본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%97%90%EB%84%88%EC%A7%80
최신순
조회순
김희탁, 정희태 교수, 수명 5배 늘린 바나듐레독스-흐름전지 개발
〈 김수현 박사과정, 김희탁 교수, 최정훈 박사과정 〉 우리 대학 생명화학공학과 정희태, 김희탁 교수 공동 연구팀(차세대배터리센터)이 용량 유지율 15배, 수명을 5배 향상시킨 바나듐레독스-흐름전지를 개발했다. 신재생 에너지의 발전과 함께 이를 통해 생산된 에너지를 효율적이고 안전하게 저장할 수 있는 대용량 에너지 저장장치의 필요성이 커지고 있다. 바나듐레독스-흐름전지는 폭발 위험이 없는 이차전지로 대용량화에 적합해 기존 에너지 저장장치를 대체할 수 있을 것으로 기대된다. 김수현, 최정훈 박사과정이 공동 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘나노 레터스(Nano letters)’ 5월 3일자 온라인 판에 게재됐다. (논문명 : Pore Size-Tuned Graphene Oxide Framework as lon-Selective and Protective Layers on Hydrocarbon Membranes for Vanadium Redox Flow Batteries) 기존의 바나듐레독스-흐름전지는 과불소계 분리막의 활물질 투과도가 높아 충․방전 효율과 용량 유지율이 매우 낮다는 한계가 있다. 이를 해결하기 위해 낮은 활물질 투과도를 갖는 탄화수소계 분리막을 적용시키고자 했지만 활물질인 바나듐5가 이온에 의해 열화 현상이 발생하고 전지 수명이 급감하는 문제가 있었다. 따라서 활물질인 바나듐 이온의 크기보다는 작으면서 전하 운반체인 수소 이온보다는 큰 기공 크기를 갖는 분리막 개발의 필요성이 커지고 있다. 공동 연구팀은 산화그래핀 간의 가교 반응을 통해 바나듐레독스-흐름전지에 적합한 기공 크기를 갖는 산화그래핀 골격체 분리막을 구현하는 데 성공했다. 가교에 의해 수화 팽창(moisture expansion, 습기나 물을 흡수해 팽창하는 현상)이 제한된 산화그래핀 간 층간 간격을 선택적 이온의 투과를 위한 기공으로 활용하는 원리이다. 이 산화그래핀 골격체는 기공 크기를 통한 분리 성능이 뛰어나 매우 높은 수소 이온-바나듐 이온 선택성을 갖는다. 연구팀의 분리막은 바나듐레독스-흐름전지의 용량 유지율을 기존 과불소계 분리막의 15배, 충․방전 사이클 수명 또한 기존 탄화수소계 분리막에 비해 5배 이상 향상시켰다. 연구팀의 산화그래핀 골격체를 통한 기공 크기 조절 기술은 다양한 크기의 이온을 활용하는 이차전지, 센서 등의 전기화학적 시스템에 적용 가능할 것으로 보인다. 김희탁 교수는 “레독스 흐름전지 분야의 고질적인 문제인 활물질의 분리막을 통한 크로스오버 및 이에 따른 분리막 열화문제를 나노기술을 통해 해결할 수 있음을 보여줬다”며 “바나듐레독스-흐름전지 뿐만 아니라 다양한 대용량 에너지 저장장치용 이차전지에 적용될 수 있을 것이다”고 말했다. 이번 연구는 한국화학연구원 주요사업, 에너지기술평가원과 기후변화연구허브사업의 지원을 통해 수행됐다. □ 그림 설명 그림1. 산화그래핀 골격체를 통한 수화 바나듐 이온과 수소 이온의 선택적 이온 투과에 대한 모식도 그림2. 바나듐레독스-흐름전지의 사이클 용량 특성
2018.06.07
조회수 14318
조은애 교수, 사용량 90% 줄이고 수명 2배 늘린 백금촉매 개발
〈 조 은 애 교수 〉 우리 대학 신소재공학과 조은애 교수 연구팀이 백금 사용량을 90% 줄이면서 동시에 수명은 2배 향상시킨 연료전지 촉매를 개발했다. 임정훈 연구원이 1저자로 참여한 이번 연구는 국제 학술지 ‘나노 레터스(Nano Letters)’ 4월호(4월 11일자)에 게재됐다. 연료전지는 대기오염 물질을 배출하지 않는 친환경 발전장치로 기존 발전 설비를 대체할 수 있다. 연료전지를 주원료로 이용하는 수소 전기차 한 대는 성인 70명이 호흡하는 공기로부터 미세먼지와 초미세먼지를 98% 이상 정화할 수 있는 달리는 공기청정기로 불린다. 하지만 이 연료전지에 전극촉매로 사용되는 백금의 비싼 가격은 상용화를 가로막는 큰 장벽이다. 또한 현재 개발된 탄소 담지 백금 나노촉매는 상용화 기준에 못 미치는 산소환원반응 활성과 내구성을 보여 한계로 남아있다. 연구팀은 기존 백금 기반 촉매들의 산소환원반응 활성 및 내구성을 증진하는 것을 목표했다. 우선 백금과 니켈 합금 촉매를 합성한 뒤 성능 증진을 위해 여러 금속 원소를 도입한 결과 갈륨이 가장 효과적임을 발견했다. 연구팀은 백금-니켈 합금 촉매를 팔면체 형태의 나노입자로 만들고 나노입자의 표면에 갈륨을 첨가해 기존 백금 촉매에 비해 성능을 12배 향상시켰다. 특히 기존 연료전지 촉매들이 대부분 실제 시스템에 적용하는 데는 실패한 반면 조 교수 연구팀은 개발한 촉매를 이용해 연료전지를 제작해 가격을 30% 줄이고 수명도 2배 이상 향상시켜 실제 적용이 가능함을 증명했다. 1저자인 임정훈 연구원은 “기존 합성 방법으로 제조 가능한 백금 니켈 합금 촉매 표면에 갈륨을 첨가해 가열만 하면 촉매가 합성되기 때문에 기존 공정에 쉽게 도입이 가능하고 대량 생산이 용이해 실용화 가능성이 높다.”고 말했다. 조은애 교수는 “연료전지의 가격저감과 내구성 향상을 동시에 달성한 연구 성과로 수소 전기차, 발전용 연료전지의 시장경쟁력 제고가 기대된다”고 말했다. 이번 연구는 에너지기술평가원, 한국연구재단 기후변화대응사업과 국방과학연구소의 지원을 통해 수행됐다. □ 그림 설명 그림1. 내구성 평가 후의 촉매 입자 형상 변화
2018.04.17
조회수 16738
강정구 교수, 수십 초 내 충전가능한 물 기반 저장소자 개발
우리 대학 EEWS대학원 강정구 교수 연구팀이 수십 초 내 급속충전이 가능한 물 기반의 융합에너지 저장소자를 개발했다. 이 기술은 그래핀 기반의 고분자 음극 및 나노 금속 산화물 양극 개발을 통한 높은 에너지 밀도를 가지며 급속 충전이 가능한 융합 에너지 저장소자로 향후 휴대용 전자기기에 적용 가능할 것으로 기대된다. 옥일우 박사과정이 1저자로 참여한 이번 연구 결과는 에너지재료분야 국제 학술지 ‘어드밴스드 에너지 머티리얼즈(Advanced Energy Materials)’ 1월 15일자에 게재됐다. 기존의 물 기반 에너지 저장장치는 낮은 구동전압과 음극재료의 부족으로 에너지 밀도가 낮고 급속 충전에 한계가 있었다. 에너지 저장장치는 두 전극에 의해 에너지 저장 용량이 정해지며 양극, 음극의 균형이 이뤄져야 고안정성을 갖는다. 일반적으로 두 전극은 전기적 특성에 차이를 보이고 이온 저장 과정이 다르기 때문에 불균형에 의한 낮은 용량 및 안정성을 보이곤 한다. 연구팀은 전극의 표면에서 빠른 속도로 에너지 교환을 이루게 하고 양극 사이의 에너지 손실을 최소화시킴으로써 고성능 에너지 저장장치를 구현하는 데 성공했다. 연구팀이 개발한 음극소재는 전도성 고분자 물질로 배터리, 슈퍼커패시터 전극 재료로 활용 가능하다. 그래핀 표면과 층 사이에서 그물 모양의 최적화된 외형으로 기존 음극소재에 비해 높은 에너지 저장용량을 갖는다. 양극소재는 나노크기 이하의 금속 산화물이 그래핀 표면에 분산된 외형을 이루고 원자와 이온이 일대일로 저장되는 형식이다. 두 전극을 기반으로 한 연구팀의 에너지 저장 소자는 고용량과 함께 높은 에너지 및 출력 밀도를 보이며 음극과 양극의 물리적 균형을 통해 매우 안정적인 충, 방전 결과를 보였다. 연구팀이 개발한 물 기반 융합에너지 저장소자는 기존의 물 기반 배터리에 비해 100배 이상으로 높은 최대 출력 밀도를 보이며 급속 충전이 가능하다. 또한 10만 번 이상의 높은 충, 방전 전류에서도 용량이 100퍼센트 유지되는 고 안정성을 보였다. 연구팀의 에너지 저장 소자는 USB 충전기나 소형태양전지 등의 저전력 충전 시스템을 통해서도 2~30초 내에 충전이 가능하다. 강 교수는 “친환경적인 이 기술은 제작이 쉽고 활용성이 뛰어나다. 특히 기존 기술 이상의 고용량, 고안정성은 물 기반 에너지 저장장치의 상용화에 기여할 것이다”며 “저전력 충전 시스템을 통해 급속 충전이 가능하기 때문에 휴대 가능한 전자 기기에 적용할 수 있을 것이다”고 말했다. 강원대학교 정형모 교수와 공동으로 진행한 이번 연구는 과학기술정보통신부 글로벌프론티어사업의 하이브리드인터페이스기반미래소재연구단(단장 김광호)의 지원을 받아 수행됐다. □ 그림 설명 그림1. 실험을 통해 구동된 저장소자 사진 그림2. 물 기반 융합 에너지 저장소자 모식도 그림3. 고분자 사슬 음극 및 금속 산화물 양극 표면 이미지
2018.02.20
조회수 18458
이건재 교수, 유연 수직형 마이크로 LED 개발
〈 이 건 재 교수 〉 우리 대학 신소재공학과 이건재 교수팀과 생명과학과 김대수 교수팀이 유연한 수직형 마이크로 LED 기술을 개발했으며, 이를 동물의 뇌에 삽입하여 빛으로 행동을 제어하는 데 성공하였다고 밝혔다. 마이크로 LED는 기존 LED 칩 크기를 크게 축소시켜 적, 녹, 청색의 발광소재로 사용하는 기술로서, 저전력과 빠른 응답속도, 뛰어난 유연성을 가져 차세대 디스플레이로 각광받고 있다. 현재 산업계에서는 200마이크로미터(μm) 이상의 크기를 갖는 두꺼운 미니 LED 칩을 소형화해 개별 전사하는 방식을 채택하고 있어 대량 생산이 어렵고 생산단가가 높으며, 소요 시간이 오래 걸리는 등의 한계를 갖고 있다. 이번 연구에서 이 교수 연구팀은 수직 LED용 양산 장비를 자체적으로 설계하여 5마이크로미터의 두께, 80마이크로미터 이하의 크기를 갖는 2500여 개의 박막 LED를 이방성 도전 필름을 활용하여 한 번에 플라스틱 기판으로 전사함과 동시에 상호 연결된 유연한 수직형 마이크로 LED를 구현하였다. 이러한 수직형 마이크로 LED는 기존 수평형 마이크로 LED와 비교해 3배 이상 향상된 광 효율을 갖으며, 박막 LED의 발열로 인한 수명, 낮은 해상도 및 신뢰성 문제를 해결할 수 있다. 이 교수는 2009년부터 마이크로 LED 연구를 진행해 왔으며, 20여 개의 국내외 원천 특허를 등록하였을 뿐만 아니라, 지난 4년 간 교신저자로서 총 임팩트 팩터 600에 달하는 40여 편의 논문을 발표하였다. 한편, 뇌과학 분야에서는 빛을 이용한 인간 뇌의 신경회로를 밝히는 광유전학이 주목받고 있다. 이번에 개발한 기술은 뇌의 모든 신경세포를 자극하는 전기자극과 달리 흥분 및 억제 신경세포만을 선택적으로 자극할 수 있기 때문에 정밀한 뇌 분석, 고해상도의 뇌 지도 제작 및 신경세포 제어가 가능하다. 이번 연구에서는 30 밀리와트/제곱밀리미터(mW/mm2) 이상의 강한 빛을 내는 유연 마이크로 LED를 쥐의 뇌에 삽입하여 대뇌 표면으로부터 깊은 곳에 위치한 운동 신경세포를 활성화시켜 쥐의 행동을 제어하였을 뿐만 아니라, 발열이 적어 뇌조직의 손상 없는 생체 삽입형 유연 전자 시스템을 구현하였다. 이건재 교수는 “이번에 개발된 수직 마이크로 LED 및 전사 패키징 기술은 저전력을 필요로 하는 스마트워치, 모바일 디스플레이, 웨어러블 조명 등에 바로 활용될 수 있을 것이며, 인간이 아직 풀지 못한 뇌과학 및 광치료, 바이오센서 분야에서도 큰 기여를 할 수 있을 것이다”라고 이번 연구의 의의를 밝혔다. 이번 연구는 스마트 IT융합시스템 연구단의 지원을 받아 수행되었으며, 세계적 과학 학술지인 ‘나노 에너지(Nano Energy)’에 2월 1일자로 게재되었다. □ 관련 영상 □ 그림 설명 그림1. 이번 기술을 이용해 제작한 마이크로 LED 그림2. 유연한 수직형 마이크로 LED의 구조 그림3. 유연한 수직형 마이크로 LED를 활용한 광유전학적 쥐의 행동 제어 실험 개략도 그림4. 이방성 도전 필름을 활용한 전사 및 패키징 기술 개략도
2018.01.29
조회수 18872
정우철 교수, 소량 금속으로 연료전지 수명 극대화기술 개발
〈 정우철 교수(오른쪽)와 연구진 〉 우리 대학 신소재공학과 정우철 교수 연구팀이 서울시립대학교 한정우 교수와의 공동 연구를 통해 소량의 금속으로 연료전지의 수명을 향상시킬 수 있는 새로운 전극소재 기술을 개발했다. 구본재 박사과정과 서울시립대 권형욱 박사과정이 공동 1저자로 참여한 이번 연구는 에너지, 환경 분야 국제 학술지 ‘에너지&인바이러멘탈 사이언스(Energy&Environmental Science)’ 2018년도 1호 표지논문에 선정됐다. 연료전지는 친환경이면서 신재생에너지원으로 주목받고 있는 에너지변환기술이다. 특히 세라믹 소재로 구성된 고체산화물 연료전지는 수소 이외에도 바이오매스, LNG, LPG 등 다양한 종류의 연료를 직접 전기에너지로 바꿀 수 있는 장점을 갖는다. 이를 통해 발전소, 전기자동차, 가정용 예비전원 등 분야에 폭넓게 사용될 것으로 전망되고 있다. 고체산화물 연료전지의 성능을 좌우하는 핵심 요소는 산소의 환원 반응이 일어나는 공기극으로 현재 페로브스카이트(ABO3) 구조의 산화물들이 주로 사용된다. 그러나 페로브스카이트 산화물들은 작동 초기 성능이 뛰어나지만 시간이 지날수록 성능이 저하돼 장기간 사용이 어렵다는 한계를 갖는다. 특히 공기극의 작동 조건인 고온 산화 상태에서 산화물 표면에 스트론튬(Sr) 등의 2차상이 축적되는 표면 편석 현상이 발생함으로써 전극의 성능을 낮추는 것으로 알려졌다. 아직까지 이러한 현상의 구체적인 원리와 이를 억제할 수 있는 효과적인 해결책이 나오지 않았다. 정 교수 연구팀은 페로브스카이트 산화물이 변형될 때 면 내 압축 변형이 일어나 스트론튬의 편석을 발생시키는 것을 계산화학적 및 실험적 결과를 통해 확인했다. 연구팀은 페로브스카이트 산화물 내부의 부분적인 변형 분포가 스트론튬 표면 편석의 주요 원인임을 규명했다. 이를 바탕으로 정 교수 연구팀은 크기가 다른 금속을 산화물 내에 장착함으로써 공기극 소재 내부의 격자변형 정도를 제어하고 스트론튬 편석을 효과적으로 억제하는데 성공했다. 정 교수는 “이 기술은 추가적인 공정 없이 소재를 합성하는 과정에서 소량의 금속입자를 넣는 것만으로 구현된다”며 “향후 고내구성 페로브스카이트 산화물 전극을 개발하는 데 유용하게 활용될 것으로 기대된다”고 말했다. 이 연구는 삼성전자 미래기술육성센터의 지원을 받아 수행됐다. □ 그림 설명 그림1. 본 연구의 Energy & Environmental Science 논문지의 커버 이미지 그림2. 전극의 격자변형 정도와 Sr 편석, 전극반응의 상관관계 그림3. 개발한 기술을 적용하여 안정화된 고체산화물 연료전지 공기극의 표면
2017.12.26
조회수 19377
김상규 교수, 화학반응 교차점에서 반응 메커니즘 규명
〈 우경철 박사과정, 김상규 교수, 강도형 박사과정 〉 우리 대학 화학과 김상규 교수 연구팀이 분자의 결합이 떨어지는 화학반응의 교차점에서 발생하는 두 가지 반응 경로를 실시간으로 관찰해 정확한 속도를 측정하는 데 성공했다. 김 교수는 지난 2010년 실험을 통해 두 반응의 위치에너지의 곡면이 만나는 화학반응의 핵심인 ‘원뿔형 교차점’의 존재와 분자구조를 규명한 바 있다. 이어서 이번 연구를 통해 화학반응의 교차점에서 발생하는 두 반응의 속도를 정확하게 측정함으로써 관련 연구의 이론적, 실험적 발전에 기여할 것으로 기대된다. 우경철, 강도형 박사과정이 1저자로 참여한 이번 연구는 ‘미국화학회지(JACS)’ 11월 7일자 온라인 판에 게재됐다. 빛을 받아 일어나는 화학반응은 전자적으로 들뜬 상태에서의 상호작용을 통해 발생한다. 일반적으로 전자상태 간의 상호작용은 한 개의 경로를 갖는 것이 보통이다. 하지만 양자상태에 따라 반응속도가 변하는 현상이 종종 발견되기도 한다. 이렇게 두 개 이상의 서로 다른 성격을 지닌 위치에너지곡면들이 교차하는 지점을 원뿔형 교차점(conical intersection)이라고 부른다. 이 구간은 화학반응에 대한 양자역학적 기술을 가능케 하는 ‘본-오펜하이머 가정(Born Oppenheimer approximation)’이 성립하지 않는 영역으로 알려져 있다. 김 교수는 2010년 분광학적 방법을 통해 이 원뿔형 교차점의 존재를 발견했고 이는 곧 에너지곡면 교차점의 양자상태 반응의 시작점임을 증명했다. 또한 여기서 출발한 반응은 매우 다른 반응속도를 가진 서로 다른 두 경로로 분리돼 진행된다는 것을 밝혔다. 그러나 일반적인 분광법을 통해서 교차점의 시작점은 알 수 있었지만 각 곡면이 갖는 속도를 측정하는 것은 불가능했다. 연구팀은 기존의 분광법이 아닌 피코초(10-12초) 시간분해능 분광법을 이용했다. 기존 기술은 나노초를(10-9초) 기반으로 한 실험을 이용한하기 때문에 에너지 부분에서는 정확하게 측정할 수 있지만 나노초로는 반응의 속도를 측정할 수 없다. 화학반응이 나노초 이내에서 이뤄지기 때문이다. 연구팀의 피코초 시간분해능 분광법은 에너지와 시간 모두 정확하게 측정할 수 있기 때문에 원하는 결과를 얻을 수 있었다. 연구팀은 본-오펜하이머 가정이 성립하는 단열 반응(adiabatic reaction)과 본-오펜하이머 가정이 성립하지 않는 비단열 반응(non-adiabatic reaction) 각각 두 개의 경로가 활성화되고 반응 속도 뿐 아니라 생성물의 에너지 분포 등이 큰 차이를 보임을 확인했다. 자유도의 수가 많은 복잡한 분자 반응에서 양자상태에 근거한 반응교차점에서의 비 단열성을 정량적으로 관찰하고 설명한 경우는 처음이다. 이를 통해 향후 있을 이론적, 실험적 연구의 촉진에 기여할 것으로 기대된다. 김 교수는 “기초과학 연구는 인류가 자연을 이해하고 지혜롭게 이용하는데 필수적이며 기초과학의 발전 없이 새로운 기술적 진보를 기대하기는 힘들다”며 “이번 연구를 통해 기초과학의 연구에 열정을 다할 수 있는 젊은 학문적 기대주들이 많이 성장할 수 있길 바란다”고 말했다. 이번 연구는 삼성미래기술육성재단의 지원을 받아 수행됐다. □ 그림 설명 그림1. 반응교차점에서 시작된 반응 그래프, 단열반응경로 (빨간색)와 비단열반응경로 (파란색)로 나눠짐 그림2. 반응교차점 입체도 그림3. 반응교차점 메커니즘 개념도
2017.11.30
조회수 17435
송현준 교수, 이산화탄소를 99% 순수연료로 바꾸는 광촉매 개발
〈 송현준 교수, 김진모 박사과정, 임찬규 박사과정 〉 우리 대학 화학과 송현준 교수 연구팀이 탄산수에 포함된 이산화탄소를 99% 순수한 메탄 연료로 바꿔주는 금속산화물 혼성 광나노촉매를 개발했다. 태양광을 이용해 메탄으로 직접 변환하는 기술은 태양전지를 이용해 전기를 생산 후 이를 전지에 저장하는 방식보다 저장 가능한 에너지의 양 측면에서 매우 효율적이다. 이번 연구는 값싼 촉매 물질을 이용해 반응 효율과 선택성을 크게 높인 화학에너지 저장방법을 구현했다는 의의를 갖는다. 목포대 남기민 교수와 공동으로 연구하고 배경렬 박사, 김진모 박사과정이 공동 1저자로, 임찬규 박사과정이 3저자로 함께 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 7일자 온라인 판에 게재됐다. 태양광은 차세대 에너지원으로 주목받고 있지만 해가 떠있는 동안에만 이용하고 발전량이 날씨에 따라 일정하지 않다는 단점이 있다. 태양광 에너지를 연료 등의 화학에너지로 직접 변환할 수 있다면 에너지 저장 및 이용에서의 문제점을 해결할 수 있다. 특히 온난화의 주범으로 지목되는 이산화탄소를 태양광을 이용해 변환하는 기술이 에너지와 환경 문제를 함께 해결할 수 있어 주목받고 있다. 하지만 이산화탄소는 매우 안정적인 물질이기 때문에 다른 분자로의 변환이 어려워, 이를 극복하기 위해 효율과 선택성이 좋은 촉매를 개발해야 한다. 송 교수 연구팀은 선크림에 주로 사용되는 아연산화물 나노입자를 합성한 뒤 표면에 구리산화물을 단결정으로 성장시켜 콜로이드 형태의 아연-구리산화물 혼성 나노구조체를 제작했다. 구리산화물은 빛을 받으면 높은 에너지를 가진 전자를 생성하며 이는 탄산수에 녹아있는 이산화탄소를 메탄으로 바꿔주는 역할을 한다. 또한 아연산화물도 빛을 받아 전자를 생성한 뒤 구리산화물로 전달해 주기 때문에 마치 나뭇잎에서 일어나는 광합성 현상과 유사한 원리를 통해 오랜시간 반응 시간을 유지했다. 그 결과 수용액에서 반응 실험을 실시했음에도 불구하고 이산화탄소에서 99%의 순수한 메탄을 얻을 수 있었다. 기존의 불균일 광촉매는 고체의 분말 형태이기 때문에 구조가 균일하지 않고 물에 분산되기 어려웠다. 송 교수 연구팀은 나노화학 합성 방법을 이용해 촉매 입자의 구조를 일정하게 조절하고 높은 표면적을 유지시켰다. 이를 통해 기존 촉매보다 수용액에서의 이산화탄소 변환 활성을 수백 배 증가시켰다. 송현준 교수는 “태양광을 이용한 이산화탄소의 직접 변환 반응의 상용화에는 많은 시간이 필요하다. 그러나 이번 연구처럼 나노 수준에서의 촉매 구조의 정밀한 조절은 광촉매 반응의 효율 향상 및 원리 연구에 큰 도움을 줄 것이다”며 “이를 다양한 광촉매에 접목시키면 촉매 특성의 최대화가 가능할 것이다”고 말했다. □ 그림 설명 그림1. 광나노촉매를 이용한 수용액에서의 이산화탄소 변환 반응 개념도 그림2. 아연-구리산화물 나노촉매의 구조와 이를 이용한 광촉매 CO2 변환 반응 및 안정성 테스트 결과
2017.11.09
조회수 20305
이현주 교수, 백금 사용량 10분의1로 줄인 단일원자 촉매 개발
〈 이 현 주 교수, 김 지 환 학생 〉 우리 대학 생명화학공학과 이현주 교수와 서울시립대 한정우 교수 공동 연구팀이 기존 촉매의 백금 사용량을 10분의 1로 줄일 수 있는 백금 단일원자 촉매를 개발했다. 이는 매우 안정적인 고함량의 백금 단일원자 촉매로 연구팀은 ‘직접 포름산 연료전지(Direct formic acid fuel cells)’에 적용하는 데 성공했다. 김지환 학생이 1저자로 참여한 이번 연구 결과는 재료 과학분야의 국제 학술지 ‘어드밴스드 에너지 머티리얼즈(Advanced Energy Materials)’ 9월 11일자 온라인 판에 게재됐다. 백금 기반의 축매는 활성과 안정성이 높아 다양한 촉매 반응에 적용되지만 가격이 비싸고 희귀하기 때문에 백금의 사용량을 최대한 줄이는 것이 중요하다. 그 중 단일원자 촉매는 백금 입자 크기를 원자 단위로 줄여 모든 원자가 반응에 참여하기 때문에 백금 촉매의 가격을 획기적으로 낮출 수 있다. 또한 두 개 이상의 원자들이 붙어 있는 앙상블 자리(ensemble site)가 없기 때문에 원하는 생성물을 선택적으로 얻을 수 있다. 이러한 장점에도 불구하고 단일원자 촉매는 낮은 배위수(coordination number)와 높은 표면자유에너지로 인해 쉽게 뭉치고 안정성이 떨어져 실제 장치에 적용이 어렵다는 한계를 갖는다. 연구팀은 백금 단일원자 촉매의 안정성을 높이기 위해 금속 원소인 안티몬이 첨가된 주석 산화물(Antimony-doped tin oxide, ATO) 위에 백금 단일원자가 주석과의 합금 형태로 존재하는 구조를 개발했다. 연구팀은 이러한 구조가 백금 단일원자가 안티몬-주석 합금 구조에서 안티몬의 자리를 대신해 열역학적으로 안정적인 형태로 존재함을 계산을 통해 증명했다. 연구팀이 개발한 촉매는 포름산 산화반응에서 일반적으로 사용되는 촉매인 상용백금촉매(Pt/C)보다 최대 50배 높은 활성을 보였고 장기안정성 또한 월등하게 높았다. 또한 연구팀은 이 촉매를 막과 전극으로 구성된 직접 포름산 연료전지에 적용했다. 단일원자 촉매를 완전지 형태의 연료전지에 적용한 것은 최초의 시도로, 기존 촉매에 비해 10분의 1 정도만의 백금을 사용해도 비슷한 출력을 얻을 수 있다. 이현주 교수는 “귀금속 단일원자 촉매의 가장 큰 문제점인 낮은 함량과 낮은 안정성을 높일 수 있었고 최초로 직접 포름산 연료전지에 적용했다”며 “연료전지에 적용 가능한 고함량 및 고안정성 귀금속 단일원자 촉매의 개발에 기여할 수 있을 것이다”고 말했다. 이번 연구는 삼성전자 미래기술육성센터의 지원을 받아 수행됐다. □ 그림 설명 그림1. 백금 단일 원자 촉매의 개념도 그림2. 관찰한 촉매 및 백금 단일 원자 (흰색 원으로 표시된 밝은 점)
2017.10.24
조회수 18572
류호진 교수, 금속 칵테일로 핵융합에 사용가능한 신소재 개발
우리 대학 원자력 및 양자공학과 류호진 교수 연구팀이 칵테일처럼 여러 원소를 혼합하는 방식을 통해 핵융합 플라즈마의 대면재로 적용 가능한 신소재 합금을 개발했다. 이번 연구를 통해 핵융합 발전과 같은 극한적 환경에서 사용되는 금속의 범위가 다양하게 확장될 것으로 기대된다. 오와이스 왓심 박사과정이 1저자로 참여한 이번 연구는 온라인 국제 학술지 ‘사이언티픽 리포트(Scientific Report)’ 5월 16일자에 게재됐다. 미래 에너지원으로 여겨지는 핵융합 발전을 실현하기 위해서는 고온의 플라즈마를 가두고 있는 토카막(tokamak) 용기의 내구성이 중요하다. 도넛 모양의 토카막은 강력한 자기장을 통해 1억℃가 넘는 플라즈마를 안정적으로 유지시켜주는 역할을 한다. 그럼에도 불구하고 플라즈마의 고온에 따른 열부하, 플라즈마 이온, 중성자 등으로 인해 토카막 용기는 손상이 발생한다. 이 토카막 용기를 보호하기 위한 대면재로 텅스텐 등의 금속이 쓰이고 있으나 완벽한 핵융합 발전을 위해서는 고성능 신소재의 개발이 필수적이다. 류 교수 연구팀은 텅스텐에 소량의 금속을 첨가해 물성을 개량하는 기존 방법들보다 한 발 더 나아가 다량의 금속을 동시에 혼합하는 기술을 활용했다. 이는 마치 칵테일처럼 여러 금속 분말을 혼합한 후 소결하는 분말야금 기술로 이를 통해 텅스텐보다 경도와 강도가 2배 이상 향상된 신소재 합금을 제조하는 데 성공했다. 핵융합에서는 다양한 물질을 함께 혼합하는 위와 같은 방식이 역효과를 발생시키기도 한다. 몰리브덴, 니오븀 등은 핵융합을 하면서 발생하는 중성자와 반응을 해 방사성이 높은 원소로 탈바꿈하는 방사화 현상이 발생해 방사능을 발산하기도 한다. 류 교수 연구팀은 이러한 제약들을 고려해 크롬, 티타늄 등을 첨가했고 이는 경도 향상 뿐 아니라 제조 공정의 촉진, 방사화 방지 등의 효과도 얻어냈다. 연구팀은 고온 기계적 특성과 더불어 열전도도, 플라즈마 상호작용, 중성자 조사취화, 트리튬 흡수 억제, 고온 내산화 특성 등을 최적화하는 합금 조성을 찾기 위한 연구를 계속 진행할 예정이다. 류 교수는 “핵융합 플라즈마 대면재는 열 충격과 플라즈마 및 중성자로 인한 손상이 극심해 이를 견딜만한 금속이 없을 정도로 극한적 환경에 노출된다”며 “이번 연구결과로 핵융합 및 원자력용 고융점 저 방사화 금속을 개발하고자 하는 시도가 전 세계적으로 활발해질 것으로 예상된다”고 말했다. 이번 연구는 미래창조과학부와 한국연구재단의 핵융합기초연구사업과 전략구조소재 신공정설계 연구센터의 지원을 받아 수행됐다. □ 그림 설명 그림1. 연구를 통해 제조된 텅스텐 기반 고강도 신합금 그림2. 고융점 금속 혼합 공정을 통한 핵융합 플라즈마 대면재 개발 개요
2017.05.24
조회수 16195
오지훈 교수, 이산화탄소 90%이상 분해 가능한 광전극 구조 개발
우리 대학 EEWS 대학원 오지훈 교수 연구팀이 빛을 이용해 이산화탄소를 분해하기 위한 금 나노 다공성 박막과 실리콘(Silicon) 기반의 새로운 광전극 구조를 개발했다. 광전기화학적 이산화탄소 변환은 태양광 에너지를 이용해 물과 이산화탄소를 연료로 바꿔주는 기술로 많은 주목을 받고 있다. 연구팀이 개발한 기술은 이를 위한 반도체 광전극 구조의 기본 틀을 제공할 것으로 기대된다. 송준태 박사가 1저자로 참여한 이번 연구는 화학, 에너지 및 소재 분야의 국제 학술지 ‘어드밴스드 에너지 머티리얼즈(Advanced Energy Materials)’ 8일자 내면 표지 논문에 게재됐다. 안정적인 이산화탄소를 환원시키기 위해서는 낮은 과전압을 지닌 우수한 촉매가 필요하다. 그 중 금(Au)은 이산화탄소를 일산화탄소로 환원시키는 전기 촉매로 알려져 있다. 그러나 금은 과전압이 비교적 높고 일산화탄소 생산성이 낮아 수소가 많이 발생하는 문제점이 있다. 또한 가격이 비싸기 때문에 사용량도 조절을 해야 한다. 연구팀은 문제 해결을 위해 나노 다공성 구조를 갖는 금 박막을 제작하는 데 성공했다. 금을 박막형태로 기판 재료에 증착해 이를 양극산화 처리한 뒤 연속적인 환원 처리를 통해 제작했다. 높은 전류 효율을 보였다. 이전의 나노구조 촉매는 0.1mm의 두꺼운 호일을 이용해 제작됐다면 연구팀의 박막은 약 5만 배 정도 얇은 200나노미터 수준으로서 금 기반 촉매의 제작비용을 최소화했다. 나아가 연구팀은 직접 제작한 나노다공성 금 박막을 촉매로 활용하기 위해 새로운 실리콘(Si) 광전극 구조를 개발했다. 기존 방법인 나노 입자 형태로 반도체 표면에 촉매를 형성하면 전기화학적 처리 과정에서 기판 자체에 영향을 주게 된다. 따라서 연구팀은 금 박막을 표면 전체에 연결될 수 있는 메쉬 패턴 구조로 제작해 광전극에 영향을 주지 않고도 독립적으로 표면의 전극 접합을 통해 전기화학처리를 가능하게 했다. 제작된 광전극은 실리콘에서 생성된 광전압과 금 박막층의 높은 촉매 특성이 작용돼 기존의 일산화탄소 변환을 위해 필요한 에너지보다 더 낮은 양으로도 변환이 가능하다. 오 교수는 “다양한 반도체 및 촉매 재료도 쉽게 적용 가능한 플랫폼 역할을 할 수 있을 것이다”며 “다른 연구자들이 우리 연구팀의 구조를 적용해 이산화탄소 광전환의 광변환 효율을 향상시킬 수 있을 것이다”고 말했다. 1저자인 송준태 박사는 “발상의 전환을 통해 매우 간단하지만 중요한 새로운 타입의 광전극 구조를 개발했고, 이를 통해 효율적인 이산화탄소 환원이 가능해졌다”며 “생성물의 평형 전위보다 더욱 낮은 전위조건에서 이산화탄소 환원을 하는 결과를 낸 것은 처음이다”고 말했다. 이번 연구는 KAIST EEWS 대학원 정성윤 교수가 공동으로 참여했고 한국이산화탄소 포집 및 처리 연구개발센터의 지원을 받아 수행됐다. □ 그림 설명 그림1. 게재된 논문 이미지 그림2. 실리콘 광전극 모식도 및 전자현미경 사진 그림3. 제작된 광전극의 광전기화학적 이산화탄소 특성
2017.02.24
조회수 21358
윤준보 교수, 700℃로 열처리된 나노와이어 옮기는 기술 개발
우리 대학 전기및전자공학부 윤준보 교수 연구팀이 고온에 열처리된 나노와이어 다발 물질을 유연 기판에 옮기는 기술과 이를 이용한 고성능의 유연 에너지 수확 소자를 개발했다. 서민호 박사과정이 1저자로 참여한 이번 연구는 나노과학 및 공학 분야 국제 학술지 ‘에이씨에스 나노(ACS Nano)’ 1월 30일자 온라인 판에 게재됐다. 대표적인 나노물질인 나노와이어(nanowire)는 나노미터 단위의 크기를 가지는 와이어 구조체를 말한다. 1차원 구조에 기반한 우수한 물리, 화학적 특성과 높은 응용성 덕분에 과학 및 공학적으로 중요하게 사용되고 있다. 특히 완벽하게 정렬된 배열, 평균보다 긴 길이 등 특수한 구조를 갖는 나노와이어는 그 성능이 더욱 우수한 것으로 밝혀졌다. 따라서 나노와이어들을 손쉽게 제작 및 분석하고 이를 통한 고성능의 응용 소자를 구현하려는 연구가 활발히 진행 중이다. 최근에는 물리, 화학적으로 우수한 나노와이어를 유연 기판에 제작하고 고성능 웨어러블 센서 등의 유연 전자소자에 응용하는 연구가 각광을 받고 있다. 그러나 기존 기술은 화학적 합성법으로 제조된 나노와이어를 용액에 섞어 유연 기판에 도포하는 무작위 분포 방식을 활용했기 때문에, 나노와이어의 구조적 장점을 활용하는 고성능 소자의 구현에는 어려움이 있다. 최첨단 나노 공정법과 내열성을 갖는 유연 물질을 이용하기도 하지만 이는 경제적으로 비효율적이고 700℃ 이상의 초고온에서 안정적인 재료를 제작하기에는 부적합해 사용 범위가 제한적이다. 연구팀은 문제 해결을 위해 대면적으로 제작된 실리콘 나노그레이팅(nano-grating) 기판과 나노희생 층(nano-sacrificial layer) 공정을 결합하는 새로운 나노 옮기기(nano-transfer) 기술을 개발했다. 이 기술은 옮기기의 틀(mold)이 되는 나노그레이팅 기판과 나노와이어 사이에 존재하던 나노희생 층이 열처리 이후 나노와이어를 유연 기판으로 옮길 때 희생 층이 없어진다. 이를 통해서 초고온에서 물성 확보가 된 나노와이어를 정렬된 형태로 유연 기판에 안정적으로 제작할 수 있다. 연구팀은 개발된 기술을 이용해 700℃ 이상부터 물성이 확보되는 티탄산바륨 나노와이어를 유연 기판 위에 완벽하게 정렬해 제작했다. 또한 이를 웨어러블 에너지 수확에 응용해 기존에 보고된 일반적인 티탄산바륨 나노와이어 기반 에너지 수확 소자의 특성을 뛰어넘는 높은 전기적 에너지를 얻었다. 이 기술은 반도체식 공정인 물리기상 증착법을 기반으로 제작하기 때문에 세라믹, 반도체 등 다양한 물질을 나노와이어의 유연 기판 위 제작에 활용 가능하다. 유연 트랜지스터, 열전소자 등 다양한 고성능 유연 전자소자 제작에 활발히 이용 가능할 것으로 기대된다. 서민호 박사과정은 “물성이 향상된 나노와이어 물질을 유연 기판 위에 옮기고 이를 이용한 소자 수준의 성능 향상을 선보였다”며 “다양한 나노와이어 물질의 유연 기판 위 제작 및 고성능 웨어러블 전자 소자의 구현에 기반이 될 것이다”고 말했다. 이번 연구는 한국연구재단 도약연구지원사업의 지원을 받아 수행됐다. □ 그림 설명 그림1.티탄산바륨( BaTiO₃) 나노와이어를 이용한 전사의 광학적, 물질적, 단면 전자현미경 결과 그림2. 개발된 새로운 나노와이어 전사 공정 과정과 나노희생층 식각 원리의 모식도 그림3. 에너지 수확소자의 모식도와 검지에 부착된 소자의 에너지 수확 실험 광학사진
2017.02.23
조회수 17137
조병진, 이건재 교수, 레이저빔 공정을 이용한 고성능 유연 열전소자 개발
우리 대학 전기및전자공학부 조병진 교수와 신소재공학과 이건재 교수 공동 연구팀이 전자기기의 전력공급원으로 사용될 수 있는 고성능 유연 열전 소자를 개발했다. 김선진 박사와 이한얼 박사과정이 공동 1저자로 참여한 이번 연구는 나노 및 에너지소재 분야 국제학술지 ‘에이씨에스 나노(ACS Nano)’ 2016년 12월 27일자에 게재됐다. 연구팀은 쿼츠 기판위에 스크린 프린팅 공정으로 열전 후막을 형성한 후 레이저빔 공정을 이용해 단단한 쿼츠 기판을 제거함으로써 쉽게 휘어지는 유연 열전 소자를 개발했다. 기존 상용 열전소자 양면에는 단단하고 무거운 세라믹 기판이 있어 휘어지지 않고 중량이 무거운 단점이 있었다. 따라서 굴곡이 있는 열원에 열전소자를 부착하여 사용하기 어려웠으며 활용이 매우 제한적이었다. 연구팀은 레이저빔을 열전소자 양면에 조사해 딱딱한 기판을 완전히 분리시키는 공정을 개발했다. 레이저빔을 이용한 기판 박리기술은 30 ns (ns : 10억분의 1초)의 매우 짧은 시간의 레이저빔을 조사하기 때문에 지난 2014년 동연구실에서 발표한 니켈박리 기술 (논문명: Wearable Thermoelectric Generator Fabricated on Glass Fabric) 보다 간편하고 공정 안전성이 매우 높다. 레이저를 이용한 기판 박리 공정기술을 개발함으로써 기존의 기판에서 발생하는 열에너지 손실문제를 개선함과 동시에 열전소자의 경량화와 유연화를 동시에 달성했다. 또한 스크린 프린팅으로 형성되는 열전후막 공정의 최적화를 통해 유연열전소자의 성능을 더욱 개선했다. 연구팀이 시험 개발한 유연 열전소자는 온도차 25 ֯C에서 단위 면적당 발전량 4.78 mW/cm2, 단위 무게당 발전량 20.8 mW/g로 최근 보고된 프린팅 기반 유연열전소자 중 가장 높은 전력밀도를 갖는다. 유연 열전소자는 잘 휘어지는 특성 때문에 굴곡이 있는 열원에 쉽게 부착해 여분의 전기에너지를 생산해 낼 수 있고 열이 발생하는 다양한 곳에 광범위하게 활용할 수 있다. 인체, 자동차, 항공기, 발전소, 산업현장 등 열이 발생하는 다양한 곳에 적용하여 여분의 전기에너지를 생산할 수 있기 때문에 그 활용성이 매우 넓다. 일례로 따뜻한 물이 흐르는 수도관 외부에 유연 열전소자를 부착하게 되면 물에서 발생하는 열을 이용해 전기에너지를 생산해 낼 수 있고, 무선 전자기기(wireless electronic device)를 동작 시킬 수 있다. 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 선도연구센터지원사업의 지원으로 수행됐다. □ 그림 설명 그림1. 레이저 멀티스캔 박리 공정으로 제작된 유연 열전소자
2017.01.23
조회수 16999
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
>
다음 페이지
>>
마지막 페이지 7