-
유방암 세포의 자살을 유도하는 최적의 약물조합 발견
조광현 교수
- Science 자매지 표지논문 발표,“IT와 BT의 융합연구로 세포내 분자조절네트워크 제어를 통해 가능”-
국내 연구진이 대다수 암 발생에 직접 관여하는 것으로 알려진 암억제 유전자(p53)의 분자조절네트워크를 제어하여 유방암 세포의 사멸을 유도하는 최적의 약물조합을 찾아내, 향후 신개념 암치료제 개발에 새로운 단초를 열었다. 특히 이번 연구는 IT와 BT의 융합연구인 시스템 생물학 연구로 가능했다는 점에서 의미가 크다.
우리 학교 바이오및뇌공학과 조광현 석좌교수가 주도하고 최민수 박사과정생, 주시 박사, 정성훈 교수 및 시첸 박사과정생이 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 이승종)이 추진하는 중견연구자지원사업(도약/도전연구)과 기초연구실사업의 지원으로 수행되었다.
연구결과는 세계 최고 과학전문지인 ‘사이언스’의 첫 번째 자매지로서 세포신호전달분야의 권위지인 ‘Science Signaling’지 최신호(11월 20일자) 표지논문으로 선정되었고, 사이언스지의 ‘편집자의 선택(Editor"s Choice)’에 하이라이트 특집기사로 소개되는 영예를 얻었다. (논문명: Attractor Landscape Analysis Reveals Feedback Loops in the p53 Network That Control the Cellular Response to DNA Damage)
유방암은 미국이나 유럽 등 선진국에서 발병하는 여성암 중 가장 흔한 암으로, 40~55세 미국 여성의 사망원인 1위를 차지한다.
지난 10월 15일에는 영국 일간지 ‘데일리메일’이 2040년까지 유방암 환자 수가 현재의 3배가 넘는 168만 명으로 늘어나 일명 “유방암 대란”이 일어날 수도 있다는 충격적인 연구결과를 보도하기도 하였다.
우리나라 보건복지부 자료에 따르면, 국내에서도 미국 등과 같이 유방암 발병빈도가 매년 증가하는 추세인데, 이것은 서구식 식습관과 저출산, 모유수유 기피 등 생활패턴의 변화에 기인한 것으로 알려져 있다.
p53은 ‘유전자의 수호자’로도 잘 알려진 암 억제 단백질로서 33년 전 처음 발견된 후 지금까지 암 치료를 위해 집중적으로 연구되는 분자이다.
p53은 세포의 증식 조절과 사멸 촉진 등 세포의 운명을 결정하는데 중요한 역할을 한다. 우리 몸의 세포가 손상되거나 오작동하면, p53은 세포주기의 진행을 중단시켜 손상된 DNA의 복제를 억제하고, 손상된 세포의 복구를 시도한다. 이 때 만일 세포가 복구될 수 없다고 판단되면, p53은 세포가 스스로 자살하도록 유도한다.
그러나 암세포는 이러한 p53의 기능이 정상적으로 작동되지 않아 이를 인위적으로 조절하여 암 치료에 응용하려는 시도가 꾸준히 이어져왔다. 그러나 지금까지 임상실험에서는 기대와는 달리 효과가 미미하거나 부작용이 발생하는 등 여러 문제점들이 나타났다.
이는 p53이 단독으로 작동하는 것이 아니라 복잡한 신호전달 네트워크 속에서 다수의 양성과 음성 피드백(positive and negative feedbacks)에 의해 조절되고 있었으나, 지금까지 p53만을 단독으로 집중 연구했기 때문이다. 즉, 다양한 피드백 조절에 의해 p53의 동역학적(dynamics) 변화와 기능이 결정되므로, 네트워크 전체를 이해하고 제어하는 시스템 생물학적 접근이 반드시 필요하다.
조광현 교수가 이끈 융합 연구팀은 p53을 중심으로 관련된 모든 실험 데이터를 집대성하여 p53의 조절 네트워크에 대한 수학모형을 구축하였다.
또한 대규모 컴퓨터 시뮬레이션 분석을 통해 p53의 동역학적 변화 특성에 따른 세포의 운명(증식 또는 사멸) 조절과정을 밝혀내고 이를 효과적으로 제어할 수 있는 방법을 찾아냈다. 그리고 이 방법을 적용한 시뮬레이션 결과를 단일세포실험으로 검증하였다.
조광현 교수팀은 수많은 피드백으로 복잡하게 얽혀 있는 p53 조절 네트워크의 다양한 변이조건에 따른 컴퓨터 시뮬레이션 분석과 세포생물학실험으로, p53의 동역학적 특성과 기능을 결정하는 핵심 조절회로를 발견하고, 이와 같은 p53의 동역학적 특성 변화에 따라 세포의 운명이 달라질 수 있음을 규명하였다.
또한 유방암 세포의 네트워크 모형에서, 위의 분석결과로부터 찾아낸 핵심회로를 억제하는 표적약물(Wip1 억제제)과 기존의 표적항암약물(뉴트린, nutlin-3)을 조합하면 유방암 세포의 사멸을 매우 효율적으로 유도할 수 있음을 발견하였다. 그리고 실제 유방암 세포(MCF7)를 이용한 세포실험을 통해 직접 확인하였다.
조광현 교수는 “세포내 중요한 역할을 담당하는 분자들은 대부분 복잡한 조절관계 속에 놓여있기 때문에 기존의 직관적인 생물학 연구로 그 원리를 밝히는 것은 근본적인 한계가 있다. 이번 연구는 시스템 생물학으로 그 한계를 극복할 수 있음을 보여주는 대표적인 사례로, 특히 암세포의 조절과정을 네트워크 차원에서 분석하여 새로운 치료법을 개발할 수 있는 가능성을 제시하였다”고 연구의의를 밝혔다.
한편, 조 교수의 이번 연구 논문은 23일자 사이언스 편집자의 선택(Editors" Choice)으로 선정되는 영예를 얻기도 했다.
여러 양성 및 음성 피드백으로 복잡하게 구성된 p53 조절네트워크
2012.11.23
조회수 15481
-
곤충 눈을 모사한 무반사 미세렌즈 개발
정기훈 교수
- KAIST 정기훈 교수 연구팀, 세계적 물리학회지에 표지논문으로 게재돼, 국내외 특허출원 중 -
- 반도체 양산공정 그대로 활용할 수 있어 상용화 기대 커 -- 빛 반사율 1%이하로 낮춰 값비싼 무반사 코팅 대체 가능 -
국내 연구진이 곤충의 눈을 모사해 빛의 반사를 최소화한 무반사 미세렌즈를 개발하는데 성공했다. 이 렌즈는 특히 휴대폰, 디지털카메라 등에 적용된 이미지센서에 활용할 수 있는 데다, 기존 반도체 양산 공정을 그대로 활용할 수 있다는 점에서 상용화에 대한 기대가 크다.
우리 학교 바이오및뇌공학과 정기훈 교수 연구팀이 곤충의 눈 표면에 형성된 나노구조를 모사해 저렴하면서도 빛 반사율을 1%이하로 낮춘 무반사 미세렌즈 양산기술을 개발하는 데 성공했다.
KAIST는 정 교수 연구팀이 개발한 이번 기술을 카메라 이미지센서용 미세렌즈에 적용할 경우 집광효율이 높기 때문에 대조 효과와 밝기에 대한 특성이 우수한 고감도 카메라를 만들 수 있다는 점에서 국내외로부터 많은 관심을 받을 것으로 예상된다고 설명했다.
특히 정 교수팀이 개발한 공정은 이미 상용화 중에 있는 기존의 반도체공정을 그대로 활용할 수 있다. 따라서 렌즈 표면에 굴절률이 낮은 막을 여러 번 입히는 기존의 무반사 코팅보다 제품 제작비용이 훨씬 줄어들 것으로 기대된다고 강조했다.
나비, 잠자리 등 곤충의 눈은 대부분 겹눈 2개로 구성돼 있다. 이들 곤충은 겹눈을 형성하는 벌집모양의 낱눈을 약 1만~3만 개를 가지고 있는데, 낱눈에는 수많은 나노 돌기가 빛의 투과를 돕는 역할을 한다.
연구팀은 이 같은 특성을 갖는 곤충의 눈이 오랜 진화를 통해 최적의 조건을 만들어 온 것으로 판단해, 컴퓨터 시뮬레이션을 거쳐 빛이 가장 잘 투과되는 나노 구조라는 것을 알아냈다.
이후 이 구조를 모사해 수십 마이크로미터(㎛) 크기의 카메라 미세렌즈에 적용한 결과 반사율이 기존 10%에서 1%이하로 현격히 감소하는 특성을 확인했다.
정 교수 연구팀은 곤충에서 착안한 무반사 구조를 만들기 위해 기존 반도체 생산에 쓰이는 식각공정을 활용했다.
미세렌즈에 은 박막 코팅을 한 후 저온열처리를 통해 은나노 입자를 미세렌즈 표면에 형성시켰다. 이를 마스크로 삼아 렌즈표면을 건식 식각해 무반사 특성을 갖는 나노구조를 렌즈 곡면에 구현하는 데 성공했다.
정기훈 교수는 “곡면 구조의 카메라 미세렌즈 표면에서 빛의 반사가 심해 집광효율이 감소하는 문제가 있었는데, 몰포나비의 눈에 형성된 나노 구조에 착안해 기술개발에 성공했다”며 “기존 반도체공정을 그대로 이용할 수 있기 때문에 고가의 무 반사 코팅보다 훨씬 저렴한 단가로 카메라 이미지센서용 무반사 미세렌즈에 즉시 적용할 수 있다”고 말했다.
한편, 정기훈 교수가 주도하고 정혁진 박사과정 학생이 참여한 이번 연구는 세계적인 물리학회지 ‘어플라이드 피직스 레터스(Applied Physics Letters)’ 최신호(11월 12일자)에 표지논문으로 게재됐으며 현재 국내외 특허 출원중이다.
그림1. 곤충 겹눈(좌), 곤충의 낱눈(우)을 확대한 현미경 사진
그림2. 곤충 겹눈의 나노돌기 구조를 모사한 고효율 미세렌즈 배열. 무반사 렌즈는 일반 렌즈에 비해 표면 반사를 현격히 감소시켜 무반사 렌즈를 통해 맺힌 이미지의 선명도를 증가시킨다.
그림3. 카메라 이미지센서용 미세렌즈 개발 공정
1) 고분자 미세렌즈 배열 전면에 은 박막을 코팅
2) 가열을 통해 은 박막을 은 나노입자로 변형
3) 은 나노입자를 마스크로 삼아 렌즈 식각
4) 은 나노입자 제거하여 무반사 미세렌즈 배열 완성
그림4. 논문표지
2012.11.21
조회수 14799
-
DNA 기반 반도체 핵심 원천기술 개발
박현규 교수
- 분자 비콘을 이용해 모든(8가지) 논리게이트 구현하는 데 성공 -- 스몰(Small)誌 7월호 표지논문으로 실려 -
초소형 미래 바이오전자기기를 구현하기 위한 핵심기술 개발됐다.
우리 학교 생명화학공학과 박현규 교수 연구팀이 DNA를 이용해 모든 논리게이트를 구현하는 데 성공, 나노분야의 세계적 학술지 ‘스몰(Small)’ 7월호(23일자) 표지논문으로 실렸다.
현재 최첨단 기술로도 10nm(나노미터) 이하의 실리콘 기반 반도체 제작은 불가능한 것으로 알려져 있지만, DNA는 굵기가 2nm 정도로 가늘기 때문에 보다 저렴하면서도 획기적인 집적도를 가진 반도체를 만들 수 있을 것으로 기대된다.
2나노급 반도체가 개발되면 우표 크기의 메모리 반도체에 고화질 영화 10000편을 저장하는 등 현재 상용화중인 20나노급 반도체보다 약 100배의 용량을 담을 수 있게 된다.
DNA는 네 종류의 염기인 아데닌(adenine, A), 시토신(cytosine, C), 구아닌(guanin, G), 티민(thymine, T)이 연속적으로 연결돼 있는데 A는 T와, G는 C와 각각 특이적으로 결합하는 특성을 갖고 있다.
특정 DNA는 특이적으로 결합하는 염기서열을 지닌 또 다른 DNA와 결합해 이중나선 구조를 형성하는 데, 연구팀은 이러한 DNA의 특이적 결합 특성과 구조 변화에 따른 형광신호 특성이 있는 고리모양의 분자 비콘을 이용했다.
연구팀은 생체 DNA물질을 디지털 회로에서 사용되는 논리게이트와 같은 역할을 담당하도록 입력신호로 사용해 고리모양의 DNA가 열리거나 닫히도록 했다.
고리모양 DNA가 열린 형태에서는 형광신호가 증가하고 닫힌 상태에서는 형광 신호가 감소하며 이로 인해 발생하는 형광신호의 변화를 출력신호로 사용했다.
연구팀은 제한적인 시스템만을 구현하는 기존의 논리게이트의 문제점을 극복, 8가지 모든 논리게이트(AND, OR, XOR, INHIBIT, NAND, NOR, XNOR, IMPlCATION)를 구현하는 데 성공해 반도체 기술로써의 적용 가능성을 높였다.
이와 함께, 각각의 논리게이트의 연결을 통한 다중 논리게이트(Multilevel circuits)와 논리게이트의 재생성을 보여주는 데도 성공했다.
박현규 교수는 “하나의 분자 비콘을 모든 게이트 구성을 위한 보편적인 요소로 사용해 저렴하면서도 초고집적 바이오 전자기기의 가능성을 높였다”며 “앞으로 분자 수준의 전자 소자 연구에 큰 변화가 있을 것으로 예상된다”고 말했다.
이번 연구를 주도한 박기수 박사과정 학생(제1저자)은 “DNA는 10개의 염기서열 길이가 3.4nm이고 굵기가 2nm밖에 되지 않는 매우 작은 물질이기 때문에 이를 이용해 전자 소자를 구현하면 획기적인 집적도 향상을 이룰 수 있다”며 “간단한 시스템 디자인을 통해 정확한 논리게이트를 구현해 내 DNA 반도체를 탑재한 바이오컴퓨터가 곧 현실로 다가올 것”이라고 말했다.XOR 게이트 : 입력 DNA A(input A)와 입력 DNA B(input B) 둘 중 하나만 있을 때는 고리모양 DNA가 열려서 형광 신호가 나오고(출력신호 1), DNA A와 B가 모두 없을 경우와 모두 있는 경우에는 고리모양 DNA가 고리모양을 유지하여 형광을 발생하지 않게 함으로써 XOR 논리게이트를 정확하게 구현했다.
2012.09.18
조회수 13782
-
C형 간염 바이러스의 간 손상 메카니즘 규명
- 부작용 없이 간세포 손상 억제하는 치료제 개발 길 열어 -- 의학분야 세계 최고수준 학술지 ‘헤파톨로지’ 9월호 표지논문 장식 -
의사출신으로 구성된 KAIST 연구진이 C형 간염 바이러스 기전을 밝혀내 치료제 개발에 탄력을 받게 됐다.
우리 학교 바이오및뇌공학과 최철희 교수와 의과학대학원 신의철 교수팀이 공동으로 C형 간염 바이러스에 감염된 환자의 간 손상에 대한 메카니즘을 세계 최초로 규명했다.
이번 연구결과로 앞으로 부작용이 없으면서도 간세포 손상이 적은 C형 간염 바이러스 치료제가 개발될 수 있을 것으로 기대된다.
C형 간염은 C형 간염 바이러스(HCV, Hepatitis C virus)에 감염되었을 때 이에 대응하기 위한 신체의 면역반응으로 인해 간에 염증이 생기는 질환이다.
C형 간염 바이러스는 전 세계적으로 약 1억 7천만 명, 그리고 우리나라에서도 1%정도가 감염되어 있는 것으로 추정된다. 감염되면 대부분 만성으로 변하며, 간경변증이나 간암을 유발해 사망할 수 있는 무서운 질병이다.
하지만 2005년 시험관 내 세포에서 C형 간염 바이러스의 감염이 성공하기 전까지는 세포실험이 불가능했고, 침팬지 이외에는 감염시키는 동물이 없어 동물실험이 어려워 연구에 한계가 있었다.
연구팀은 C형 간염 바이러스에 감염시킨 세포주를 이용해 바이러스가 면역을 담당하는 세포에 의해 분비되는 단백질인 종양괴사인자(TNF-α)에 의한 세포의 사멸이 크게 증가하는 메카니즘을 세계 최초로 밝혀냈다.
이와 함께 이러한 작용을 일으키는 바이러스 구성 단백질도 규명에도 성공했다.
기존에는 C형 간염 바이러스가 간 손상을 일으키는 기전을 밝혀내지 못해 주로 바이러스의 증식을 억제하는 데 초점을 맞춰 신약이 개발돼 부작용이 많았다.
이번 연구결과를 통해 바이러스에 의한 간세포 손상을 억제하는 부작용 없는 신약개발이 가능하게 될 것으로 전망된다.
최철희 교수는 “이번 연구를 통해 C형 간염 바이러스가 숙주의 간세포와 어떤 상호 작용을 하는지 밝혀내 감염 환자의 치료법을 획기적으로 개선할 수 있을 것”이라고 말했다.
신의철 교수는 “이번 연구는 기초의학과 응용의학의 융합연구가 성공한 대표적 사례”라며 “앞으로도 다학제간 융합연구를 실시하면 그동안 풀지 못했던 난제들을 효율적으로 해결할 수 있을 것”이라고 강조했다.
한편, 교육과학기술부 미래기반기술개발사업(신약타겟검증연구사업)의 지원을 받아 수행된 이번 연구 결과는 의학 분야의 세계적 학술지인 헤파톨로지(Hepatolog, Impact Factor=11.665) 9월호 표지 논문으로 선정됐다.
□ 연구 세부사항 설명
TNF-α(종양괴사인자)는 면역을 담당하는 세포에 의해 분비되는 단백질이다. HCV에 감염되면 바이러스의 증식을 억제하기 위해 체내의 면역작용이 활발해지고 TNF-α의 분비도 늘어난다.
TNF-α는 세포의 생존을 담당하는 NF-κB 신호전달과 세포의 죽음을 담당하는 JNK 신호 전달을 동시에 활성화시킨다. HCV에 감염되면, 세포의 생존을 담당하는 NF-κB 쪽 신호전달 경로만 선택적으로 활성을 억제하게 되고, TNF-α의 역할은 세포의 죽음 쪽으로 균형이 기울게 된다.
바이러스의 증식을 억제하기 위해 분비된 TNF-α가 오히려 간세포를 죽이게 되는 것이다. 이는 곧 간 손상을 뜻하며, HCV를 구성하는 10가지의 단백질 중 core, NF4B, NS5B 라는 단백질이 이러한 작용을 한다고 규명해냈다.
2012.09.04
조회수 14972
-
화학과 학부생, 세계적 저널에 표지논문 게재
- 화학과 4학년 조상연, 물리학과 4년 김수민 학생, 말라리아 연구를 위한 광학영상 기술을 분석해 셀(Cell) 자매지 표지논문에 게재 -- 국내최초 소방관인 故 조용완씨 손자, 3월 의무소방요원으로 입대예정 -
“교수님, 하이젠 베르크(Werner Heisenberg) 같은 역사 속 과학자들은 20대 초반에 세계적인 연구 성과를 냈는데 저는 이대로 가다간 늦어버릴 것 같습니다. 교수님 연구실에서 융합연구를 할 수 있게 도와주세요”
우리 학교 화학과 4학년에 재학 중인 조상연(22) 君이 1학년 때 이 대학에서 물리화학 분야 융합연구의 세계적인 석학인 이효철 화학과 교수를 찾아 와 당차게 부탁한 한 마디다.
조상연 학생이 말라리아 연구와 관련해 제1저자로 발표한 논문이 셀(Cell)지가 발행하는 생명공학분야 최고 권위 학술지인 ‘생명공학의 동향(Trends in Biotechnology, IF=9.644)’ 2월호 표지논문으로 선정됐다.
근래 들어 학부생의 연구 참여가 활발해진 까닭에 과학기술논문인용색인(SCI)급 국제학술지에 논문이 실리는 경우가 가끔씩은 있었지만, 셀 자매지와 같은 세계적인 학술지에, 그것도 표지논문으로 실리는 경우는 거의 없었다. 하지만 오랜만에 KAIST 학부재학생인 조상연 君이 큰일을 이뤄내 학교 안팎으로부터 많은 화제를 모으고 있다.
광주과학고를 2년 만에 조기 졸업하고 2008년 KAIST에 입학한 조 군은 평소 연구에 대한 높은 관심으로 신입생 때부터 KAIST내 다양한 학과를 넘나들며 연구거리를 찾아다녔다.
2학년 때는 화학과 이효철 교수의 지도아래 학부생 연구지원 프로그램인 URP에 참여, ‘시간분해회절에 의한 용액 상 구조 동력학 분석’에 관한 탁월한 연구 성과를 거뒀다. 이 연구로 조 君은 2학년 학생으로는 이례적으로 최우수상을 수상하는 한편 후속연구비 1000만원과 해외학회 참가라는 특전을 받으며 두각을 보이기 시작했다.
바이오 및 뇌 공학과 김동섭 교수와 ‘알카인 수화반응을 촉매하는 단백질의 컴퓨터 디자인’에 대한 연구를 진행하는 한편 EEWS대학원 정유성 교수와는 ‘전산모사를 통한 이산화탄소 흡착 촉매 디자인’ 등에 대한 연구를 수행하기도 했었다.
이후 조상연 君은 2011년 2월부터 약 1년간 바이오광학분야 융합 연구에 대한 세계적 학자인 물리학과 및 광기술연구소 박용근(32) 교수의 지도를 받아 왔다. 이번 셀 자매지에 게재한 논문은 박용근 교수의 지도를 받으며 수행한 연구과제 중 하나다. 같은 공동저자 중 한명인 김수민 학생(24, 제2저자) 역시 물리학과 학부생으로 ‘개별연구제도’를 통해 연구에 참여했다.
조상연 학생은 ‘말라리아 연구를 위한 광학 영상기술’이라는 제목의 이번 논문을 통해 “학질모기에 의해 전염되는 말라리아에 전 세계적으로 매년 약 3억 명이 감염되고 또 수백만 명이 사망하고 있지만, 아직도 말라리아 질병의 많은 부분이 알려져 있지 않다”며 문제를 제기했다.
이와 함께 첨단 광학기술을 말라리아 연구에 적용하려는 노력이 최근 많은 주목을 받고 있는데, 말라리아 연구를 크게 3가지로 나눠 체계적으로 광학기술을 이용하는 전략을 제시했다.
조 君의 이번 연구는 바이오 이미징 기술을 말라리아 감염질환 연구에 통합 적용하고, 말라리아 연구에 적용 가능한 광학영상 방법들을 소개함으로써, 다 학제 간 융합 연구시대에 경쟁력을 갖는 광학-의학연구 전략을 체계적으로 제시한 것으로 높이 평가받고 있다.
조상연 학생은 “고등학교 시절 SEE-KAIST 과제에 출품해 수상하면서 연구에 대한 재미를 느꼈고, 2학년 1학기까지 특정한 학과가 없는 무학과 제도를 운영해 다양한 분야의 융합연구를 할 수 있는 조건을 갖춘 국내 최고의 연구중심대학 KAIST로 진학을 결심했다”며 “특히, 학부생에게 관련분야 최고 교수와 연구기회를 주는 URP 및 개별연구제도로 인해 뛰어난 교수들의 지도와 학교의 충분한 재정적 지원 덕분에 큰 어려움 없이 마음껏 연구를 펼칠 수 있었다”고 말했다.
조 君은 이와 함께 “앞으로 목표는 세상에서 제일 재미있는 융합연구를 하는 과학자가 되는 것”이라며 “제가 하는 연구를 통해 전 세계 어려운 상황에 놓인 많은 사람들을 도우는 데 노력할 것”이라고 말했다.
조 君은 바쁜 학업생활 속에서도 지역사회를 위해 저소득층 중학생들을 위한 봉사단체인 ‘배움을 나누는 사람들’에서 2년간 꾸준히 봉사를 해왔으며, KAIST 자연과학 학술동아리인 ‘KINS’를 설립했고, 자연과학대학 소식지인 ‘KAIST Science’ 기자로도 활동해 왔다.
조 君은 현재 해외 대학원 입학을 계획하고 있으며 올 3월 입대해 의무소방요원으로 군복무를 할 예정이다. 조 君의 할아버지는 우리나라 최초의 소방관인 故 조용완 씨로 소방관에 대한 남다른 인연으로 군 생활을 시작할 예정이다.
한편, 이번 연구는 KAIST ‘신임교원정착연구사업‘과 ’광기술연구소연구사업‘의 일환으로 이뤄졌으며 화학과 학사과정 조상연(22, 제1저자) 君을 포함해 물리학과 학사과정 김수민(24, 제2저자) 학생과 물리학과 김영찬 박사(30, 공저자)가 함께 수행했다.(끝)
붙임 : 논문요약, 보충자료, 사진설명
<논문요약>
논문주제 : 말라리아 연구를 위한 광학 영상기술
학질모기에 의해 전염되는 말라리아에 전 세계적으로 매년 약 3억 명이 감염되고 수백만 명이 사망하고 있지만, 아직도 말라리아 질병의 많은 부분이 알려져 있지 않다. 세계 각국은 말라리아 감염을 연구하고, 말라리아를 진단하고 치료하는 장비 개발에 박차를 가하고 있다.
빌게이츠 Microsoft사 전 회장 부부가 설립한 Bill & Melinda Gates 재단에서 말라리아 연구에 막대한 연구비를 지원하기 시작했으며, Apple, Google, Intel사 등이 연합 설립한 Intellectual ventures사에서도 빛을 이용한 말라리아 진단 연구를 진행하고 있는 것이 그 사례들이다.
최근에는 첨단 광학 기술을 말라리아 연구에 적용하려는 노력이 최근 많은 주목을 받고 있는데, 박 교수 연구팀은 말라리아 연구를 크게 3가지로 나누어 체계적으로 광학기술을 이용하는 전략을 제시했다.
▲말라리아에 감염된 적혈구를 외부 염색 물질을 사용하여 체외에서 광학 영상을 측정하는 방법과 ▲말라리아에 감염된 적혈구를 외부 염색 물질을 사용하지 않고, 적혈구 자체의 광학적 신호를 이용하여 체외에서 영상을 획득하는 방법 그리고 ▲체내에서 말라리아 기생충이 숙주 세포를 감염시키는 과정의 광학 영상을 획득하는 방법이다.
이 논문에서는 물리학(광학)과 의학(감염질환)의 효과적인 융합 연구를 위한 체계화된 전략을 소개했기 때문에 실제 말라리아를 연구하는 연구자들에게 실질적인 도움이 될 수 있을 것이라고 평가받고 있다.
제1저자로 참여한 조상연 학생은 “이번 논문은 연구팀에서 수행하고 있는 굴절률 차이를 이용한 광학영상기술 및 최신 광학영상 기술들이 말라리아에 어떻게 이용될 수 있는가를 소개함으로써, 말라리아 진단 및 치료 연구에 힘을 실어줄 수 있을 것으로 기대한다”고 말했다.
<보충자료: 용어설명>
○ SEE-KAIST1992년 첫 행사를 시작으로 `Open-KAIST`와 번갈아 격년제로 실시해오는 행사로 KAIST 연구 성과, 과학고 탐구 성과, 산업체 연구개발 제품 등을 직접 보고 체험할 수 있는 KAIST의 대표적인 과학문화 대중화 행사다.
○ 무학과제도학사과정의 우수한 학생들에게 학과선택의 자율성을 보장하기 위해 학과 구 분 없이 입학해 개인의 적성 등을 고려해 2학년 1학기를 마친 후 학과를 선택하는 제도.
○ URP
학사과정 학생들이 지도교수와 지도조교의 지도하에 실질적인 실험 및 연구를 할 수 있도록, 연구비 지원 및 학점 연계를 통해 학부생의 연구를 현실적으로 지원하는 프로그램
① Long-Term URP 프로그램 (연 1회 실시)
가. 연구기간 : 12개월 (2011년 12월 26일~2012년 12월 21일)
나. 지원내역
* 단독 : 장학금 1,500천원+연구비 3,000천원
* 팀 : 1인당 장학금 1,200천원+연구비 4,000천원
② 겨울/봄학기, 여름/가을학기 URP 프로그램
가. 연구기간 : 5개월~6개월
나. 지원내역
* 단독 : 장학금 1,000천원+연구비 1,500천원 * 팀 : 1인당 장학금 800천원+연구비 2,000천원
○ 하이젠베르크
하이젠베르크는 1901년 독일에서 출생했다. 그의 아버지는 의학교수였고 그는 뮌헨대학에서 아놀드 좀머펠트(Arnold Sommerfeld) 밑에서 이론물리를 공부했고, 1923년에 박사학위를 받았다. 같은 해에 그는 괴팅겐대학에서 보른(Max Born)의 조수가 되었으며, 다음해에는 강사가 된다. 다음 3년간 코펜하겐에서 닐스 보어와 함께 일하고, 1927년부터 1941년 까지 라이프치히대학의 이론물리학 교수가 된다.거기서 볼프강 파울리 등과 연구하며 양자 전기 역학과 양자장 이론을 발전 시켰고, 핵 물리학과 고 에너지 물리학의 발전에 넓고도 깊은 영향을 미쳤다. 불확정성 원리로 유명한 하이젠베르크는 양자역학의 탄생에 기여한 공로로 1932년 노벨물리학상을 받았다.
<사진설명>
조상연 학생의 지도교수인 물리학과 박용근 교수
연구자 사진 : 왼쪽부터 김수민 학생, 김영찬 박사, 조상연 학생
Trends in Biotechnology 2012년 2월 호 논문표지
2012.02.01
조회수 25396
-
스마트폰 질병진단 원천기술 개발
- 신개념의 생체분자 검출기술로 휴대용 체외진단 분야에 획기적 원천기술- 화학분야 세계적 학술지 ‘앙게반테 케미’ 1월호(16일자) 표지논문 선정
스마트폰으로도 질병을 진단하는 원천기술이 국내 연구진에 의해 개발됐다.
우리 학교 생명화학공학과 박현규 교수 연구팀이 스마트폰을 비롯한 휴대용 개인기기에 널리 이용되고 있는 정전기방식의 터치스크린을 이용해 생체분자를 검출하는 원천기술을 세계 최초로 개발하는 데 성공했다.
앞으로 병원에 가지 않고도 스마트폰을 가지고 간단한 질병을 진단하는 시대가 열릴 것으로 기대된다.
최근 스마트폰과 같은 휴대용 전자기기에 적용되는 정전기방식의 터치스크린은 일반적으로 손가락의 접촉을 통해 발생하는 터치스크린 표면의 정전용량 변화를 감지해 작업을 수행하도록 설계돼 있다.
연구팀은 DNA가 자체의 정전용량을 가지고 있으며, 농도에 따라 정전용량이 변화한다는 사실에 착안해 정전기방식의 터치스크린을 생체분자 검출에 활용할 수 있을 것이라고 예상했다.
이를 규명하기 위해 연구팀은 대표적인 생체분자인 DNA를 터치스크린 위에 가하고 정전용량 변화량을 감지했다. 실험결과 터치스크린을 이용해 DNA의 유무와 농도를 정확하게 검출할 수 있었다.이 결과에 따라 DNA뿐만 아니라 세포, 단백질, 핵산, 등 대부분의 생체분자가 정전용량을 갖고 있기 때문에 다양한 생체물질의 검출에도 활용될 수 있다는 가능성을 제시했다는 게 이 기술의 큰 특징이다.
박현규 교수는 “모바일 기기 등에 입력장치로만 이용해 왔던 터치스크린으로 생체 분자 등의 분석에 이용할 수 있음을 세계 최초로 입증한 결과”라며 “이 원천기술을 이용해 앞으로 터치스크린 기반의 스마트폰 또는 태블릿 PC 등을 이용해 개인이 질병을 진단하는 시대가 올 것”이라고 말했다.
이와 함께 논문의 제1저자인 원병연 연구조교수는 “현재는 생체분자의 유무 또는 농도만 측정 가능한 단계이며, 앞으로 특정 생체분자를 선택적으로 검출할 수 있는 기술을 개발해 가까운 시일 내에 상용화에 주력할 것”이라고 덧붙였다.
한편, 이번 연구는 지식경제부가 시행하는 ‘산업원천기술개발사업’으로 수행됐으며, 연구의 중요성을 인정받아 화학 분야의 세계적 학술지 ‘앙게반테 케미(Angewandte Chemie International Edition)’ 1월호(16일자) 표지논문으로 선정됐다.
그림1. 터치스크린을 이용한 생체 분자 검출 시스템 모식도 (앙게반테 케미 논문 표지). 휴대용 모바일 기기의 입력장치인 터치스크린 위에서 세포, 단백실, 핵산, 소분자 등의 생체 분자를 검출할 수 있다.
그림2. 정전용량 터치스크린 방식의 한가지인 surface capacitive touchscreen을 이용한 시스템 모식도. 여러 지점을 동시에 접촉했을 때 접촉점의 시료 농도에 따라 터치 신호의 위치가 변하는 원리를 이용한 방법. 동시에 두 개의 미지 시료의 농도를 측정할 수 있다.
그림3. 정전용량 터치스크린 방식의 한가지인 projected capacitive touchscreen을 이용한 시스템 모식도. 현재 스마트폰 등에 쓰이는 터치스크린 방식으로서, 터치스크린 표면 내부에 여러 라인의 전극이 패턴되어 있어, 각 전극의 정전용량 변화를 각각 측정함으로써 여러 접촉 시료의 농도를 동시에 검출할 수 있다.
2012.01.16
조회수 18329
-
양승만 교수, 인조오팔로부터 초소형 분광분석기 제조
- Advanced Materials 3월 5일자 표지 논문으로 소개 돼 - 초정밀 극미량 물질 인식센서로 활용
오팔은 크기가 수백 나노미터(머리카락 굵기의 약 100 분의 1정도)의 유리구슬이 차곡차곡 쌓여 있는 것으로서, 그것이 아름다운 색을 띄는 것은 오팔이 선택적으로 반사하는 파장영역대의 빛만을 우리가 볼 수 있기 때문이다. 이렇게 오팔보석이 발산하는 아름다운 색깔은 색소에 의한 것이 아니라 이 물질을 이루는 구조가 규칙적인 나노구조로 되어 있기 때문이며 이러한 구조를 광결정이라 한다. 이러한 구조의 광결정은 특정한 파장 영역대의 빛만을 완전히 선택적으로 반사시키는 기능을 보유하게 된다.
생명화학공학과 양승만 교수팀 (광자유체집적소자 창의연구단)은 파장이 서로 다른 빛들을 반사하는 오팔 광결정을 미세소자에 연속적으로 도입하여 무지개 같은 띠 모양으로 제작할 수 있는 기술을 확보했으며 이를 이용해 극미량의 물질을 정밀하게 분석할 수 있는 칩 크기 수준의 미세분광기를 최근 제조했다.
사람마다 고유한 지문을 갖듯이 물질을 이루는 분자도 고유한 지문을 갖는데 이는 분자마다 특정 파장의 빛만을 선택적으로 흡수하거나 방출하는 독특한 스펙트럼을 갖기 때문이다.
따라서, 물질을 구성하는 분자를 광학적으로 인식하기 위해서는 분광분석기 (spectrometer)라는 기기가 필요하며 이는 물질이 갖고 있는 다양한 광정보 처리를 위해 광자소자 및 분석소자를 구성하는데 꼭 필요한 요소 중 하나이다.
그러나 기존의 분광기는 파장에 따른 빛의 공간적 분할을 위한 격자(grating) 및 빛의 진행에 필요한 공간을 요구하므로 고가의 큰 장치로만 제작이 가능하였다.
최근에 많은 주목을 받고 있는 생명공학의 산업적 이용이나 신약개발을 위해서는 부피가 나노리터(10-9L)~펨토리터(10-15L) 정도의 극미량의 샘플을 처리해야 하므로 분석실험실을 반도체 칩과 같이 초소형화한 소위 ‘칩위의 실험실: Lab on a Chip’이 필연적으로 요구된다.
이를 구현하기 위해서는 칩 내부에 분광분석기와 같은 분석소자를 설계해 도입해야 하나 기존의 기술로는 현실적으로 불가능 했다.
이번 연구 결과는 초소형 분석소자의 실용성을 구현하는데 크게 기여한 점을 인정받아 국제적 저명학술지인 어드밴스드 머티리얼스(Advanced Materials) 3월호 표지논문(cover paper)으로 게재됐다. 또한, 나노기술 분야의 세계적 포털사이트인 Nanowerk (http://www.nanowerk.com/)는 이번 연구결과를 ‘광결정으로 미세 분광기를 만들다(Photonic crystals allow the fabrication of miniaturized spectrometers)’라는 제목의 스포트라이트(Spotlight)로 소개하기도 했다.
칩규모의 초소형 물질감지소자는 세계적인 연구그룹들이 활발히 개발 중이다. 이번 연구의 결과는 초소형 분광분석기 구조를 자기조립법으로 만든 최초의 사례로서 이 분야의 국제경쟁에서 우위를 확보하는데 필요한 핵심요소이다.
그림1. 반사색이 연속적으로 변하는 광결정 분광기의 저배율 및 고배율 사진 (분광기가 손톱크기로 초소형화 되었음을 확인할 수 있다)
기본 원리는 아래 그림과 같이 다른 반사스펙트럼을 갖는 콜로이드 광결정을 패턴화하면 미지의 빛이 입사할 경우 반사하는 빛의 세기만을 통해 입사한 미지의 빛의 스펙트럼을 알아낼 수 있다는 것이다.
이러한 아름다운 반사색을 보이는 광결정은 오팔보석, 공작새 깃털, 나비날개, 딱정벌레 등 자연계에 많이 존재하는데 양 교수 연구팀에서는 이를 규칙적으로 패턴화하여 전체 가시광 영역에서 배열한 것이다. 이러한 광결정을 이용하면 공간에 따른 빛의 세기분포를 파장에 따른 빛의 세기분포 즉 스펙트럼으로 물질을 이루는 분자를 재분석해낼 수 있다. 이는 기존의 분광기와는 달리 긴 진행거리를 요구하지 않기 때문에 소형화가 가능하고 신호의 검출은 미세검출기 배열을 통해 가능할 것으로 예상된다.
그림2. 가시광 영역에서 반사스펙트럼을 갖는 콜로이드 광결정 (내부의 나노구조는 나비날개와 공작새 깃털 구조의 광결정와 유사하다)
<용어설명>○ 콜로이드 : 물질의 분산상태를 나타내는 것인데, 보통의 분자나 이온보다 크고 지름이 1nm~100nm 정도의 미립자가 기체 또는 액체 중에 분산된 것은 콜로이드 상태라고 부른다. 예를 들어, 생물체를 구성하는 물질 대부분이 콜로이드 상태로 존재한다.
2010.03.16
조회수 22399
-
새로운 혈액줄기세포 공급원으로 지방조직 이용가능성 규명
카이스트 생명과학과 고규영교수(및 연구원 한진아)팀, Blood지(IF=10.4)에 실려-
교육과학기술부(장관 안병만)의 21세기 프론티어연구개발사업 지원을 받는 세포응용연구사업단(단장:김동욱 연세대 교수)의 연구팀(책임자:고규영 카이스트 교수, 연구원:한진아)이 지방조직으로부터 백혈병 등 혈액계 난치병 치료에 이용가능한 혈액줄기세포를 분리해 낼 수 있음을 입증하였다. 이로써, 보다 적은 비용과 쉬운 방법으로 혈액줄기세포를 공급할 수 있는 길이 열릴 것으로 기대된다.
이번 연구 결과는 그 중요성을 인정받아 세계적인 학회지인 Blood의 2010년 2월 4일자 표지논문으로 선정되었으며, 이례적으로 학회지를 주관하는 미국 혈액학회 (American Society of Hematology, ASH)가 세계매체를 통해 일반인에게 홍보하기로 하였다.
혈액줄기세포는 다양한 종류의 혈액세포로 분화할 수 있는 분화능을 보유하고 있는 대표적인 성체 줄기세포로, 백혈병 등의 혈액계 난치병 치료에 이용된다. 혈액줄기세포는 주로 성체의 골수 내에 존재하는데, 그 양이 제한적이고 생체외 증식이 어려워 연구 및 치료목적으로의 사용에 걸림돌이 되어 왔다.
우리대학 생명과학과 고규영 교수 연구팀은 지방조직과 골수조직이 다양한 공통점을 갖는다는 점에 착안하여, 골수를 손상시킨 동물에게 지방 조직에 존재하는 비지방세포를 정맥주사한 후, 이 세포로부터 유래한 혈액세포가 장기간 동물의 혈액 내에 존재한다는 것을 입증함으로써, 주입한 지방조직의 비지방세포에 손상된 골수를 재생시킬 수 있는 능력을 가진 혈액줄기세포가 존재한다는 사실을 밝혔다.
김동욱 단장은 “혈액줄기세포를 골수나 혈액으로부터 분리할 수 있는 것은 이미 널리 알려진 방법이지만, 흔히 쓸모없는 조직으로 생각하는 지방조직을 혈액줄기세포의 공급원으로 규명한 것은 이번이 처음이다”라며 재생의학의 새로운 세포공급원으로서 지방조직 이용 가능성을 밝혔다. 이 연구는 혈액줄기세포의 자가이식에 있어 새로운 방법을 제공할 수 있을 것으로 기대된다.
1. 연구내용 요약
혈액줄기세포는 혈액계의 항상성을 유지하는 역할을 담당하는 대표적인 성체줄기세포의 일종으로, 대부분의 혈액줄기세포는 골수에 존재하고 있다. 그러나 소량의 혈액줄기세포는 혈액 내에 포함되어 체내를 순환하다가, 다시 골수로 되돌아오게 된다. 한진아 연구원, 김인준 교수, 고규영 교수 연구팀은 이 과정에서 혈액줄기세포가 골수조직 뿐만 아니라 골수와 비슷한 조건을 제공하여 적절한 환경이 조성되어 있는 조직으로, 골수와 다양한 특성을 공유하고 있는 지방조직을 연구하였다.
지방조직은 지방세포와 비지방세포로 구성되어 있는데, 우리는 생쥐의 지방조직으로부터 비지방세포를 분리하여 유세포분석기 (FACS), 세포배양 군체형성 등의 생체외 실험과 방사선 조사 후 골수이식 등의 생체실험을 실시하였다. 줄기세포를 세포치료 목적으로 이용하고자 할 때, 가장 중요한 것은 생체 내에서의 활동성이다. 우리는 방사선을 조사하여 골수를 손상시킨 동물에 비지방세포를 정맥주사하여, 이 세포로부터 유래한 혈액세포가 장기간 동물의 혈액 내에 존재한다는 사실을 입증하였다. 이는 주입된 세포군 내에 손상된 골수를 재생시킬 수 있는 능력을 가진 혈액줄기세포가 포함되어 있다는 것을 직접적으로 보여주는 증거이다. 더불어 비지방세포에 포함된 혈액줄기세포가 골수에서 유래한 것이며, 약물을 이용하여 골수 혈액줄기세포의 순환계로의 유출을 촉진시켰을 때, 보다 많은 양의 세포를 지방조직으로부터 얻을 수 있음을 입증하였다.
생쥐의 지방조직으로부터 혈액줄기세포를 얻을 수 있다는 사실을 입증함으로써 이용가능한 혈액줄기세포의 또 다른 원천을 밝혀낸 것이다. 이에 인간 지방조직에 대한 연구가 개발, 확립된다면, 연구 및 치료목적으로 응용 가능성이 매우 높을 것으로 기대된다.
이번 연구의 자세한 내용은 2010년 2월 4일자 Blood 저널에 표지논문으로 발표되며, 이례적으로 이 학회지를 주관하는 미국 혈액학회 (American Society of Hematology, ASH)가 세계매체를 통해 일반인에게 홍보하기로 하였다.
2. 용어설명
∙성체줄기세포 : 배아발달 단계 이후 체내에 존재하는 줄기세포로, 주로 손상된 조직을 재생, 성장시키는 역할을 담당하여 필요한 때에 특정한 조직의 세포로 분화하게 되는 미분화 상태의 세포이다. 배아줄기세포와 달리 윤리적 문제가 없고, 자가면역 반응을 일으키지 않는다는 장점이 있다.
∙비지방세포 : 지방조직에서 지방세포를 제외한 나머지 세포군을 말하며 면역세포, 혈관내피세포와 더불어 그 성격이 완전히 규명되지 않은 줄기세포들을 포함하고 있다. 지방, 연골, 근육 조직 등으로의 분화능을 보유하고 있는 등 골수 중간엽줄기세포 (mesenchymal stem cell)와 유사한 특성을 가지고 있다.
그림 1. Blood 학회지에 표지로 실린 사진. 지방조직에서 발견되는 혈액줄기세포 분포양상.(파란색 : 혈액 / 분홍색 : 혈액줄기세포)
그림 2. 생체외 세포군체형성. 배양된 비지방세포로부터 유래된 혈액세포군체.
그림 3. 약물투여 후 비지방세포에서 혈액줄기세포의 양이 증가함을 나타내는 결과.
2010.02.04
조회수 20179
-
양승만 교수, 액체 방울을 이용한 초소형 인조곤충눈 구조 제조
- 초정밀 극미량 물질 인식센서로 활용 - 네이처 포토닉스에서‘미세패턴기술-광자돔’이라는 제목의 하이라이트로 소개
곤충 및 갑각류 등의 눈은 포유류의 눈과는 달리 수백~수만개의 홑눈(또는 낱눈)이 모여 생긴 겹눈 구조를 갖고 있다. 각각의 홑눈은 투명한 볼록렌즈로서 빛을 모아 명암, 색깔(파장)과 같은 빛 정보를 뇌에 전해 주며 뇌에서 전달된 정보를 재조합하여 사물을 감지한다. 각 홑눈은 육방밀집구조로 서로 빈틈없이 배열되어 돔 형태의 겹눈 표면을 메우고 있다. (파리와 잠자리의 눈 사진참조)
생명화학공학과 양승만 교수의 광자유체집적소자 창의연구단은 다양한 기능을 갖는 나노입자를 제조하고 이들 입자들이 스스로 조립되는 자기조립 원리를 규명하는 연구를 수행하여 실제 곤충눈의 수백분의 일 크기의 초소형 인조겹눈구조를 실용적으로 제조할 수 있는 방법을 최근 개발했다.
이 연구결과는 최근 국제적 저명학술지인 어드밴스드 머티리얼스(Advanced Materials) 誌 10월호 표지논문(cover paper)으로 게재 됐으며 인조곤충눈 구조의 실용성을 구현하는데 크게 기여한다고 인정받아 특별히 주목해야할 논문(Advances in Advance)으로 선정됐다.
특히, 네이처 포토닉스(Nature Photonics)지는 10월호에서 양 교수팀 연구의 중요성과 응용성에 주목하여 이 연구결과를 "미세패턴기술-광자돔(Micropatterning–Photonic domes)"이라는 제목으로 "뉴스와 논평(News & Views)"란에 하이라이트로 선정하여 비중있게 게재했다.
지난 20여 년 동안 곤충눈, 오팔, 나비날개 등 빛정보를 처리할 수 있는 자연계에 존재하는 구조를 인공적으로 제조하기 위한 연구가 많은 과학자들에 의하여 시도되어 왔으나, 실용적인 구조를 얻는 데에는 한계가 있었다. 양 교수팀은 2006년부터 교육과학기술부의 ‘창의적연구진흥사업’으로부터 지원을 받아 초소형 인조곤충눈 구조를 실용적으로 제조할 수 있는 기술을 확보하기 위한 연구를 수행해 왔다.
Nature Photonics지 10월호가 하이라이트로 선정하여 주목한 양 교수팀의 이번연구에서는 실제 곤충눈 크기의 수백분의 일 정도로 초소형이며 균일한 크기와 모양을 갖는 인조곤충눈 구조를, 크기가 수십 마이크로미터인 균일한 기름방울을 이용하여 성공적으로 제조하여 규칙적으로 배열하였다. 특히 주목할 것은 제조공정이 손쉽고 빠른 나노구슬의 자기조립 원리를 이용한 점이다.
우선 크기가 수백 나노미터인 균일한 유리구슬(낱눈렌즈)을 물속에 분산시킨 후, 크기가 수십 마이크로미터인 균일한 기름방울을 주입하고 물-기름-유리구슬 사이의 표면화학적 힘의 균형을 유지시키면 유리구슬이 물과 기름방울 사이의 경계면으로 이동한다. 그 후 물-유리-기름방울의 혼합물을 기판 위에 뿌리면 기름방울이 반구의 돔 모양으로 변형되고 유리구슬렌즈는 저절로 기름방울 표면 위에 촘촘히 육방밀집구조로 배열하게 된다 (전자현미경사진 참조). 이 때 자외선을 기름방울에 쪼여서 고형화시킴으로써 종래에 수십 시간이 소요되는 인조곤충눈 조립공정을 불과 수분 만에 제조할 수 있다.
수 천개의 미세렌즈가 장착된 돔 구조의 초소형 인조곤충눈은 인간의 눈에 비해 시야각이 넓고 빛을 모으는 능력도 매우 높다. 따라서, 환경의 미세한 변화를 감지할 수 있는 능력을 보유하므로 신약개발을 비롯하여 극미량의 물질을 인식할 수 있는 초고감도 감지소자를 요구하는 다양한 분야에 응용될 수 있다.
특히 최근에 신약개발 등 바이오 산업의 실용화에 사용되고 있는 극미량의 시료를 처리할 수 있는 반도체칩 규모의 실험실인 랩언어칩(Lab on a Chip)에 초소형 인조곤충눈을 도입할 경우 높은 정밀도를 갖는 물질 감지소자로 활용될 수 있다.
이러한 인조곤충눈 구조는 세계적인 연구그룹들이 활발히 개발 중이며 최근에 수 밀리미터 크기의 실제 곤충눈 크기의 인조곤충눈은 보고된 바 있다. 그러나, 본 연구의 결과는 초소형 인공곤충눈 구조를 자기조립법으로 만든 최초의 사례로서 이 분야의 국제경쟁에서 우위를 확보하는데 필요한 핵심요소다.
2009.10.06
조회수 25118
-
조광현 교수, 생명과학의 오랜 수수께끼에 대한 새로운 해답 제시
- 시스템 생물학 연구를 통한 생명과학의 한계 극복, 중요한 BIT연구사례
바이오및뇌공학과 조광현 교수 연구팀(제1저자 김동산, 참여연구원 월터콜치)은 컴퓨터시뮬레이션을 통해 세포내 하나의 신호전달경로가 어떻게 다양한 세포반응을 유발하는지에 대한 새로운 해답을 제시했다.
이번 연구는 특히 BT에 IT를 접목시킨 시스템생물학(Systems Biology) 연구를 통해 기존 생명과학의 한계를 극복한 중요한 BIT 융합연구사례로 평가된다. 우선 기존의 다양한 실험조건 하에서 산발적으로 축적된 데이터를 IT를 이용해 효율적으로 집대성하였다. 그리고 이를 기반으로 대규모 컴퓨터시뮬레이션을 수행하고 시스템생물학 관점의 통합분석 작업을 시도함으로써 복잡한 생명현상 이면의 숨겨진 설계원리를 밝혀냈다.
NF-kB 신호전달경로는 세포의 성장, 분열, 사멸을 조절하고, 면역과 염증반응 등 매우 다양한 세포반응에 관여하는 것으로 알려져 있다. 그러나 하나의 NF-kB 신호전달경로를 통해 어떻게 다양한 세포반응이 유도되는지에 대한 핵심 메커니즘은 오랫동안 수수께끼로 남아있었다.그 원인은 NF-kB 신호전달경로가 매우 복잡한 조절관계에 얽혀 있어서 동역학적 특성을 직관적으로 이해하기 어려웠기 때문이다. 또한 많은 실험들이 특정 조건에서 관측된 단면만을 보여주기 때문이었다.
조광현교수 연구팀은 산발적 실험데이터를 집대성하여 확률모델을 개발했고, 대규모 컴퓨터시뮬레이션 작업을 반복 수행했다. 그 결과 NF-kB 신호전달네트워크의 IkB알파와 IkB엡실론이 기하학적으로 동일한 형태의 음성피드백회로를 형성하고 있음에도, IkB알파는 핵내 NF-kB 신호패턴의 주파수와 진폭을 조절하는 역할을 수행하는 반면, IkB엡실론은 이러한 NF-kB 신호의 무작위적 변화를 유발하는 특성이 있음을 알아냈다. 그리고 이러한 상동체(paralog)가 형성하는 중첩된 음성피드백회로의 복합적 작용이 결국 세포반응의 다양성을 유도하는 핵심 메커니즘이라는 것을 밝혀냈다.
이 연구는 교육과학기술부 지원 연구사업의 일환으로 수행됐고, 연구결과는 지난 7일, 실험생물학계 권위지 ‘파셉저널 (The FASEB Journal)’ 온라인판에 게재됐다. 전통적 실험생물학 저널에 컴퓨터시뮬레이션만으로 수행된 연구결과가 게재된 것은 매우 이례적인 일이다. 생명과학연구의 전통적인 방식을 벗어나 IT와의 융합연구를 통해 기존의 난제에 대한 새로운 해답을 찾을 수 있음을 보여주는 사례로 평가되고 있다.
조광현 교수는 전기전자공학을 전공하고 국내 최초로 IT의 BT응용으로서 시스템생물학 분야를 개척해오며 지금까지 95편의 국제저널논문을 발표했다.
2009.05.14
조회수 16989