자유롭게 제어하는 기술 개발
우리 대학 기계공학과 오일원, 유승화 교수 공동 연구팀이 그래핀이 코팅된 미세 금속 그물망을 이용해 물의 움직임과 흐름을 전기로 자유롭게 제어하는 기술을 개발했다. 연구팀은 그래핀이 코팅된 마이크로미터(100만분의 1미터) 단위 틈의 금속 그물망에 갇힌 물을 전기장을 가해 투과시키거나, 표면에 놓인 물방울의 모양을 바꾸는 등 ‘전기습윤현상(전기장이 젖음성을 바꾸는 현상)’을 이용해 물의 움직임과 흐름을 전기로 제어하는 방식의 기술을 개발해 수(水)처리 장치에서의 다양한 활용 가능성을 제시했다. 이번 연구결과는 네이처 자매지 네이처 커뮤니케이션즈 10월 31일자에 게재됐다.(논문명 : Graphene-coated meshes for electro-active flow control devices utilizing two antagonistic functions of repellency and permeability) 표면청소, 방수표면, 제습공조, 부식방지, 저항감소 등 다양한 수처리에 적용 가능한 액체 거동 제어 장치의 개발이 요구되고 있다. 그러나 기존의 표면 젖음성 조절과 부식 방지 연구들은 표면의 굴곡이나 화학적인 코팅에 의존하였기 때문에 표면의 젖음성을 제어할 수 없었다. 전기습윤현상을 이용하면 액체의 움직임과 흐름을 조작할 수 있게 돼 발수성 소재의 표면을 젖게 하거나 흡수성 소재의 표면에 물이 스며들지 않게 제어가 가능하다. 연구팀은 그래핀이 코팅된 금속재질의 그물망을 전극으로 사용하여 전기습윤현상에 기반한 액체거동기술을 개발했다. 순수한 물 혹은 이온성 액체 방울을 그래핀 그물망 전극의 표면에 위치시키고 구리판을 또 다른 전극으로 사용해 전압을 인가 시 액체방울 모양이 가역적으로 변화함을 보였다. 이는 정전기력 (electrostatic force)이 물 분자의 정렬 혹은 이온의 이동을 유도하여 액체방울이 전기장 방향으로 늘어나 생긴 현상이다. 그래핀의 소수성(hydrophobicity)으로 인해 일반적으로는 그래핀이 코팅된 그물망에는 물이 투과되지 못한다. 하지만 전기장을 가할 때 물에 작용하는 정전기힘과 그물망 틈 사이에 작용하는 모세관힘의 상호작용에 기반한 젖음성 조절 메커니즘을 규명해 이를 바탕으로 그물망 바깥쪽에 높은 전기장을 인가하면 안쪽의 액체가 비가역적으로 그물망을 투과하여 이동함을 보여, 전기로 그물망의 발수성과 투수성을 능동적으로 제어가 가능함을 보였다. 이를 이용해 그래핀 그물망으로 가둔 물탱크의 물을 전기를 가해 내보내는 장치나 물방울을 층층이 위치한 그래핀 그물망들의 가장 위에서 아래로 전기를 이용해 이동시키는 장치 등을 개발했다. 실험결과 그래핀 코팅이 금속의 부식을 막아 수처리 환경에서도 장시간 사용이 가능했다. 이 연구는 그래핀이 코팅된 금속재질의 그물망을 전극으로 사용하여 액체의 모양과 흐름을 능동적으로 제어할 수 있는 기술을 개발한 것이다. 전기장을 가하여 자유롭게 젖음성을 조절할 수 있는 내부식성* 그물소재로 필요에 따라 물의 흐름을 막거나 통과시키는 제어장치를 제작하여 다양한 미세유체 장치, 방습 및 제습 장치, 차세대 수(水) 처리장치, 혹은 물에 대한 마찰저항 조절이 필요한 선박과 플랜트 등에 사용할 수 있다. 이들 분야에서 요구되는 액체의 정확한 거동제어와 소형화, 장시간 사용 등의 기능을 갖춘 소재/소자의 원천 기술로의 적용이 기대된다. 오일권 교수는 “이 연구는 기존 연구에서 나타났던 금속의 부식 현상 및 물이 젖는 정도를 조절할 수 없었던 문제를 그래핀이 코팅된 그물망 구조로 극복하면서 마이크로 수준에서 액체의 움직임과 젖음성을 제어할 수 있는 방법을 개발한 것이다. 방습 및 제습, 미세유체, 해수 담수화, 차세대 수(水) 처리 장치 등 다양한 분야에 적용될 수 있을 것이다.”고 말했다. □ 그림 설명 그림1. 그래핀 매쉬의 제조 방법 및 기능성 길항 액체 제어 기술의 도식도 그림2. 비가역적 액츄에이션 모드(irreversible actuation mode)와 기능성 길항 액체 제어장치(functionally antagonistic active flow devices)
2016.11.16
조회수 13980
박용근 교수, 홀로그래픽 촬영 카메라 개발
우리 대학 물리학과 박용근 교수 연구팀이 간유리(optical diffuser, 광 디퓨저)를 이용한 홀로그래픽 카메라를 개발했다. 연구팀의 홀로그래픽 카메라는 어떠한 가정도 필요 없이 일반적인 홀로그램을 측정하는 기술로 사진 찍듯 홀로그램을 측정할 수 있는 이상적인 홀로그래피에 근접한 기술이다. 이번 연구 결과는 네이처 자매지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 10월 28일자 온라인 판에 게재됐다. 사진은 실제 눈으로 보는 것과 같은 원근감과 볼륨감을 표현할 수 없다. 그 이유는 현존하는 전자기기의 대역폭(~100 GHz)이 가시광의 진동수(~100 THz)에 훨씬 미치지 못하기 때문이다. 따라서 사진 기술로는 빛의 세기만 측정 가능하고, 원근감과 입체감 정보를 담은 빛의 파면 정보는 직접적으로 측정할 수 없다. 위상 문제(phase problem)라고 불리는 이 현상은 가시광 뿐 아니라 적외선, 자외선, 엑스레이 등 전자기파를 다루는 방대한 분야 전반에 큰 걸림돌로 남아 있었다. 이러한 위상 문제를 피해 간접적으로 빛의 파면을 측정하는 기술을 홀로그래피라고 한다. 그러나 이 홀로그래피 기술은 추가적인 참조 빛을 필요로 해 사진기술처럼 빠르게 전파되지 못했다. 수 세기동안 과학자들은 사진 찍듯 홀로그램을 찍기 위해 연구했으나 제안된 기술들은 대부분 특수한 입사 빛을 가정한 상황에서만 작동해 일반적인 상황에서 널리 사용되지 못했다. 연구팀은 입사 빛의 특수한 상황을 가정하는 대신 간유리를 활용해 입사 빛을 무작위로 산란시켰다. 무작위로 산란된 빛의 결맞음(파동이 간섭 현상을 보이는 성질) 정도에 대한 수학적 상관관계를 활용해 입사한 빛의 파면을 온전히 측정할 수 있음을 이론적으로 제안했다. 연구팀은 이론에 따라 렌즈 대신 간유리를 삽입한 홀로그래픽 카메라를 제작했고 실험을 통해 성공적으로 작동하는 것을 확인했다. 일상에서 쉽게 볼 수 있는 물체를 홀로그램으로 측정했고, 초점 위치를 자유자재로 바꿈으로써 이 기술이 일반적인 경우에도 작동함을 증명했다. 연구팀의 홀로그래피 카메라는 그 형태와 구성이 간단해 렌즈 대신 간유리를 카메라 센서 앞에 대는 것만으로 홀로그램의 측정이 가능해진다. 핸드폰 카메라 등에 적용해 상용화가 가능할 것으로 기대된다. 같은 원리를 활용해 다른 대역의 위상 문제도 해결할 수 있다. 특히 엑스레이 영역의 문제를 해결한다면 초고해상도 엑스레이 현미경의 구현이 가능해져 과학계 전반에 큰 발전을 가져올 수 있을 것으로 예상된다. 논문의 1저자인 이겨레 학생은 “이번 기술은 사진을 찍듯 홀로그램을 측정할 수 있는 이상적인 홀로그래픽 카메라에 가장 근접한 기술이다”며 “핸드폰 카메라 등에 쉽게 적용해 홀로그래피의 대중화가 가능할 것으로 기대된다”고 말했다. □ 그림 설명 그림1. 제안된 홀로그래픽 카메라. 일반적인 광 디퓨저를 홀로그래픽 렌즈로서 활용 그림2. 입사한 빛의 파면 (왼쪽, incident field)과 제안된 기술로 측정된 파면 (오른쪽, retrieved field) 그림3. 일반적인 물체의 (주사위) 홀로그램
2016.11.01
조회수 14091
최민기 교수, 상용화 가능한 이산화탄소 흡착제 개발
〈 최 민 기 교수 〉 우리 대학 생명화학공학과 최민기 교수 연구팀이 고성능의 새로운 이산화탄소 흡착제를 개발해 약 20kg의 중규모 합성에 성공했다. 이 기술을 통해 화력발전소에서 배출되는 이산화탄소의 흡, 탈착을 상용화가 가능한 수준까지 발전시키는 데 큰 역할을 할 것으로 기대된다. 이번 연구 결과는 네이처 자매지인 ‘네이처 커뮤니케이션즈(Nature Communications)’ 8월 30일자 온라인 판에 게재됐다. 기존 연구들에서는 이산화탄소 제거용 흡착제를 개발하기 위해 아민이라는 유기화합물이 담긴 다양한 고체 물질들이 연구됐다. 하지만 현재까지 개발된 아민 기반의 흡착제는 이산화탄소를 흡착하는 성능은 뛰어나지만 탈착이 어려워 재생 안정성이 떨어지고, 반복적으로 사용하면 화학적 변질이 생겨 성능이 떨어지는 장기 안정성 문제가 있었다. 또한 대부분의 소재들이 실제 발전소 이산화탄소 포집에 응용될 정도의 대량생산이 불가능해 유의미한 결과로 이어지지 않았다. 연구팀이 문제 해결을 위해 개발한 이산화탄소 흡착제는 기존의 아민 기반 흡착제를 에폭사이드와 간단히 반응시켜 탈착 성능, 반응 속도, 재생 안정성 등을 비약적으로 증진시켰다. 연구팀은 대량생산에 용이하고 경제적인 범용 물질인 실리카, 폴리에틸렌이민, 에폭사이드 등을 원재료로 이용했다. 실리카를 지지체로 놓고 폴리에틸렌이민과 에폭사이드를 반응시킨 아민 기반의 흡착제를 만들었다. 이는 기존 흡착제가 갖고 있던 비활성화 문제를 해결하고 재생 안정성을 현격히 높였다. 연구팀은 우수하고 신속한 이산화탄소 흡, 탈착 특성(10wt% : weight percentage), 높은 재생 안정성, 대량생산성을 모두 확보했기 때문에 현재까지 발표된 다른 고체 흡착제보다 상용화에 가깝다고 밝혔다. 실제 ‘한국이산화탄소포집 및 처리연구개발센터(KCRC)’ 연구진과의 협업을 통해 20kg의 중규모 합성에 성공 후 20 Nm3/h의 벤치 스케일 유동층 반응기에서 가동에 성공했다. 1저자인 최우성 학생은 “이번 연구는 항상 가능성만 언급됐던 고체 이산화탄소 흡착제의 문제점을 단순하지만 창의적인 화학 반응을 통해 획기적으로 개선했다”며 “이산화탄소 포집 공정을 상용화 단계까지 발전시켰다는 점에서 큰 의미가 있다”고 말했다. 최민기 교수는 “이제 상용화 단계의 초입에 들어섰고 앞으로도 개선할 부분이 많지만 추후 흡착제를 더 발전시켜 세계 최고의 실용화 가능한 이산화탄소 포집 흡착제를 개발하겠다”고 말했다. 이번 연구는 미래창조과학부의 ‘Korea CCS 2020’ 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 신규 흡착제의 이산화탄소 포집 공정 개념도 그림2. 본 연구에서 개발한 신규 흡착제와 기존 흡착제의 이산화탄소 흡착능 비교
2016.09.08
조회수 11588
신종화,김도경,이용희 교수, 수학적 공간채움 원리 적용한 신소재 개발
우리 대학 신소재공학과 신종화, 김도경 교수와 물리학과 이용희 교수 공동 연구팀이 수학의 공간채움 원리를 이용해 기존 기술보다 2천 배 이상 높은 유전상수를 갖는 전자기파 신소재를 개발했다. 이번 연구 결과는 네이처 자매지인 ‘네이처 커뮤니케이션즈(Nature Communications)’ 8월 30일자 온라인 판에 게재됐다. 유전상수는 소재의 전기적 성질 중 가장 기본이 되는 성질로, 물질 내부의 전하 사이에 전기장이 작용할 때 전하 사이의 매질이 전기장에 미치는 영향을 나타내는 단위이다. 진공 상태의 유전상수는 1이고, 자연에 존재하는 물질과 개발된 메타물질을 포함해 가장 큰 광대역 유전상수는 최대 1천600 수준이다. 유전상수가 수천 이하에 머물렀던 이유는 유전상수 향상에 사용됐던 근본 원리에 한계가 있었기 때문이다. 유전상수를 키우기 위해서는 같은 전기장이 가해졌을 때 더 큰 유전분극이 나타나게 만들어야 한다. 이를 위해 기존에는 피뢰침 끝에 강한 전기장이 모이는 개념의 ‘전기장 국소화 원리’가 사용됐다. 피뢰침이 뾰족할수록 끝에 더 강한 전기장이 모여 유전분극이 강해지지만 그 대신 유전분극이 강해지는 공간적 범위가 좁아지게 된다. 결국 이 원리는 강한 유전분극일수록 미치는 영향의 범위는 좁아지는 근원적 한계를 갖는다. 실제로 기존 유전상수를 증대시킨 메타물질에서는 전기장이 강하게 모이는 부분이 매우 좁은 영역에 국한된다. 연구팀은 문제 해결을 위해 수학적 공간채움 구조를 전자기 소재에 대입했다. 공간채움 구조란 선으로 한 차원 높은 면을 채우는 구조를 뜻한다. 유한한 크기를 갖는 면의 모든 점을 통과하는 연결된 선을 그릴 수 있으며 이 때 선의 길이는 무한대이다. 이를 응용해 기존의 피뢰침처럼 좁은 영역에서만 발생하는 강한 유전분극이 메타물질 공간 내부 전체에 밀집돼 나타나게 만들었다. 또한 공간채움 선의 방향을 조절해 밀집된 유전분극이 서로 상쇄되지 않고 합쳐지도록 조절했다. 연구팀은 이는 마치 여러 개의 시냇물이 만나 큰 강물이 되는 효과와 같다고 설명했다. 즉, 좁은 공간에 증대된 유전분극들이 공간채움 구조를 통해 거대하게 발현되는 효과를 고안했고 실제로 구현함으로써 삼백만 이상의 큰 유전상수를 얻을 수 있었다. 유전상수가 320만이면 이 물질을 활용한 축전기의 전기용량은 진공에 대비해 320만 배 커지고, 전자기파를 흡수하는 비율이나 방출하는 속도 또한 320만 배 커진다. 또한 굴절률이 약 1천 800배(유전상수의 제곱근)가 되기 때문에 이 소재 안에서 빛의 속도는 1천 800배 느리게, 파장은 1천 800배 짧아진다. 이를 통해 렌즈 등의 소자는 1천 800배 가량 작게 만들 수 있고 기존의 이미징 장치보다 1천 800배 세밀하게 물체를 관찰할 수 있다. 특히 아주 얇은 막으로도 원하는 방향으로 전자기파를 반사시키거나 대부분 흡수시킬 수 있기 때문에, 전투기나 함정에 씌워서 레이더에 탐지되지 않도록 하는 스텔스 표면 등 국방 응용이 기대되며, 5G 휴대전화용 안테나 등 무선통신 분야 적용도 가능할 것으로 예상된다. 또한, 가시광선에서도 만약 그 원리가 적용된다면 바이러스를 직접 볼 수 있는 수준의 매우 높은 분해능을 가진 현미경 등 더욱 다양한 응용이 기대된다. 신 교수는 “간단한 수학적, 물리적 원리가 혁신적 성능을 갖는 신소재 개발로 이어질 수 있음을 밝혔다”며 “이는 기초 원리의 중요성을 확인한 값진 경험이었고, 앞으로도 이러한 원리를 기반으로 신소재 개발을 지속하겠다”고 말했다. 신소재공학과 장태용 박사과정 학생이 1저자로 참여한 이번 연구는 삼성미래기술육성재단의 지원을 받아 수행됐다. □ 그림 설명 그림1. 본 연구에서 개발된 메타물질의 모식도와 실제 사진 그림2. 수학분야의 공간채움구조
2016.09.06
조회수 15613
이정용 교수, 〈와인의 눈물〉 현상 이용한 유기 태양전지 생산 기술 개발
〈 이 정 용 교수 〉 우리 대학 EEWS 대학원 이정용 교수 연구팀이 ‘와인의 눈물’로 잘 알려진 마랑고니 효과를 이용해 물 표면에서 유기 태양전지를 제작할 수 있는 기술을 개발했다. 노종현, 정선주 박사과정이 공동 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 8월 10일자 온라인 판에 게재됐다. 유기 태양전지는 매우 가볍고 반투명하며 쉽게 휘어지는 성질 때문에 차세대 웨어러블 전자소자의 에너지원으로 주목받고 있다. 최근 성능이 향상되며 다양한 상업적 응용 가능성이 높아지고 있지만 대면적에서 높은 성능을 유지하는 공정에는 한계가 있어 상용화가 지연되고 있다. 연구팀은 자발적 순간 확산 현상, 즉 ‘마랑고니 효과’라고 불리는 일상에서 쉽게 접할 수 있는 과학적 원리를 적용해 빠른 시간에 대면적의 고품질 유기 박막을 형성하는 데 성공했다. 마랑고니 효과는 표면장력이 다른 두 용액이 접할 때 이 표면장력 차이를 해소하기 위해 일어나는 빠른 물질 수송 현상을 뜻한다. 잔에 담긴 와인을 빙글빙글 돌리면 잔 표면에 물방울이 형성돼 흘러내리는 현상이나 후춧가루가 뿌려진 물 표면에 세제를 한 방울 떨어트리면 후춧가루들이 순식간에 가장자리로 쓸려가는 현상 등이 이에 해당된다. 이 기술은 유기 물질이 녹아 들어간 용액을 물에 떨어트리는 순간 물 표면을 따라 빠르게 용액이 퍼지고 얇은 박막을 형성한다. 그 후 용액 속 용매는 공기 중과 물속으로 사라지고 대신 그 자리에 매우 얇고 균일한 유기 박막이 형성되는 원리이다. 이 기술은 여러 장점을 갖는다. 우선 종이와 곡면 유리같이 균일하게 유기 박막을 형성하기 어려운 곳에도 균일하게 박막을 전사하는 것이 가능하다. 또한 수 초 이내의 짧은 시간에 박막이 형성되기 때문에 유기 박막 손상의 원인인 산소 흡착을 최소한으로 막아줄 수 있다. 산소가 존재하는 대기 중에서도 높은 품질의 박막을 형성할 수 있는 것이 자발적 순간 확산 공정의 가장 큰 장점이다. 연구팀은 이 기술로 대기 중에서 유기 태양전지를 제작했는데 산소 및 수분으로 인한 악조건을 극복하고 고효율의 전지를 확보했다. 이는 산소와 수분이 제한된 환경에서 제작한 태양전지와 비슷한 효율을 갖는다. 산소와 수분 조건을 극복했다는 점은 대량 생산의 핵심 기술인 롤투롤(Roll 2 Roll) 공정에 적용가능하다는 것을 뜻한다. 롤투롤 공정은 롤러를 이용해 알루미늄 호일같은 유연 기판에 연속적 생산을 가능하게 하는 기술로, 저렴하고 대량 생산이 가능해 유기 태양전지를 상용화하기 위한 필수 기술이다. 그러나 기존 롤투롤 공정에 많이 쓰이던 슬롯다이(slot-die) 코팅 기술은 공기 중의 공정에서 용매 건조 시간이 길어 산소와 수분에 취약하다는 단점이 있었다. 이 교수 연구팀은 1미터 길이의 단일 유기 박막을 형성한 후 롤투롤 시스템을 이용해 유연 기판에 옮기는 데 성공했다. 자발적 순간 확산 공정을 통해 대량 생산이 가능하고, 수분과 산소에 취약한 유기소자 제작 공정의 시간과 복잡도를 낮출 수 있음을 증명했다. 이 교수는 “초고속으로 대면적의 유기 박막을 형성할 수 있는 유기 태양전지 상용화를 위한 완전히 새로운 공정이다”며 “저렴한 가격에 고효율의 유기 태양전지를 공급해 상용화를 앞당길 수 있는 원천기술이 될 것으로 기대한다”고 말했다. 이 연구는 한국연구재단 기초연구사업, 기후변화대응기술개발사업, KAIST 기후변화연구허브 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 개발한 기술의 매커니즘을 3D 이미지로 묘사한 개념도 그림2. 개념도 및 제작된 유기 태양전지 성능 그래프
2016.08.23
조회수 14704
최철희, 최경선 교수, 빛을 이용한 치료용 단백질 전달시스템 개발
우리 대학 바이오및뇌공학과 최철희 교수, 최경선 교수 공동 연구팀이 빛을 이용해 치료용 단백질을 체내로 정확하고 안전하게 전달할 수 있는 기술을 개발했다. 이는 체내 세포에서 자연적으로 생산되는 나노입자인 엑소솜과 단백질 약물이 빛을 받으면 자석처럼 서로 결합하는 기술로 우수한 기능과 안전성이 확보됐다는 의의를 갖는다. 이번 연구 결과는 국제 학술지인 ‘네이처 커뮤니케이션즈(Nature Communicaitons)’ 7월 22일자 온라인 판에 게재됐다. 최근 바이오 신약의 중요성이 커지면서 바이오 신약의 대부분을 차지하는 단백질 의약을 효과적으로 신체 내 표적 세포에 전달할 수 있는 약물전달시스템 개발이 활발히 이뤄지고 있다. 특히 나노입자는 그 특성 상 종양으로 더 많은 양이 침투할 수 있다는 장점이 있다. 따라서 새로운 물리, 화학 및 광학적 특성을 갖는 나노소재의 입자를 이용해 단백질 등의 바이오 신약을 전달하려는 시도가 진행 중이다. 하지만 현재 기술은 표적 세포에 이르기까지 생체 단백질 활성을 유지시키기 어렵고 면역 반응의 발생을 억제시켜야 하는 문제 등의 한계를 갖는다. 또한 치료용 단백질은 그 크기가 매우 커 기존 방법으로는 실용화가 매우 어렵다. 무엇보다도 가장 큰 문제는 독성 발생 가능성 등 인체 안전성이 해결되지 않았다는 않다는 점이다. 연구팀은 문제 해결을 위해 인간의 세포에서 자연적으로 발생하는 나노입자인 엑소솜(세포외 소낭)을 단백질 약물의 운송 수단으로 사용했고, 빛을 받으면 서로 결합하는 특징을 갖는 CRY2와 CIBN 단백질(CRY2, CIBN : 애기식물장대에서 유래한 서로 결합하는 특성을 갖는 단백질)을 이용했다. 엑소솜에는 CIBN을, 단백질 약물에는 CRY2를 융합시킨 뒤 450~490nm 파장의 푸른빛을 쏘면 CIBN과 CRY의 결합하는 특성으로 인해 자연스럽게 엑소솜에 단백질 약물의 탑재가 유도된다. 이 기술은 기존의 수동적인 탑재에 비해 두 가지 장점을 갖는다. 우선 세포 바깥에서 정제된 단백질을 엑소솜에 넣는 기술에 비해 치료용 단백질의 적재율이 천배 가까이 높아졌다. 그리고 단백질을 정제할 필요가 없어져 효율성, 성공률은 높아지고 비용은 적어진다. 연구팀은 기존보다 낮은 비용으로 보다 쉽게 치료용 단백질이 탑재된 엑소솜을 생산하면서 효율 및 안정성이 향상된 치료용 단백질 전달시스템을 개발했다. 이 기술은 기존 단백질 약물이 세포 외부에서만 작용한다는 한계를 극복함으로써 향후 바이오의약 분야의 새로운 패러다임을 제시하는 원천 기술이 될 것으로 기대된다. 연구팀은 현재 다양한 난치성 질환 치료를 위한 표적 단백질이 탑재된 치료용 엑소솜을 개발 중이며 효능 및 임상 적용 가능성을 검증하고 있다. 최철희 교수는 “이번 기술은 생체에서 만들어지는 나노입자인 엑소솜에 치료용 단백질을 효율적으로 탑재시켰다”며 “안전하고 기능이 우수한 단백질 약물을 대량 생산할 수 있는 획기적인 원천기술이다”고 말했다. 이 기술은 KAIST 교원창업기업인 ㈜셀렉스라이프사이언스 사에 기술이전 돼 엑소솜 약물 제조 기술의 최적화 및 전, 임상 시험을 위한 개발 단계 중이다. □ 그림 설명 그림1. 엑소솜 내부에 치료용 단백질이 함유된 것을 묘사한 개념도 그림2. 개발한 기술의 개념도
2016.08.09
조회수 12964
유승협 교수, 효율성과 유연성 갖춘 OLED 기술 개발
〈 유 승 협 교수 〉 우리 대학 전기및전자공학부 유승협 교수와 POSTECH 신소재공학과 이태우 교수 공동 연구팀이 손상 없이 반복적으로 휘어지면서 우수한 효율을 갖는 플렉서블 유기발광다이오드 (OLED) 기술을 개발했다. 그래핀, 산화티타늄, 전도성 고분자를 복합 전극으로 활용하는 이 기술로 효율 극대화와 우수한 유연성을 동시에 얻을 수 있어 향후 편의성과 활용도를 높일 수 있을 것으로 기대된다. 최성율 교수, 김택수 교수가 공동 연구팀으로 참여하고 이재호 박사과정 학생, POSTECH 한태희 박사와 박민호 박사과정 학생이 공동 1저자로 수행한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 6월 2일자 온라인 판에 게재됐다. 현재 플렉서블 OLED 기술은 엣지형 스마트폰, 커브드 OLED 텔레비전 등에 사용되지만 플렉서블 OLED를 곡면 형태로 휘게 만든 후 고정 시키는 방식으로만 적용되고 있다. 반복적 휨이 가능한 플렉서블 OLED의 구현을 위해선 소재 및 관련 기술의 지속적 발굴이 중요하다. 특히 반복적으로 휘어질 때 각 구성 요소들이 깨지거나 손상되지 않도록 하는 것이 매우 중요하다. 그래핀은 얇은 두께를 통한 우수한 유연성 및 전기적 특성, 광학적 투명성을 갖는다. 이 특성들은 OLED에 주로 사용되는 산화물계 투명전극의 쉽게 깨지는 현상을 극복할 수 있는 기술로 각광받고 있다. 그러나 플렉서블 OLED가 주로 쓰이는 웨어러블 기기는 배터리 용량이 제한적이기 때문에 유연성과 동시에 OLED의 효율을 함께 확보하는 것이 중요하다. OLED는 일반적으로 공진현상(Resonance)(용어설명) 현상을 활용해 발광 효율을 향상시킬 수 있다. 공진현상을 일으키기 위해서는 일정량 이상의 빛 반사가 발생하는 투명 전극이 필요한데 그래핀만을 투명전극으로 사용하면 반사가 적어 광 효율이 낮다는 한계가 있다. 연구팀은 위의 유연성 및 효율성 문제를 해결하기 위해 기존의 그래핀에 산화티타늄(TiO2)과 전도성 고분자 형태를 결합한 복합 전극층을 개발했다. 이 구조에서 각각의 전극 층은 서로의 단점을 보완해주는 협력적 역할을 해 공진 효과를 극대화한다. 연구팀이 개발한 복합전극 층은 산화티타늄의 높은 굴절률과 전도성 고분자의 낮은 굴절률이 함께 활용된다. 이를 통해 전극으로부터의 유효 반사율을 높여줘 공진현상이 충분히 활용될 수 있다. 또한 전도성 고분자의 낮은 굴절률은 표면 플라즈몬의 손실로 인한 효율 감소까지 줄여준다. 기존 27.4%의 양자효율에서 1.5배 향상된 40.5%의 외부양자효율을 보이는 OLED를 구현했다. 이는 동일 발광재료를 이용해 보고된 그래핀 기반 OLED 중 가장 높은 효율이다. 효율을 향상시키는 구조를 도입하면 유연성 등의 다른 특성이 나빠지는 트레이드 오프 현상이 종종 발생한다. 연구팀은 산화티타늄 막이 구부러질 때 깨짐을 방해하는 자체 특성이 있어 기존 산화물 투명전극보다 4배 높은 변형에도 견디는 것을 확인했다. 이를 이용해 유연성 저하를 최소화하고 성능 극대화에 성공했다. 연구팀의 플렉서블 OLED는 곡률 반경 2.3mm에서 1천 회 구부림에도 밝기 특성이 변하지 않아 높은 성능과 유연성을 동시에 확보할 수 있음을 증명했다. 유 교수는 “분야를 넘어선 융합연구가 아니었다면 이번 연구는 불가능했을 것이다”며 “이번 연구 성과가 플렉서블, 웨어러블 디스플레이나 인체 부착형 센서용 플레서블 광원의 성공에 중요한 기틀을 제공할 것이다”고 말했다. 이번 연구는 한국연구재단 공학연구센터 사업의 일환인 차세대 플렉서블 디스플레이 융합센터 (CAFDC), 글로벌 프론티어 소프트 일렉스토닉스 연구단, KAIST 그래핀 연구센터, 산업통상자원부의 IT R&D 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 그래핀 복합 전극층 기반 OLED의 동작사진 그림2. 산화티타늄 (TiO2)-그래핀-전도성 고분자 복합 전극 기반 플렉시블 OLED 구조 모식도
2016.06.03
조회수 15012
최광욱 교수, 신체 세포조직의 성장 원리 규명
우리 대학 생명과학과 최광욱 교수 연구팀이 신호전달체계에 존재하는 ‘14-3-3’ 단백질이 신체 기관 발달 및 세포 조직 성장에 새롭게 관여함을 규명했다. 이번 연구는 네이처의 자매지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 6일자 온라인 판에 게재됐다. (논문명: 14-3-3 proteins regulate Tctp-Rheb interaction for organ growth in Drosophila) 우리 신체에는 토르 신호(Tor signaling)라고 불리는 신호전달체계가 존재한다. 이 신호전달체계는 단백질 합성을 늘려 세포 크기를 키우거나 세포 숫자를 늘리는 역할을 한다. 토르 신호가 너무 많으면 암을 유발하기도 하고, 반대로 너무 적으면 신체 기관이 제대로 성장을 할 수 없게 된다. 이와 같이 토르 신호는 세포 조직의 성장과 밀접한 관련이 있다. 이 토르 신호를 조절하는데 Tctp(Translationally controlled tumor protein)와 Rheb 단백질이중요한 역할을 한다. 최 교수 연구팀은 과거 연구에서 토르 신호전달체계에서 Tctp 단백질이 Rheb 단백질의 기능 조절에 영향을 끼친다는 것을 밝혔다. 하지만 Tctp와 Rheb이 어떤 방식으로 조절되는지, 중간에 어떤 매개체가 필요한지 등은 밝혀내지 못했다. 연구팀은 문제를 해결하기 위해 초파리를 이용한 유전적 상호작용 분석 실험을 수행했다. 그리고 14-3-3 단백질이 Tctp와 Rheb 사이의 다리 역할을 해 두 단백질이 상호작용할 수 있음을 밝혔다. 초파리 체내에는 두 개의 14-3-3 동종형 유전자가 존재한다. 따라서 두 개 중 하나가 없어도 현저한 성장 장애는 나타나지 않는다. 그러나 연구팀은 Tctp 또는 Rheb의 기능이 부분적으로 손상된 상태에서 14-3-3의 결핍이 발생하면 기관 성장에 심각한 문제가 생기는 것을 확인했다. 이러한 상승효과의 원리를 통해 14-3-3 단백질이 Tctp와 Rheb 단백질 사이의 결합을 직접적으로 조절해 성장에 관여함을 규명했다. 이번 연구에 기초해 향후 고등 동물에서도 유사한 조절 기작이 존재하는지 확인하기 위한 연구가 진행될 것으로 예상된다. 고등 동물에서의 연구도 성공적으로 이뤄진다면 향후 암 조직의 조절이나 기관 발달 촉진 등의 효과도 얻을 수 있을 것으로 기대된다. 연구팀은 14-3-3 유전자가 초파리 뿐 아니라 인체에도 존재하기 때문에 토르 신호전달체계의 문제로 인한 종양의 원인 규명 및 치료법 예방에 중요한 역할을 할 것으로 전망했다. 최 교수는 “인체에는 유전자 중복으로 인해 기능이 밝혀지지 않은 질병 관련 유전자들이 많다”며 “초파리 모델 동물이 질병 관련 유전자들의 생체 내 작용을 규명하는 데 기여할 것이다”고 말했다. 생명과학과 르 풍 타오 학생이 주도한 이번 연구는 교육부와 한국연구재단이 추진하는 중견연구자지원사업과 글로벌 연구실지원사업의 일환으로 수행됐다. □ 사진 설명 사진1. 14-3-3과 tctp 단백질 결핍으로 인해 초파리 눈이 소실된 사진 사진2. 14-3-3과 tctp 단백질 결핍으로 인해 초파리 날개가 소실된 그림 사진3. 14-3-3 결핍으로 인한 초파리의 두뇌부가 상실된 사진
2016.05.18
조회수 12741
모델링 기반 거미줄 모사 인공 생체섬유 개발
유 승 화 교수 우리 대학 기계공학과 유승화(32) 교수 연구팀이 컴퓨터 모델링을 이용해 거미줄을 모사한 인공 생체섬유 개발에 성공했다. 이 연구를 기반으로 자연에서 생성되는 다양한 생체섬유의 합성과정에 대한 이해가 가능해지고, 실제 거미줄에 버금가는 인공 생체섬유의 설계, 제작을 앞당길 것으로 기대된다. 미국 매사추세스 공대, 플로리다 주립대, 터프츠 대학과 공동으로 진행한 이번 연구는 ‘네이처 커뮤니케이션즈(Nature Communications)’ 5월 28일자 온라인 판에 게재됐다. 거미줄은 강도가 강철에 버금가고 인성(끊어질 때까지 흡수하는 에너지 양)이 케블라 섬유와 버금가는 장점이 있다. 그러나 거미는 누에처럼 고치를 만들지도 않고 서로 영역을 침범하며 싸우기 때문에 사육이 어려워 대량 생산에 한계가 있었다. 그런 이유로 기존에는 박테리아 유전자에 거미줄 단백질을 삽입해 생체 섬유를 만들려는 시도가 많았으나 시행착오에 의존해 진행된 실험이 대부분이었다. 유 교수의 연구는 예측 가능한 모델링을 기반으로 다양한 단백질을 선제적으로 탐색하고, 인공 거미줄 설계 및 제작과정에 반영했다는 의의를 갖는다. 거미줄은 물속에서 안정성을 갖는 친수성과 반대로 물과 쉽게 결합되지 않는 소수성을 가진 영역이 교차로 존재하는 단백질(펩타이드)들이 가교를 이루며 결합한 구조이다. 거미줄은 거미의 실 분비 기관인 실샘에 존재하는 단백질 용액이 실관을 통과하며 전단유동을 통해 고체화돼 형성된다. 연구팀은 새롭게 개발된 컴퓨터 모델을 이용해 다양한 종류의 단백질 용액의 전단유동 하에서의 변화를 조사했다. 이를 통해 단백질의 아미노산 체인이 충분히 길고, 적절한 비율의 소수성과 친수성 영역을 가질 때만 단백질 간의 연결도가 급격히 증가해 높은 강성과 강도를 갖는 생체섬유 합성이 가능하다는 것을 밝혔다. 본 모델링을 통해 제시된 단백질을 박테리아의 유전자 조작을 통해 합성, 실관을 모사한 방적과정을 통해 인공 거미줄을 제작하였다. 연구팀은 강한 거미줄 생성 원리가 밝혀지기 시작했기 때문에 향후에는 실제 거미줄 강도에 버금가는 생체 섬유 제작이 가능할 것이라고 전망했다. 또한 생체 적합성을 갖기 때문에 인체 내에서도 부작용이 발생하지 않아 바이오메디컬용으로 사용이 가능할 것이라고 기대된다. 궁극적으로는 부작용이 없는 바이오메디컬에 특화된 생체 섬유 제작을 목표로 하고 있다. 유 교수는 “이번 연구로 체계적 설계를 통한 인공 생체섬유의 제작이 가능함을 증명했다”며 “향후 인공 생체섬유 합성의 새 가능성을 열었다”고 말했다. □ 그림 설명 그림1. 합성된 인공 거미줄의 확대 사진 그림2. 전단유동 전후의 단백질 용액 모델링 결과 및 네트워크 연결도 분석 결과
2015.06.01
조회수 10400
새 인공 형광 단백질 나노 조립체 개발
정 용 원 교수 우리 대학 화학과 정용원 교수 연구팀이 새로운 모양과 다양한 크기의 인공적 형광 단백질 나노 조립체를 개발했다. 이 단백질 나노 조립체 연구로 단백질 기반 신약 및 백신 개발 등 새로운 나노구조체 분야에 활발한 적용이 가능할 것으로 기대된다. 이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 14일자 온라인 판에 게재됐다. 우리 몸의 필수 구성요소인 단백질은 나노미터 크기의 특성과 더불어 무한한 기능과 구조를 갖고 있다는 점에서 새로운 물질 및 구조체 개발에 매우 적합한 것으로 알려져 있다. 특히 단백질 다수가 조립된 다중 조립체는 새로운 성질과 모양, 크기를 가지며 생체친화적인 나노 구조체이기 때문에 많은 관심을 받고 있다. 단백질 다중 조립체는 다수의 단백질이 동시에 작용하기 때문에 결합력을 극대화 해 신약, 백신 기능 향상 연구에 중요한 방법론을 제시할 것으로 기대되기 때문이다. 이 조립체의 상업적, 연구적 이용을 위해선 조립된 단백질의 수가 정확히 조절되고, 다양한 크기의 조립체를 제작할 수 있어야 한다. 하지만 현재의 기술로는 조립체의 크기에 따라 정밀히 분리하는 것이 쉽지 않다. 연구팀은 문제 해결을 위해 인공적 형광 단백질 조립체를 세포 내 합성을 통해 다양한 크기로 제작했다. 또한 조립체 표면 개량을 통해 거대 생체분자의 안정성을 향상시켰고, 다양한 크기의 조립체를 분리할 수 있는 방법을 최초로 개발했다. 이 방법을 이용해 다각형 및 선형 배열을 갖는 형광 단백질 조립체 또한 제작해 관찰했다. 이 과정에서 나노크기 공간에서의 결합 단백질의 개수를 증가시켰고, 기존 단일 단백질보다 비약적으로 향상된 결합력을 확인했다. 정 교수는 “이번 단백질 조립체 제작 기술은 다양한 모양과 크기, 기능성을 갖는 새 조립체 제작의 기반이 될 것이다”며 “비약적으로 향상된 기능을 가진 단백질 신약, 백신, 혹은 결합 리셉터 연구에 핵심적 역할을 할 것”이라 말했다. 정용원 교수 지도 아래 김영은 박사과정 학생이 1저자로 참여한 이번 연구는 우리 대학 김호민 교수 연구팀이 참여했으며, 한국연구재단이 추진하는 글로벌프론티어사업(바이오나노 헬스가드 연구단) 및 기초연구실지원사업의 지원을 받아 수행됐다. □ 그림 설명 그림 1. 형광단백질 조립체 모식도 및 전자현미경 사진
2015.05.26
조회수 12921
3차원 형상 제조 포토리소그래피 공정 기술 개발
<김신현 교수> 우리 대학 생명화학공학과 김신현(33) 교수 연구팀이 산소의 확산 원리를 이용해 3차원의 형상을 구현할 수 있는 포토리소그래피(photolithography) 공정 기술을 개발했다. 연구 결과는 ‘네이처 커뮤니케이션즈(Nature Communications)’ 온라인 판에 게재됐으며, 동일 저널의 대표 그림(featured image)으로 선정됐다. 포토리소그래피는 빛을 노출시켜 원하는 상을 얻는 필름 카메라의 원리와 같다. 감광물질(photoresist)을 원판에 바르고 자외선을 노출시켜 빛을 받은 부분만 굳게 만든 뒤, 나머지 부분은 깎아내는 방식이다. 이는 반도체, 집적회로 등 미세패턴을 다루는 대부분의 산업계에서 널리 사용되고 있다. 하지만 기존 포토리소그래피 공정은 자외선이 항상 수직방향으로 내리쬐기 때문에 빛의 노출 방향에 따라 형성되는 미세패턴이 2차원으로만 제조되는 한계가 있었다. 연구팀은 3차원 패턴 제조를 위해 산소를 사용했다. 일반적으로 빛을 이용한 중합반응에서 산소는 물질이 굳게 되는 경화작용을 방해하는 요소로 알려져 있다. 하지만 김 교수 연구팀은 이 특성을 역으로 이용했다. 일부 영역에만 자외선을 노출시키면 그 부분만 산소의 농도가 감소하게 되고 그 외 영역의 산소의 농도는 유지된다. 농도의 차이로 인해 자외선이 노출된 영역으로 산소의 확산 현상이 발생한다. 이를 통해 기존에는 동일한 속도로 발생한 경화작용이 시간차를 두고 이뤄진다. 물질의 형성이 일정하지 않기 때문에 미세패턴의 모양도 다양해지고, 확산 방향과 속도를 의도적으로 조절함으로써 3차원 형상의 패턴 제작도 가능해지는 것이다. 이러한 신규 기술을 연속적으로 융합해 사용하면 더욱 복잡한 형상과 다양한 성분으로 구성이 가능하다. 자성 입자를 삽입해 자기장을 이용한 의료용 패치를 만들거나, 온도에 따라 팽창하고 수축하는 젤을 삽입해 곡면을 갖는 형태의 필름도 제작할 수 있다. 이 기술로 디스플레이 소자를 포함한 다양한 전자기기의 광학소자, 패치형 약물 전달체, 물과 기름에 젖지 않는 표면 등 3차원 미세패턴 및 미세입자 연구를 통해 구현 가능한 기술들의 상용화가 기대된다. 김 교수는 “3D 프린팅 기술은 혁신적이지만 미세형상 제어와 대량생산이 어려운 반면, 이 기술은 3차원의 미세패턴을 대량생산할 수 있다”며 “대부분의 학계와 산업계에서 포토리소그래피 장비를 쓰기 때문에 큰 파급효과가 있을 것”이라고 말했다. 연구팀은 연구 결과를 2013년 불의의 사고로 고인이 된 콜로이드 및 유체역학 분야의 세계적 대가 故 양승만 교수(前 생명화학공학과 교수)에게 헌정했다. 이번 연구는 심태섭 박사(현 펜실베니아 대학 연구원)가 주도했으며, 미래창조과학부 산하 한국연구재단의 중견연구자 지원사업으로 수행됐다. □ 그림 설명 그림 1. 기존의 포토리소그래피 공정 그림 2. 기존 포토리소그래피 공정과 새로 개발된 포토리소그래피 공정 그림 3. 개발된 포토리소그래피 공정을 이용해 형성된 미세 구조 및 패턴 그림 4. 복잡한 형상과 성분 조합으로 이루어진 구조체
2015.03.25
조회수 13560
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
>
다음 페이지
>>
마지막 페이지 6