본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%B0%98%EB%8F%84%EC%B2%B4
최신순
조회순
조용훈 교수, 양자입자의 상온 응축 및 운동량 제어 기술 개발
우리 대학 물리학과 조용훈 교수 연구팀이 머리카락 굵기보다 100배 얇은 육각형 반도체 막대 구조를 이용해 극저온에서만 형성이 가능했던 빛과 물질의 성질을 동시에 갖는 양자 입자(엑시톤-폴라리톤)를 응축하고 이의 운동량을 상온에서도 제어하는 데 성공했다. 이번 연구를 통해 향후 고효율의 비선형 광소자부터 양자 광소자에 이르기까지 광범위하게 활용할 수 있을 것으로 기대된다. 송현규 박사과정이 1 저자로 참여한 이번 연구 결과는 미국 광학회의 국제학술지 ‘옵티카 (Optica)’10월 20일 자에 게재됐다. 빛이 반도체 내부의 엑시톤과 오랜 시간 동안 머물 수 있는 적절한 조건이 성립되면, 서로가 강하게 상호작용하며 빛과 물질이 지닌 장점을 동시에 갖는 제3의 양자 입자인 엑시톤-폴라리톤이 생성된다. 기존 연구에 많이 사용되던 비소화물 기반 반도체의 경우, 빛을 반도체 내부에 오랜 시간 가둬두기 위한 균일한 거울 구조를 만드는 공정과정은 잘 알려졌지만, 열에너지에 의해 엑시톤이 해리되기 때문에 극저온의 실험환경이 필수적인 요소였다. 반면 질화물 기반 반도체의 경우 상온에서도 안정적으로 존재할 수 있는 엑시톤을 형성할 수는 있지만, 거울 구조를 만드는 공정과정이 복잡하고 물리적 요인들로 인해 공간적으로 균일한 거울 구조를 만드는 데 한계가 있다. 이러한 불균일한 거울 구조는 엑시톤-폴라리톤의 움직임을 방해하는 중요한 원인이다. 연구팀은 거울 구조 대신 질화물 반도체 기반의 3차원 구조인 육각형 마이크로 막대 구조를 이용해 문제를 해결했다. 이 구조를 이용하면 거울 없이도 내부 전반사의 원리를 통해 균일하면서도 자발적으로 형성되는 빛의 모드와 엑시톤의 강한 상호작용으로 상온에서도 엑시톤-폴라리톤을 생성할 수 있게 된다. 엑시톤-폴라리톤은 빛으로부터 얻은 고유의 특성으로 인해 질량이 전자보다 10만 배, 원자보다 10억 배 가볍다. 기존 원자를 이용하면 절대영도(영하 273도) 근처에서 에너지가 낮은 하나의 바닥 상태를 모든 입자가 공유해서 마치 하나의 입자처럼 행동하는‘보즈-아인슈타인 응축 현상’이 관측된다. 연구팀은 질화물 반도체에서 엑시톤-폴라리톤 입자를 형성하여 이러한 응축 현상이 상온에서도 생성될 수 있다는 사실을 검증했다. 또한, 엑시톤으로부터 얻은 고유 특성으로 기존의 빛과는 다르게 엑시톤-폴라리톤 입자 서로 간의 밀어내는 힘인 척력이 발생한다. 연구팀은 고해상도 레이저 광학 시스템을 이용해 엑시톤-폴라리톤의 포텐셜 에너지와 이의 경사도를 조절해서 엑시톤-폴라리톤 응축 현상의 운동량을 제어하는 데에도 성공했다. 이와 같은 응축 현상의 운동량 제어는 공간적으로 넓은 결맞음을 동반하기에 양자 소용돌이와 같은 양자 상전이 현상부터 양자 시뮬레이터로 활용하기 위한 양자현상 제어의 중요한 요소 중 하나이다. 이 기술은 구동 전류가 10배 이상 낮은 엑시톤-폴라리톤 기반의 신개념 레이저, 비선형 광소자와 같은 고전적인 광소자뿐만 아니라 초유체 기반의 집적회로, 양자 시뮬레이터와 같은 양자광소자에 응용될 수 있다. 조 교수는 “상온 엑시톤-폴라리톤 플랫폼으로서 복잡한 저온 장치 없이 이와 관련된 기초연구의 문턱을 낮출 수 있는 기반이 될 수 있을 것이다”라며, “지속적인 연구를 통해 상온에서 작동이 가능한 다양한 양자 광소자로 활용되길 기대한다”라고 말했다. 이번 연구는 한국연구재단의 중견연구자 지원사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 반도체 육각형 막대 구조에서 생성되는 상온 엑시톤 폴라리톤 응축 및 이의 운동량 제어
2019.10.31
조회수 10888
임성갑 교수, 새로운 다층 금속 상호연결 기술 개발
우리 대학 생명화학공학과 임성갑 교수와 POSTECH(총장 김도연) 창의IT융합공학과 김재준 교수 공동 연구팀이 비아홀(via-hole, vertical interconnect access hole) 공정 없이도 금속을 다중으로 상호 연결할 수 있는 기술을 개발했고, 이를 통해 5층 이상의 3차원 고성능 유기 집적회로를 구현했다. 이번 기술은 금속의 수직 상호 연결을 위해 공간을 뚫는 작업인 비아홀 공정 대신 패턴된 절연막을 직접 쌓는 방식으로, 유기 반도체 집적회로를 형성하는데 적용할 수 있는 신개념의 공정이다. 유호천 박사와 박홍근 박사과정 학생이 공동 1 저자로 참여한 이번 연구 결과는 국제적인 학술지인 네이처 커뮤니케이션(Nature Communications) 6월 3일 자 온라인판에 게재됐다. (논문명: Highly stacked 3D organic integrated circuits with via-hole-less multilevel metal interconnects) 유기 트랜지스터는 구부리거나 접어도 그 특성을 그대로 유지할 수 있는 장점 덕분에 유연(flexible) 디스플레이 및 웨어러블 센서 등 다양한 분야에 적용할 수 있다. 그러나 이러한 유기물 반도체는 화학적 용매, 플라즈마, 고온 등에 의해 쉽게 손상되는 문제점 때문에 일반적인 식각 공정을 적용할 수 없어 유기 트랜지스터 기반 집적회로 구현의 걸림돌로 여겨졌다. 공동 연구팀은 유기물 반도체의 손상 없이 안정적인 금속 전극 접속을 위해 절연막에 비아홀을 뚫는 기존 방식에서 벗어나 패턴된 절연막을 직접 쌓는 방식을 택했다. 패턴된 절연막은 패턴 구조에 따라 반도체소자를 선택적으로 연결할 수 있도록 했다. 특히 연구팀은 ‘개시제를 이용한 화학 기상 증착법(iCVD: initiated chemical vapor deposition)’을 통해 얇고 균일한 절연막 패턴을 활용해 안정적인 트랜지스터 및 집적회로를 구현하는 데 성공했다. 공동 연구팀은 긴밀한 협력을 통해 개발한 금속 상호 연결 방법이 유기물 손상 없이 100%에 가까운 소자 수율로 유기 트랜지스터를 제작할 수 있음을 확인했다. 제작된 트랜지스터는 탁월한 소자 신뢰성 및 균일성을 보여 유기 집적회로 제작에 큰 역할을 했다. 연구팀은 수직적으로 분포된 트랜지스터들을 상호 연결해 인버터, 낸드, 노어 등 다양한 디지털 논리 회로를 구현하는 데 성공했다. 또한, 효과적인 금속 상호 연결을 위한 레이아웃 디자인 규칙을 제안했다. 이러한 성과는 향후 유기 반도체 기반 집적회로 구현 연구에 유용한 지침이 될 것으로 기대된다. 연구책임자인 POSTECH 김재준 교수는 “패턴된 절연막을 이용하는 발상의 전환이 유기 집적회로로 가기 위한 핵심 기술의 원천이 됐다”라며 “향후 유기 반도체 뿐 아니라 다양한 반도체 집적회로 구현의 핵심적인 역할을 할 것으로 기대한다”라고 말했다. 본 연구는 과학기술정보통신부, 한국연구재단과 삼성전자 미래기술육성센터의 지원을 받아 수행됐다. □ 그림 설명 그림1. 제안된 금속 상호 연결 기술 모식도 그림2. 수직 집적된 디지털 회로 공정 모식도 및 이미지
2019.06.11
조회수 15457
이도창, 김신현 교수, 반도체 나노막대로 초박막 편광필름 개발
우리 대학 생명화학공학과 이도창, 김신현 교수 연구팀이 반도체 나노막대가 일렬로 배열된 수 나노미터 두께의 편광필름을 개발했다. 이 교수 연구팀은 나노막대입자의 상호작용력을 미세하게 조절해 나노막대들이 스스로 공기-용액 계면에서 일렬종대로 조립되게 설계했다. 이러한 자기조립기술은 전기장이나 패터닝된 기판 등 외부의 도움이 필요하지 않기 때문에 다양한 분야에 폭넓게 응용 및 적용될 수 있을 것으로 기대된다. 김다흰 연구원이 1 저자로 참여한 이번 연구는 국제 학술지 ‘나노 레터스(Nano letters)’ 2월 19권 2호에 출판됐다. (논문명 : Depletion-mediated interfacial assembly of semiconductor nanorods). 반도체 나노막대는 막대의 긴 방향을 따라 편광 빛을 내는 독특한 광학 특성이 있어 디스플레이 분야에서 막대한 빛 손실을 가져왔던 기존 편광판을 대체할 수 있는 전도유망한 나노소재로 주목받고 있다. 단일 나노막대의 편광 특성을 소자 면적의 필름에서 구현하기 위해서는 구성하는 모든 나노막대가 한 방향으로 정렬된 뗏목 형태인 스멕틱(smectic) 자기조립 구조가 필요하다. 그러나 수십 나노미터의 길이와 수 나노미터 두께의 나노막대를 대면적에서 정렬하기 위해서는 전기장을 유도하는 전극 기판 혹은 한정된 공간에서 입자를 조립할 수 있는 패터닝된 기판을 필요로 해 실제 소자에 적용하기에는 한계가 있다. 이렇게 조립된 나노막대 필름은 두께가 불균일하고 두꺼워 균일한 초박막 층을 사용해야 하는 필름 소자에는 적합하지 않았다. 연구팀은 문제 해결을 위해 공기-용액 계면과 나노막대 간의 인력, 나노막대와 나노막대 간의 인력을 순차적으로 유도해 단일층 두께의 나노막대 스멕틱 필름을 제작했다. 연구팀의 고배향 필름 제작 기술은 기판으로 사용된 공기-용액 계면을 용액 증발과 함께 제거할 수 있고 조립 면적에 제한이 없어 소자 종류에 상관없이 적용할 수 있다. 연구팀은 길이 30나노미터, 지름 5나노미터의 나노막대들이 수십 마이크로 제곱 면적에 걸쳐 88%의 정렬도로 초박막 필름을 형성함을 확인했다. 나아가 계면과 나노막대, 나노막대와 나노막대 간 상호작용력을 정량적으로 계산 및 비교함으로써 나노막대가 계면에서 조립되는 원리를 밝혔고, 계면에서 얻을 수 있는 다양한 형태의 자기조립구조를 증명했다. 연구팀이 개발한 반도체 나노막대의 스멕틱 필름은 편광 발광층으로 디스플레이 분야에 활발히 적용돼 소자 두께의 최소화, 비용 절감, 성능 강화 등에 이바지할 수 있을 것으로 기대된다. 1 저자인 김다흰 연구원은 “입자의 상호작용력 조절을 통해 단일층 두께에서 나노막대 스스로가 방향성을 통제하며 고배열로 정렬할 수 있다는 것을 보였다. 이는 외부 힘 없이도 더욱 정교한 자기조립구조가 가능하다는 것을 보여주는 결과이다”라며 “고배열, 고배향을 갖는 다양한 나노입자의 초박막 필름 제작 및 필름 소자에 활발히 사용될 것이다”라고 말했다. 이번 연구는 한국연구재단 나노․소재원천기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 공기-용액 계면에서 나노막대의 자기조립 과정을 보여주는 모식도 그림2. 나노막대 표면을 감싸고 있는 리간드 층 밀도에 따른 자기조립구조 모식도와 전자현미경 이미지
2019.03.20
조회수 12104
조용훈, 최형순 교수, 반도체 내 양자 소용돌이 제어 기술 개발
우리 대학 물리학과 조용훈, 최형순 교수 공동 연구팀이 반도체 공진기 구조에서 ‘엑시톤-폴라리톤 응축’이라는 양자물질 상태를 형성 후 새 광학적인 방식으로 양자 소용돌이를 생성하고 제어하는 데 성공했다. 권민식 연구원과 오병용 박사가 공동 1저자로 참여한 이번 연구 결과는 미국 물리학회가 발행하는 물리학 권위지인‘피지컬 리뷰 레터스 (Physical Review Letters)’ 2월호에 게재됐다. 태풍이 일거나 싱크대에서 물이 빠질 때 유체가 소용돌이를 일으키며 회전하는 것은 우리에게 익숙한 현상이다. 이와 마찬가지로 초유체, 초전도체 같은 양자 유체도 소용돌이를 일으키며 회전할 수 있는데, 이는 파동 함수의 위상(phase)이 소용돌이를 중심으로 원주율의 특정 배수가 되는 조건에서만 가능하다. 이렇게 소용돌이가 불연속적으로 양자화되는 현상을 양자 소용돌이라고 한다. 양자 소용돌이는 양자 유체역학을 연구하는 데 가장 핵심적인 요소 중 하나이다. 초유체의 에너지 손실 없이 회전할 수 있는 특성과 소용돌이의 회전 방향을 쉽게 뒤집을 수 없는 위상학(topology)적 안정성이 결합돼 있어 양자 소용돌이를 쉽게 생성하고 제어할 수 있다면 미래형 정보 소자로도 활용할 수 있다. 이런 면에서 반도체 내부에 존재하는 양자 유체인 엑시톤-플라리톤(이하 폴라리톤)은 특히 유리하다. 반도체에 밴드갭(전도체의 가장 아랫부분의 에너지 준위와 가전자대의 가장 윗부분의 에너지 준위 간의 에너지 차이)보다 높은 에너지를 갖는 빛을 쬐면 전자-전공 쌍이 형성되고 서로 강하게 이끌리며 엑시톤을 형성한다. 이러한 반도체에 높은 반사율을 갖는 거울 구조의 공진기를 결합하면 빛(광자)과 물질(엑시톤)이 강하게 상호작용하며 빛, 물질의 성질을 동시에 갖는 제3의 양자 물질을 만들 수 있는데 이를 폴라리톤이라 한다. 폴라리톤이 일정 밀도 이상 모이면 마치 하나의 입자처럼 행동하는 폴라리톤 응축 상태를 띌 수 있는데 이 때 폴라리톤은 초유체의 특성도 갖게 된다. 다른 초유체와 달리 잘 정립된 반도체 공정 기술과 광학적 제어 기술이 결합돼 있고, 초유체 생성 온도가 상대적으로 높아 그 응용 가능성이 기대되는 물질이다. 연구팀은 광-펌핑(원자나 이온이 빛을 흡수해 낮은 에너지의 상태에서 높은 에너지의 상태로 변화하는 현상)을 위해 사용한 레이저의 궤도 각운동량을 제어해 반도체 물질 내에 양자 소용돌이의 방향과 개수를 손쉽게 조절할 방법을 개발했다. 연구팀은 공진 파장이 아닌 빛으로 기존 양자 소용돌이 생성을 위한 까다로운 실험조건을 극복했다. 이 결과는 고체 상태에서 광학적 방법을 이용한 미래형 정보 소자와 복잡한 양자 현상을 이해할 수 있는 양자 시뮬레이터로의 활용 가능성을 높였다는 측면에서 큰 의의가 있다. 비공진 레이저의 궤도 각운동량이 폴라리톤의 기저 상태에까지 영향을 끼친다는 것을 밝힌 이번 연구 결과는 반도체 공진기 시스템에서 전자-정공 쌍의 에너지 완화 과정을 이해하는 데에 있어서도 중요한 결과이다. KIST 송진동 박사 연구팀과의 협력으로 진행된 이번 연구는 한국연구재단의 중견연구자 및 신진연구자 지원사업을 받아 수행됐다. □ 그림 설명 그림1. 엑시톤-폴라리톤 초유체와 양자소용돌이 상태의 생성 그림2. 양자소용돌이 제어
2019.03.11
조회수 14211
박효훈 교수, 초소형 3차원 영상 센서의 핵심기술 개발
〈 (왼쪽부터) 나노종합기술원 유종범 연구원, 김성환 박사과정, 박효훈 교수 〉 우리 대학 전기및전자공학부 박효훈 교수 연구팀이 나노종합기술원과의 공동 연구를 통해 3차원 영상 센서의 핵심 기술인 실리콘 기반 광위상배열(optical phased array, OPA) 칩을 개발했다. 김성환 박사과정과 나노종합기술원 유종범 박사가 주도한 이번 연구결과는 국제 학술지 ‘옵틱스 레터스(Optics Letters)’ 1월 15일자 온라인 판에 게재됐다. 3차원 영상 센서는 사진 등의 2차원 이미지에 입체감을 주는 거리정보를 추가해 3차원 이미지로 인식하는 센서이다. 사물의 정확한 거리정보가 필요한 자율주행 자동차, 드론, 로봇, 안면인식이 사용되는 스마트폰 등 다양한 전자기기에서 눈의 역할을 하는 핵심부품이다. 다수의 자동차, 드론 회사들이 레이저 빛을 이용한 3차원 영상 센서인 라이다(light detection and ranging, LiDAR) 개발에 주력하고 있다. 그러나 이 방식은 2차원 영상 센서로 3차원 스캐닝을 하는 기계적 방식을 사용하기 때문에 주먹 정도의 큰 크기를 가지며 고장 가능성도 크다. 광위상배열(Optical Phased Array, OPA)은 전기적으로 빛의 방향을 조절할 수 있어 라이다의 차세대 구조로 주목받고 있다. 실리콘 기반의 광위상배열은 크기가 작고 내구성이 높으며 기존의 반도체 칩을 제작하는 설비를 활용해 만들 수 있어 많은 연구가 활발히 진행되고 있다. 하지만 기존의 광위상배열은 빛 방향을 조절하는 방법에 문제가 있다. 수평 방향 조절은 전기-광학식 위상변조기를 이용해 넓은 범위의 스캐닝이 가능하지만, 수직 방향 조절은 레이저 빛의 파장을 바꿔줘야 하는 기술적 난제가 있다. 즉, 빛의 파장을 바꾸면 실리콘 광소자의 특성이 달라져 신뢰성 있는 방향조절이 어렵고 또한 파장을 조절할 수 있는 레이저를 실리콘 기반의 칩에 집적시키기가 어렵기 때문이다. 따라서 방사되는 빛을 수직 및 수평 방향으로 쉽게 조절할 수 있는 새로운 구조를 만드는 것이 중요하다. 연구팀은 파장 변조 광원을 사용해야 하는 기존의 광위상배열을 발전시켜 단일파장 광원으로 넓은 범위의 2차원 스캐닝이 가능한 초소형, 저전력 광위상배열 칩을 개발했다. 연구팀이 반도체 공정을 통해 광위상배열 구조로 제작한 이번 센서는 잠자리 눈 정도의 크기로 작게 제작할 수 있어 3차원 영상 센서를 소형화시킬 수 있다. 연구팀은 광위상배열이 3차원 영상 센서의 기능뿐 아니라 획득한 3차원 영상 데이터를 원하는 방향으로 무선전송하는 기능도 수행 가능해 고화질, 대용량의 영상정보를 전자기기 간 자유롭게 통신할 수 있다고 밝혔다. 김성환 박사과정은 “파장 변조를 이용한 2차원 스캐닝은 파장 변조가 가능한 광원의 집적이 매우 어려웠기 때문에 이번 연구를 통해 광위상배열의 상용화에 큰 도움이 될 것으로 기대한다”라고 말했다. 유종범 박사는 “3차원 영상 센서를 스마트폰에 장착해 얼굴인식 및 증강현실 서비스 등에 지원할 예정이다”라며 “공정 플랫폼을 발전시켜 3차원 반도체 영상 센서 핵심 기술의 국산화에 노력하겠다”라고 말했다. □ 그림 설명 그림1. 제작된 초소형 광위상배열 칩 그림2. 3차원 영상센서 핵심기술인 광위상배열 칩
2019.01.22
조회수 10995
김상율 교수, 투명 유연 디스플레이 기판용 소재 개발
〈 김상율 교수 연구팀. 왼쪽부터 김태형, 김성종 박사과정, 김상율 교수, 이동휘, 윤영록 석사과정〉 우리 대학 화학과 김상율 교수 연구팀이 투명 유연 디스플레이를 제작할 수 있게 해주는 고분자를 합성하는 데 성공했다. 연구팀이 개발한 고분자는 유리와 같은 투명성과 열팽창계수를 갖는 고성능의 무정형 고분자로 유기소재의 열팽창 제어에 응용 가능할 것으로 기대된다. 김선달, 이병용 연구원이 주도한 이번 연구는 국제 학술지 ‘사이언스 어드밴시스(Science Advances)’ 10월 26일자 온라인 판에 게재됐다.(논문명 : Poly(amide-imide) materials for transparent and flexible displays ) 차세대 디스플레이로 유망한 투명하면서도 유연한 디스플레이를 제조하기 위해서는 유리와 같은 수준의 투명성과 열팽창계수를 가지면서도 휘어지고 접을 수 있는 기판소재가 필요하다. 그러나 고분자 소재 중 이러한 조건을 갖는 유연 고분자 소재는 알려진 바 없었다. 모든 물체는 열을 받으면 팽창하고 차가워지면 수축하는 성질을 갖는다. 세라믹이나 금속 소재에 비해 유기물질로 이뤄진 고분자 소재는 열에 의한 팽창이 상대적으로 매우 크다. 얇고 가벼운 평판디스플레이에 사용되는 반도체소자는 세라믹과 비슷한 열팽창계수를 갖고 있어 열팽창계수의 차이가 큰 고분자 필름 위에 반도체소자를 만들게 되면 작동 시 발생하는 열에 의한 팽창과 수축의 차이로 소자가 파괴되는 문제가 발생한다. 따라서 반도체소자와 기판의 열팽창계수를 일치시키는 것은 성공적인 디스플레이를 제조하는데 매우 중요한 일이다. 무정형인 투명한 고분자 물질의 열팽창계수를 줄이는 방법으로 고분자 사슬들을 연결시켜 망상구조(특정 다각형이 이어진 그물 모양의 구조)를 형성시키는 방법이 알려져 있다. 하지만 망상 구조를 갖는 고분자 물질은 유연성을 잃어버리고 필름으로 제조해도 유연하지 않게 된다. 김 교수 연구팀은 문제 해결을 위해 고분자 사슬 간 거리를 조절하는 방식을 이용했다. 고분자 물질을 합성할 때 고분자 사슬 간에 상호작용하는 힘을 도입하고 힘의 방향이 수직으로 교차하게 만들며 사슬 간 거리를 적절히 조절하면 온도에 따른 팽창 및 수축을 억제할 수 있다. 연구팀은 이러한 화학구조를 투명한 고분자 물질에서 구현하는데 성공했다. 김상율 교수팀이 합성에 성공한 새로운 고성능 고분자 물질인 투명한 폴리아마이드이미드 필름은 열팽창정도가 유리 수준으로 낮으면서도(열팽창계수: 4ppm/oC) 유연하며 아몰레드(AMOLED) 디스플레이 제조공정에 적용할 수 있는 내열성을 갖고 있다(>400oC). 연구팀은 새로 합성된 투명 폴리아마이드이미드 필름 위에 이그조 박막 트랜지스터(IGZO TFT)소자를 제작해 필름을 반경 1mm까지 접어도 소자가 정상적으로 작동되는 것을 확인했다. 김 교수는 “이번 연구 결과는 그간 난제로 여겨졌던 무정형 고분자의 열팽창을 화학적 가교결합 없이 조절해 유리 정도 수준으로 낮추면서도 유연성을 확보하고 동시에 투명하게 만드는 방법을 제시한 흥미로운 연구결과이다”며 “다양한 유기소재의 열팽창을 제어하는 데 응용 가능할 것으로 기대된다”고 말했다. 화학과와 전기및전자공학과, 나노과학기술대학원이 공동으로 참여한 이번 연구는 한국연구재단 중견연구자지원사업과 삼성미래기술센터의 지원을 받아 수행됐다. □ 그림 설명 그림1. 투명 폴리아마이드이미드 필름 위에 제조된 투명하고 유연한 IGZO TFT의 구조 그림2. 투명한 폴리아마이드이미드 고분자의 화학구조
2018.11.08
조회수 10800
스티브 박 교수, 유기반도체 결정크기 10배 성장 기술 개발
〈 이정찬 석사과정, 스티브 박 교수, 김진오 박사과정 〉 우리 대학 신소재공학과 스티브 박 교수 연구팀이 유기반도체 결정의 크기를 성장시키고 제어할 수 있는 기술을 개발했다. 이는 무기고분자 재료를 이용해 마이크로미터 크기 수준의 구조물을 제작한 뒤 용액전단법이라는 공정과 결합하는 기술로, 용액 기반의 프린팅 공정에서 유기반도체 결정의 성장 과정을 미세하게 제어함으로써 정밀하고 균일한 대면적 크기의 유기반도체 박막 제조의 기반 기술이 될 것으로 기대된다. 김진오 박사과정, 이정찬 석사과정이 공동 1저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 7월 16일자 표지논문에 선정됐다. (논문명 : Inorganic Polymer Micropillar-Based Solution Shearing of Large-Area Organic Semiconductor Thin Films with Pillar-Size-Dependent Crystal Size, 필러 크기에 따른 유기반도체 결정 크기 성장 가능한 무기고분자 마이크로 필러 기반 용액전단법) 유기반도체는 용액을 이용한 프린팅 공정이 가능하다는 점에서 큰 주목을 받고 있다. 저가 및 대면적 제작이 가능하고 유연한 전자 소자 제작이 가능하기 때문에 다양한 연구가 지속되고 있다. 유기반도체 성능의 지표인 이동도(Mobility)는 유기반도체의 결정성, 결정의 성장방향, 결정의 크기 등의 영향을 받는다. 유기반도체의 결정성이나 결정방향을 제어하기 위한 연구는 많이 발전됐지만 결정 크기를 성장시킬 수 있는 기술은 부족한 상황이다. 최근에는 유기반도체의 균일한 박막을 만들기 위한 기술이 발전되고 있는데 잉크젯 프린팅, 딥 코팅, 그리고 용액전단법이 대표적인 기술이다. 그러나 기존의 프린팅 공정은 용액의 흐름을 적절히 통제하지 못한 상태에서 용매의 증발이 무작위로 발생하기 때문에 결정 크기가 큰 유기반도체를 제작하는 데 어려움이 있다. 연구팀은 문제 해결을 위해 유기용매에 내성을 갖는 무기 고분자 재료를 이용해 다양한 형태의 전단판을 제작한 후 이를 용액전단 기술에 결합했다.(용액전단법: 기판과 전단판 사이에 용액을 주입하고 일정 속도로 전단판을 이동시켜 한 방향으로 정렬된 균일한 유기반도체 박막 제작이 가능한 프린팅 기술) 무기 고분자 재료는 유연하고 유기용매에 대한 내성을 갖고 있기 때문에 유기반도체를 이용한 프린팅 공정에 적합하다. 또한 기존의 실리콘 재료 기반의 전단판 제조 공정을 간단한 소프트리소그래피 공정으로 대체할 수 있다. 연구팀은 일렬 형태로 배열된 사각형 모양의 마이크로미터 크기 구조물을 이용해 용액이 균일한 굴곡을 가지며 기판에 맺히도록 조절했다. 이를 통해 용매의 증발 속도를 조절해 핵 생성이 일어나는 지점을 정밀하게 통제했다. 여기서 마이크로 구조물의 크기를 변화시키며 유기반도체 결정의 크기를 성장시키는 데 성공했고, 그 결과로 반도체 소자의 성능이 함께 향상됨을 확인했다. 스티브 박 교수는 “무기고분자 재료를 결합한 용액전단법은 프린팅 공정에서 정밀한 제어가 가능하다”며 “유기반도체 뿐 아니라 다른 재료를 이용한 균일 박막 제조가 가능한 원천 기술을 확보했다는 의미를 갖는다”고 말했다. 이번 연구는 한국산업기술평가관리원이 추진하는 센서산업고도화 전문기술개발사업 등의 지원을 받아 수행됐다. □ 그림 설명 그림1. 무기고분자를 이용한 마이크로 필러 구조의 용액전단법(어드밴스드 머티리얼즈 7월호 표지)
2018.08.03
조회수 11565
정연식 교수, 2차원 반도체 공중 부양시켜 고성능 소자 제작
우리 대학 신소재공학과 정연식 교수 연구팀이 차세대 2차원 반도체를 빈 공간이 90%가 넘는 나노크기 돔 구조체 위에 올려 고성능 전자소자를 구현하는 데 성공했다. 연구팀은 이 기술을 활용해 2차원 반도체의 전자이동 능력이 기존 기술에 비해 2배 이상, 빛 감지 성능은 10배 이상 향상시켰다. 박사과정 임순민 연구원이 제1 저자로 수행한 이번 연구는 미국화학회가 발간하는 국제학술지 ‘나노 레터스(Nano Letters)’ 온라인 판 4월 3일에 게재됐다. 2차원 반도체 소재는 기존 실리콘 반도체의 물리적인 성능 한계를 극복할 수 있는 대안으로 떠오르고 있다. 하지만 원자층 수준의 얇은 두께 때문에 주변 영향에 매우 민감하다는 특성이 있다. 특히 2차원 반도체가 올려진 기판으로부터의 불규칙한 영향에 의해 성능과 신뢰성이 확보되지 못하고 있다. 이러한 문제점을 해결하기 위해 해외 연구팀들이 기판의 영향을 원천적으로 차단할 수 있는 방법을 연구하고 있다. 그 중 2차원 반도체를 공중에 매달린 구조로 설계하는 기술이 보고된 바가 있지만 반도체 층 하단을 받쳐주는 구조물이 존재하지 않아 기계적 내구성이 크게 떨어지는 단점이 있다. 정 교수 연구팀은 2차원 반도체 하단에 산화규소 재질의 초미세 돔형 구조물을 촘촘히 형성하는 아이디어로 문제를 해결했다. 기판 위에 올라가 있는 돔형 구조물은 초미세 나노크기이기 때문에 빈 공간이 90%가 넘는다. 그러한 돔 형태의 구조물 위에 2차원 반도체를 올리면 마치 기판 위에 반도체가 공중 부양하는 것과 유사한 효과를 보이게 된다. 이를 통해 기계적으로 안정적이면서 접촉 면적 및 기판의 영향을 최소화할 수 있다. 이러한 둥근 돔 구조 형상 덕분에 2차원 반도체와 기판 사이의 접촉면적을 최소화할 수 있어 반도체의 물리적 성능이 대폭 향상된다. 일반적으로 초미세 돔형 구조물을 제작하기 위해서는 패턴을 일일이 새겨주는 고가의 장비가 필요하다. 그러나 정 교수 연구팀은 분자가 스스로 움직여 나노구조물을 형성하는 자기조립 현상을 이용해 저비용으로 미세한 돔 구조 배열을 구현하는 데 성공했다. 또한 기존 반도체 공정과도 높은 호환성을 보임을 확인했다. 정연식 교수는 "이번 연구가 다양한 2차원 반도체 소재 이외에도 금속성 2차원 소재인 그래핀의 특성 향상에 동일하게 적용될 수 있다“며 ”활용범위가 커 차세대 유연디스플레이의 구동 트랜지스터용 고속 채널 소재 그리고 광 검출기의 핵심 소재인 광 활성층으로 활용될 수 있다"고 말했다. 이번 연구는 과학기술정보통신부 한국연구재단이 추진하는 미래소재디스커버리사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 돔 구조체 이용한 2차원 반도체 제작 이미지
2018.04.24
조회수 14901
유회준 교수, 딥러닝용 AI 반도체 개발
우리대학 전기및전자공학부 유회준 교수 연구팀이 스타트업 '유엑스 팩토리'와 함께 가변 인공신경망 기술을 적용해 딥러닝을 효율적으로 처리하는 AI 반도체를 개발했다. 딥러닝이란 컴퓨터가 마치 사람처럼 스스로 학습할 수 있도록 인공신경망을 기반으로 구축한 '기계 학습' 기술이다. 유 교수 연구팀이 개발한 새로운 칩은 반도체 안에서 인공신경망의 무게 정밀도를 조절함으로써 에너지 효율과 정확도를 조절한다. 1비트부터 16비트까지 소프트웨어로 간편하게 조절하면서 상황에 맞춰 최적화된 동작을 얻어낸다. 하나의 칩이지만 '콘볼루션 신경망'(CNN)과 '재귀 신경망'(RNN)을 동시에 처리할 수 있다. CNN은 이미지를 분류나 탐지하는 데 쓰이며, RNN은 주로 시간의 흐름에 따라 변화하는 영상과 음성 등 데이터 학습에 적합하다. 또 통합 신경망 프로세서(UNPU)를 통해 인식 대상에 따라 에너지효율과 정확도를 다르게 설정하는 것도 가능하다. 모바일에서 AI 기술을 구현하려면 고속 연산을 '저전력'으로 처리해야 한다. 그렇지 않으면 한꺼번에 많은 정보를 처리하면서 발생하는 발열로 인해 배터리 폭발 등의 사고가 일어날 수 있기 때문이다. 연구팀에 따르면 이번 칩은 세계 최고 수준 모바일용 AI 칩 대비 CNN과 RNN 연산 성능이 각각 1.15배, 13.8배이 달한다. 에너지효율도 40% 높은 것으로 나타났다. 스마트폰 카메라를 통해 사람의 얼굴 표정을 인식해 행복, 슬픔, 놀람, 공포, 무표정 등 7가지의 감정을 자동으로 인식하는 감정인식 시스템도 개발됐다. 이 시스템은 감정 상태를 스마트폰 상에 실시간으로 표시한다. 유 교수 연구팀의 이번 연구는 지난 13일 미국 샌프란시스코에서 열린 국제고체회로설계학회(ISSCC)에서 발표됐다. 유회준 교수는 "기술 상용화에는 1년 정도 더 걸릴 전망"이라며 " 모바일에서 AI를 구현하기 위해 저전력으로 가속하는 반도체를 개발했으며, 향후 물체인식, 감정인식, 동작인식, 자동 번역 등 다양하게 응용될 것으로 기대된다"고 설명했다.
2018.02.26
조회수 14354
공수현 박사(물리학과 졸업), 사이언스 紙에 논문 게재
〈 공 수 현 박사 〉 우리 대학 물리학과 졸업생(지도교수 조용훈)으로 네덜란드 델프트 공과대학교에서 박사 후 연구원으로 재직 중인 공수현 박사가 빛의 방향을 이용해 반도체 내부의 스핀을 제어하는 기술을 개발했다. 공 박사의 연구 성과는 세계적인 학술지 ‘사이언스(Science)’ 26일자에 게재됐다. 반도체 내부의 전자는 스핀이라는 양자 상태를 갖게 되는데 이 상태를 이용하면 더욱 많은 정보를 처리할 수 있는 차세대 전자소자를 개발할 수 있다. 하지만 기존의 반도체 스핀 소자는 상온에서 스핀 정보를 유지하기 어렵다는 한계가 있다. 공 박사는 반도체의 스핀 상태와 빛의 방향이 일대일로 연결된 소자를 개발했다. 즉, 반도체 속 스핀 회전이 반대방향이 되면 빛의 방향도 반대방향으로 진행하기 때문에 빛의 방향만으로 반도체 스핀 정보를 제어할 수 있게 된다. 빛은 주변 환경에 대해 매우 안정적이기 때문에 반도체 스핀 정보를 빛으로 전환시켜주면 먼 거리에서도 스핀 정보를 전달할 수 있다. 또한 수백나노미터 지름의 금속 나노막대를 이용하면 빛의 파장보다 더 작은 영역에 빛을 집속시킬 수 있고 이 빛은 금속 나노막대를 따라 진행된다. 금속 나노막대 근처에서는 빛의 편광 방향이 회전을 하는 광학 스핀을 형성하고, 빛의 진행 방향을 바꾸면 광학 스핀의 회전 방향이 바뀌게 된다. 즉, 광학스핀의 회전 방향과 빛의 진행 방향이 일대일 관계가 있음을 증명했다. 이 때 생기는 광학 스핀은 같은 방향으로 회전하는 반도체 속 스핀과 상호작용할 수 있는데, 스핀 방향은 유지한 채 빛의 스핀이 반도체 스핀으로 전환되거나 그 반대의 현상이 발생할 수 있다. 따라서 반도체 스핀 회전 방향도 빛의 진행 방향으로 일대일 전환이 돼 빛의 경로를 이용해 반도체 스핀 정보를 제어하고 통신할 수 있는 새 개념의 스핀네트워크 소재를 개발할 수 있다. 연구팀은 실험적인 구현을 위해 2차원 반도체 물질인 이황화텅스텐 박막을 이용했고 2차원 반도체 스핀 정보가 90% 이상의 효율로 빛의 방향정보로 전환되는 것을 증명했다. 공 박사는 “이번 연구결과는 상온에서 자기장 없이도 반도체의 스핀을 조절할 수 있는 방법이기 때문에 향후 스핀관련 연구 및 소자에 활용할 수 있다”며 “궁극적으로 양자화된 빛인 광자를 이용해 반도체의 단일 스핀을 조절해 양자컴퓨팅 개발에 응용하는 것이 목표이다”고 말했다. 공수현 박사는 2009년 우리 대학 물리학과 대학원에 입학 후 조용훈 교수의 지도를 받아 2015년 박사학위를 취득했으며 현재 네덜란드 델프트 공과대학교(Delft University of Technology) 카블리 나노과학연구소 Kobus Kuipers 그룹에서 박사 후 연구원으로 일하고 있다.
2018.01.26
조회수 14067
김상욱 교수, 카메라 플래시로 7나노미터 반도체 패턴 제작 기술 개발
〈 김상욱 교수, 진형민 연구원 〉 우리 대학 신소재공학과 김상욱 교수 연구팀이 카메라의 플래시를 이용해 반도체를 제작하는 기술을 개발했다. 이 기술은 반도체용 7나노미터 패턴 기법으로 한 번의 플래시를 조사하는 것만으로 대면적에서 초미세 패턴을 제작할 수 있다. 향후 고효율, 고집적 반도체 소자 제작 등에 활용 가능할 것으로 기대된다. 진형민 연구원, 박대용 박사과정이 공동 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 8월 21일자 온라인 판에 게재됐다. 4차 산업혁명의 주요 요소인 인공지능, 사물인터넷, 빅데이터 등의 기술에는 고용량, 고성능 반도체 소자가 핵심적으로 필요하다. 이러한 차세대 고집적 반도체 소자를 만들기 위해서는 패턴을 매우 작게 형성하는 리소그래피(Lithography) 기술의 개발이 필수적이다. 현재 관련 업계에서는 작은 패턴 제작에 주로 광 리소그래피(Photolithograph) 기술을 이용하고 있다. 하지만 이 기술은 10나노미터 이하의 패턴을 형성하기엔 한계가 있다. 고분자를 이용한 분자조립 패턴 기술은 공정비용이 저렴하고 10나노미터 이하 패턴 형성이 가능해 광 리소그래피를 대신할 차세대 기술로 각광받고 있다. 그러나 고온 열처리나 유독성 증기 처리에 시간이 많이 소요되기 때문에 대량 생산이 어려워 상용화에 한계가 있다. 연구팀은 고분자 분자조립 패턴 기술의 문제 해결을 위해 순간적으로 강한 빛을 내는 카메라 플래시를 활용했다. 플래시 빛을 이용하면 15 밀리 초(1밀리 초 : 천분의 1초) 내에 7나노미터의 반도체 패턴을 구현할 수 있고, 대면적에서 수십 밀리 초의 짧은 시간 내에 수 백도의 고온을 낼 수 있다. 연구팀은 이 기술을 고분자 분자 조립에 응용해 단 한 번의 플래시를 조사하는 것으로 분자 조립 패턴을 형성할 수 있음을 증명했다. 또한 연구팀은 고온 열처리 공정이 불가능한 고분자 유연 기판에도 적용이 가능함을 확인했다. 이를 통해 차세대 유연 반도체 제작에 응용할 수 있을 것으로 보인다. 연구팀은 카메라 플래시 광열 공정을 분자 조립 기술에 도입해 분자 조립 반도체기술의 실현을 앞당길 수 있는 고효율의 기술이라고 밝혔다. 연구를 주도한 김상욱 교수는 “분자조립 반도체 기술은 그 잠재성에도 불구하고 공정효율 제고가 큰 숙제로 남아 있었다”며 “이번 기술은 분자조립기반 반도체의 실용화에 획기적 해결책이 될 것이다”고 말했다. 신소재공학과 이건재 교수, 부산대학교 재료공학과 김광호 교수와의 공동으로 진행된 이번 연구는 과학기술정보통신부 리더연구자지원사업인 다차원 나노조립제어 창의연구단과 글로벌프론티어사업의 지원을 받아 수행됐다. □ 사진 설명 사진1. 플래시 광을 이용한 반도체 패턴 형성 사진2. 플래시 광을 이용한 분자조립 패턴 형성 모식도 사진3. 다양한 가이드 패턴을 이용한 자기조립 패턴 제어와 고분자 유연기판에서의 플래시 자기조립 패턴 형성
2017.09.13
조회수 17690
유회준 교수, 인공지능 얼굴인식 시스템 K-EYE 개발
우리 대학 전기및전자공학과 유회준 교수 연구팀이 딥러닝 알고리즘을 세계 최소 전력으로 구현하는 인공지능 반도체 칩 CNNP를 개발했다. 그리고 이를 내장한 얼굴인식 시스템 K-Eye 시리즈를 개발했다. 연구팀이 개발한 K-Eye 시리즈는 웨어러블 디바이스와 동글 타입 2가지로 구성된다. 웨어러블 타입인 K-Eye는 블루투스로 스마트폰과 연동 가능하다. 봉경렬 박사과정이 주도하고 ㈜유엑스팩토리(대표 박준영)과 공동으로 개발한 이번 연구는 지난 2월 미국에서 열린 국제고체회로설계학회(ISSCC)에서 세계 최저전력 CNN칩으로 발표돼 주목을 받았다. 최근 글로벌 IT 기업들이 알파고를 비롯한 인공지능 관련 기술들을 경쟁적으로 발표하고 있다. 그러나 대부분은 소프트웨어 기술이라 속도가 느리고 모바일 환경에서는 구현이 어렵다는 한계가 있다. 따라서 이를 고속 및 저전력으로 구동하기 위해 인공지능 반도체 칩 개발이 필수적이다. 연구팀의 K-Eye 시리즈는 1mW 내외의 적은 전력만으로도 항상 얼굴 인식을 수행하는 상태를 유지하면서 사람의 얼굴을 먼저 알아보고 반응할 수 있다는 특징을 갖는다. K-Eye의 핵심 기술인 얼웨이즈 온(Always-On) 이미지 센서와 CNNP라는 얼굴 인식 처리 칩이 있었기 때문에 위와 같은 세계 최저전력 기술이 가능했다. 첫 번째 칩인 얼웨이즈 온(Always-On) 이미지 센서는 얼굴이 있는지 없는지 스스로 판단할 수 있어 얼굴 인식이 될 때에만 작동하게 해 대기 전력을 대폭 낮출 수 있다. 얼굴 검출 이미지 센서는 아날로그 프로세싱으로 디지털 프로세싱을 제어해 센서 자체의 출력 소모를 줄였다. 픽셀과 결합된 아날로그 프로세서는 배경 부분과 얼굴 부분을 구분하는 역할을 하고 디지털 프로세서는 선택된 일부 영역에서만 얼굴 검출을 수행하면 돼 효율적인 작업이 가능하다. 두 번째 칩인 CNNP는 딥러닝을 회로, 구조, 알고리즘 전반에 도입하고 재해석을 진행해 최저 수준의 전력을 구현하는 역할을 했다. 특히 CNNP칩은 3가지의 핵심 기술을 사용했는데 ▲알파고 인공지능 알고리즘에서 사용하는 2차원 계산을 1차원 계산으로 바꿔 고속 저전력화 ▲분산형으로 배치된 칩 내 메모리가 가로방향 뿐 아니라 세로방향도 읽어낼 수 있는 특수 저전력 분산 메모리로의 설계 ▲1024개의 곱셈기와 덧셈기가 동시에 구동돼 막강한 계산력을 가지면서 외부 통신망을 거치지 않고 직접 계산 결과를 주고받을 수 있게 한 점이다. CNNP는 97%의 인식률을 가지면서도 알파고에 사용된 GPU에 비해 5천분의 1정도의 낮은 전력인 0.6mW만을 소모한다. K-Eye를 목에 건 사용자는 앞에서 다가오는 상대방의 얼굴이 화면에 떠오르면 미리 저장된 정보와 실시간으로 찍힌 사진을 비교해 상대방의 이름 등 정보를 자연스럽게 확인할 수 있다. 동글 타입인 K-EyeQ는 스마트폰에 장착해 이용할 수 있는데 사용자를 알아보고 반응하는 기능을 한다. 미리 기억시킨 사용자의 얼굴이 화면을 향하기만 하면 스마트폰 화면이 저절로 켜지면서 그와 관련된 정보를 제공한다. 또한 입력된 얼굴이 사진인지 실제 사람인지도 구분할 수 있어 사용자의 얼굴 대신 사진을 보여주면 스마트폰은 반응하지 않는다. 유 교수는 “인공지능 반도체 프로세서가 4차 산업혁명시대를 주도할 것으로 기대된다”며 “이번 인공지능 칩과 인식기의 개발로 인해 세계시장에서 한국이 인공지능 산업의 주도권을 갖길 기대한다”고 말했다. □ 사진 설명. 사진1. K-EYE 사진 사진2. K-EYEQ 사진 사진3. CNNP 칩 사진
2017.06.14
조회수 15666
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
>
다음 페이지
>>
마지막 페이지 8