-
보이스피싱 심박스 탐지 원천 기술 개발
보이스피싱에 심박스가 악용될 경우 해외에서 온 인터넷전화가 한국 내의 번호로 인식되는 발신 번호 조작에 활용될 수 있다.
우리 대학 전기및전자공학부 김용대 교수 연구팀이 이동통신사가 보이스피싱에 사용되는 심박스를 식별할 수 있는 원천기술을 개발했다고 21일 밝혔다.
휴대전화 등 모든 단말기는 이동통신망에 접속할 때 지원 가능한 기능을 이동통신망에 전달한다. 김용대 교수 연구팀은 이러한 기능 중 1,000여 개를 이용해 이동통신 단말 기종을 구분하는 방법을 제안했고 100여 개의 이동통신 단말들의 기종을 분류할 수 있음을 입증했다. 또한, 이 기술을 보이스피싱에 사용되는 심박스에 적용했을 때 일반 휴대전화와 심박스를 명확히 구분할 수 있음을 확인했다.
현재 이동통신사들은 단말기 구분 및 단말 기종의 식별을 위해 모든 단말에 부여된 고유한 15자리 숫자인 단말기고유식별번호(이하 IMEI: International Mobile Equipment Identity)를 사용한다. IMEI는 이동통신망에서 단말 기종을 나타내기 위해 사용되는 8자리 숫자인 TAC(Type Allocation Code, 타입 할당 코드)를 포함한다.
이번 기술의 특징은 일반적인 단말뿐 아니라 악의적인 목적을 가진 다른 기종의 TAC로 변조한 단말들도 이동통신망에서 그 기종을 식별할 수 있다는 것이다. 이러한 특징은 현재 보이스피싱에 악용되고 있는 심박스들을 탐지하기에 유용하다. 심박스들은 IMEI 변조 기능을 지원하기 때문에 이동통신사가 심박스를 휴대전화로 오분류하도록 만들 수 있는데, 기존과 같이 TAC만을 이용해서는 이러한 심박스들을 탐지할 수 없기 때문이다. 이번 기술에서는 단말 기종 식별을 위해 TAC를 사용하지 않기 때문에, 그러므로 심박스가 이를 변조해 이동통신망에 접속하더라도 효과적으로 식별할 수 있다.
휴대전화와 심박스는 개발 과정에서 큰 차이를 보인다. 퀄컴, 삼성 같은 이동통신 칩 개발사는 매년 새로운 기능을 갖는 최신 사양의 칩셋을 제작하고, 이는 최신 휴대전화 제작에 사용된다. 반면 심박스의 경우 전화 기능을 위주로 한 장비이기 때문에, 비교적 저사양의 칩셋을 사용한다. 또한 일반적으로 휴대전화 제조사들은 심박스 제조사들과 달리 칩셋에 존재하는 다양한 기능들을 단말기에 구현한다. 이러한 개발 과정의 차이는 곧 휴대전화와 심박스가 지원하는 기능들의 차이로 이어진다. 연구팀이 개발한 기술에서는 이러한 단말들의 기능 정보들을 기기별 고유정보로 이용해 단말 기종을 분류했다. 그 시험 결과, 100여 종의 휴대전화 모델들이 잘 구분되는 것을 확인했고, 나아가 휴대전화와 심박스 또한 명확히 구분되는 것을 확인했다. 따라서 이번 기술이 이동통신사에 적용되더라도 심박스 탐지에 충분히 사용될 수 있을 것으로 보인다.
전기및전자공학부 오범석, 안준호 연구원이 공동 제1 저자로 참여하고 배상욱, 손민철, 이용화 연구원과 우리 대학 강민석 교수가 함께 참여한 이번 연구는 보안 최우수학회 중 하나인 `NDSS(Network and Distributed System Security)' 심포지움 2023에 채택됐다. (논문명 : Preventing SIM Box Fraud Using Device Model Fingerprinting)
한편 김용대 교수 연구팀은 2012년부터 현재까지 이동통신 보안 분야에서 다양한 연구를 진행했다. 2015년에는 상용 VoLTE 서비스의 10가지 구현 취약점들을 발견해 미국 컴퓨터 침해 사고 대응반(CERT)에 제보했고, 2019년에는 LTE 이동통신 취약점 자동분석 시스템을 개발, 51개의 새로운 취약점을 발견해 통신사 및 제조사들에 해당 문제들을 보고했다. 2022년에는 43개의 휴대전화 이동통신 칩에서 26개의 보안 취약점을 찾아 휴대전화 제조사들에게 보고했다.
공동 제1 저자인 오범석 연구원은 "100여 개의 이동통신 단말들을 이용해 휴대전화와 심박스가 잘 구분되는 것을 확인한 상태다ˮ며, "실제 보이스피싱 기술에 적용하기 위해서는 이동통신사와의 협력을 통해 상용 데이터를 활용한 검증과 기술 고도화가 필요하다ˮ 라고 말했다.
김용대 교수는 "합법적으로 심박스를 사용하는 사업 또한 존재하며 이동통신사에서 심박스를 탐지하는 것도 중요하지만 이 중 불법적으로 이용되는 심박스를 골라내는 것이 더 중요하다”며, "이 기술을 효과적으로 적용하기 위해서는 심박스 등록제가 필요한데 보이스피싱 목적이 아닌 합법적으로 사용되고 있는 심박스들은 사업 목적에 대해 등록을 하면 되고 그렇지 않은 심박스는 미등록 심박스이므로 적발이 가능하다”라고 말했다.
이번 연구는 경찰청 국가개발연구사업 <네트워크 기반 보이스피싱 탐지 및 추적 기술 개발>과 정보통신기획평가원 <정형 및 비교 분석을 통한 자동화된 이동통신 프로토콜 보안성 진단 기술> 사업 그리고 융합보안대학원 사업의 지원을 받아 수행됐다. 아울러, 현재 연구팀은 실제 고객의 피해 방지로 이어질 수 있도록 SK Telecom과 협업 중에 있다.
2023.03.21
조회수 6219
-
인공지능으로 코로나19 치료제 팍스로비드와 기존 약물간 반응 예측 고도화
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 인공지능 기반 약물 상호작용 예측 기술을 고도화해, 코로나19 치료제로 사용되는 팍스로비드(PaxlovidTM) 성분과 기존 승인된 약물 간의 상호작용 분석 결과를 논문으로 발표했다고 16일 밝혔다. 이번 논문은 국제저명학술지인 「미국국립과학원회보 (PNAS)」誌’ 3월 13일자 온라인판에 게재됐다.
※ 논문명 : Computational prediction of interactions between Paxlovid and prescription drugs
※ 저자 정보 : 김예지(한국과학기술원, 공동 제1 저자), 류재용(덕성여자대학교, 공동 제1 저자), 김현욱(한국과학기술원, 공동 제1 저자), 이상엽(한국과학기술원, 교신저자) 포함 총 4명
연구팀은 이번 연구에서 2018년에 개발한 인공지능 기반의 약물 상호작용 예측 모델인 딥디디아이(DeepDDI)를 고도화한 딥디디아이2(DeepDDI2)를 개발했다. 딥디디아이2는 기존 딥디디아이가 예측하는 86가지 약물 상호작용 종류보다 더 많은, 총 113가지의 약물 상호작용 종류를 예측한다.
연구팀은 딥디디아이2를 이용하여 코로나19 치료제인 팍스로비드*의 성분(리토나비르, 니르마트렐비르)과 기존에 승인된 약물 간의 상호작용 가능성을 예측하였다. 연구팀은 코로나19 환자 중 고위험군인 고혈압, 당뇨병 등을 앓고 있는 만성질환자가 이미 약물을 복용하고 있어, 약물 상호작용 및 약물 이상 반응이 충분히 분석되지 않은 팍스로비드를 복용 시 문제가 될 수 있다는 점에 착안해 이번 연구를 수행했다.
* 팍스로비드 : 팍스로비드는 미국 제약사인 화이자가 개발한 코로나19 치료제로, 2021년 12월 미국 식품의약국(FDA)의 긴급사용승인을 받았다.
연구팀은 팍스로비드의 성분인 리토나비르와 니르마트렐비르가 2,248개의 승인된 약물과 어떤 상호작용을 하는지, 딥디디아이2를 이용해 예측했다. 예측 결과 리토나비르는 1,403개의 승인된 약물과, 니르마트렐비르는 673개의 승인된 약물과 상호작용이 있을 것으로 예측됐다.
또한, 연구팀은 예측 결과를 활용해, 약물 상호작용 가능성이 높은 승인 약물에 대해, 동일 기전을 갖되 약물 상호작용 가능성이 낮은 대체 약물들을 제안했다. 이에 따라, 리토나비르와의 약물 상호작용 가능성을 낮출 수 있는 대체 약물 124개와 니르마트렐비르와의 약물 상호작용 가능성을 낮출 수 있는 대체 약물 239개를 제안했다.
이번 연구 성과를 통해 약물 상호작용을 정확하게 예측할 수 있는 인공지능 모델을 활용하는 것이 가능해졌으며, 이는 신약 개발 및 약물 처방 시 유용한 정보를 제공함으로써, 디지털 헬스케어, 정밀의료 산업 및 제약 산업에서 중요한 역할을 할 것으로 기대된다.
이상엽 특훈교수는 "이번 연구 결과는 실험과 임상을 통해 검증된 것은 아니므로 100% 의존해서는 안된다“고 강조하면서 ”팬데믹과 같이 긴급한 상황에서 신속하게 개발된 약물을 사용할 때, 예측된 약물 상호작용 유래 약물 이상 반응결과를 전문의가 미리 검토하여 약을 처방할 때 도움을 줄 수 있다는 점에서 의미가 있다"고 말했다.
한편 이번 연구는 과기정통부가 지원하는 KAIST 코로나대응 과학기술 뉴딜사업과 바이오·의료기술개발사업의 지원을 받아 수행됐다.
2023.03.16
조회수 7647
-
암세포만 공략하는 스마트 면역세포 시스템 개발
우리 대학 바이오및뇌공학과 최정균 교수와 의과학대학원 박종은 교수 공동연구팀이 인공지능과 빅데이터 분석을 기반으로 스마트 면역세포를 통한 암 치료의 핵심 기술을 개발했다고 밝혔다. 이 기술은 키메라 항원 수용체(Chimeric antigen receptor, CAR)가 논리회로를 통해 작동하게 함으로써 정확하게 암세포만 공략할 수 있도록 하는 차세대 면역항암 치료법으로 기대가 모아진다. 이번 연구는 분당차병원 안희정 교수와 가톨릭의대 이혜옥 교수가 공동연구로 참여했다.
최정균 교수 연구팀은 수백만개의 세포에 대한 유전자 발현 데이터베이스를 구축하고 이를 이용해 종양세포와 정상세포 간의 유전자 발현 양상 차이를 논리회로 기반으로 찾아낼 수 있는 딥러닝 알고리즘을 개발하고 검증하는 데 성공했다. 이 방법론으로 찾아진 논리회로를 장착한 CAR 면역세포는 마치 컴퓨터처럼 암과 정상 세포를 구별하여 작동함으로써 부작용없이 암세포만 정확하게 공략하는 것이 가능하다.
바이오및뇌공학과 권준하 박사, 의과학대학원 강준호 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 '네이처 바이오테크놀로지(Nature Biotechnology)'에 지난 2월 16일 출판됐다. (논문명: Single-cell mapping of combinatorial target antigens for CAR switches using logic gates)
최근의 암 연구에서 가장 많은 시도와 진전이 있었던 분야는 바로 면역항암치료이다. 암환자가 갖고 있는 면역체계를 활용하여 암을 극복하는 이 치료 분야에는 몇 가지 방법이 있는데, 면역관문억제제 및 암백신과 더불어 세포치료 또한 해당된다. 특히, 키메라 항원 수용체를 장착한 CAR-T 혹은 CAR-NK라고 하는 면역세포들은 암항원을 인식하여 암세포를 직접 파괴할 수 있다.
CAR 세포치료는 현재 혈액암에서의 성공을 시작으로 고형암으로 그 적용 범위를 넓히고자 하는 중인데, 혈액암과 달리 고형암에서는 부작용을 최소화하면서 효과적인 암 살상 능력을 보유하는 CAR 세포 개발에 어려움이 있었다. 이에 따라 최근에는 한 단계 진보된 CAR 엔지니어링 기술, 즉 AND, OR, NOT 과 같은 컴퓨터 연산 논리회로를 활용해 효과적으로 암세포를 공략할 수 있는 스마트 면역세포 개발이 활발히 진행되고 있다.
이러한 시점에서, 연구진은 세포 단위에서 정확히 암세포들에서만 발현하는 유전자들을 발굴하기 위해 대규모 암 및 정상 단일세포 데이터베이스를 구축했다. 이어서 연구진은 암세포들과 정상세포들을 가장 잘 구별할 수 있는 유전자 조합을 검색하는 인공지능 알고리즘을 개발했다. 특히 이 알고리즘은, 모든 유전자 조합에 대한 세포 단위 시뮬레이션을 통해 암세포만을 특이적으로 공략할 수 있는 논리회로를 찾아내는데 사용되었다. 이 방법론으로 찾아진 논리회로를 장착한 CAR 면역세포는 마치 컴퓨터처럼 암과 정상 세포를 구별하여 작동함으로써 부작용은 최소화하면서도 항암치료의 효과는 극대화시킬 수 있을 것으로 기대된다.
제1 저자인 권준하 박사는 "이번 연구는 이전에 시도된 적이 없는 방법론을 제시했는데, 특히 주목할 점은 수백만개의 개별 암세포 및 정상세포들에 대한 시뮬레이션을 통해 최적의 CAR 세포용 회로들을 찾아낸 과정이다ˮ라며 "인공지능과 컴퓨터 논리회로를 면역세포 엔지니어링에 적용하는 획기적인 기술로서 혈액암에서 성공적으로 사용되고 있는 CAR 세포치료가 고형암으로 확대되는데 중요한 역할을 할 것으로 기대된다"고 설명했다.ᅠ
이번 연구는 한국연구재단 원천기술개발사업-차세대응용오믹스사업의 지원을 받아 수행됐다.
2023.03.02
조회수 11546
-
획기적인 반도체 소자 설계를 위한 2차원 공진기 개발
빛을 이용한 광공진기가 현대 정보·통신 산업에 필수적인 것과 같이, 양자 정보를 처리하는 차세대 반도체 소자를 설계하는 데에 활용될 수 있는 2차원 전자를 가두는 공진기*를 세계 최초로 구현하여 화제다.
*공진기란 한정된 공간 안에 파동을 가두는 장치로서 빛이나 음파, 혹은 통신 기술에 쓰이는 전자기파와 같은 파동을 제어하는 분야에서 필수적으로 활용됨.
우리 대학 응집상 양자 결맞음 센터(센터장 물리학과 심흥선 교수)는 우리 대학 물리학과 최형순 교수, 부산대학교 정윤철 교수, 전북대학교 최형국 교수와 공동연구를 통해 2차원 전자의 파동성을 이용한 공진기를 개발하는데 성공했다고 13일 밝혔다.
빛은 파동이면서도 다양한 매질 내에서 장거리 이동이 가능하다. 따라서 빛은 마주보는 거울 사이에 가두어 두더라도 소실되지 않고 여러 차례 왕복이 가능하여 광공진기 개발에 용이하고 실제로 다양한 광학소자들이 이미 폭넓게 개발되어 활용되고 있다. 반면에 물질 내부의 전자는 매질 내에서 쉽게 산란되어 빛의 파동성을 유효하게 활용하는 기술이나 소자 개발이 쉽지 않다. 이런 한계를 극복하고 전자를 이용하여 광학 기술을 모사하는 것을 '전자광학'이라고 한다. 이번 연구는 전자가 단순히 파동성을 띈다는 사실을 확인한 것에 그치지 않고 광공진기의 2차원 전자광학적 소자에 대응되는 전자공진기를 실제로 구현했다는 점에서 의미가 크다.
지금까지 직진하는 1차원 전자를 가둬 공진기를 만든 사례는 있었지만, 2차원 평면상에서 반사나 회절, 간섭 등이 복합적으로 일어나는 전자를 가둬 공진기를 만든 처음 사례이다. 이번 연구를 통해 앞으로 더욱 다양한 형태로 전자를 제어할 수 있는 원천기술로도 활용될 수 있을 것으로 기대된다.
공동연구팀은 반도체 나노소자 공정을 통해 전자의 파동을 반사할 수 있는 곡면거울을 제작하고 광공진기의 구조를 2차원 전자에 적용하여 물질 파동 또한 빛과 동일한 방법으로 가두어 둘 수 있다는 사실을 밝혀낸 것이다. 이를 위해 반도체를 극저온으로 냉각하면 반도체 내부의 전자가 수 미크론(백만분의 1미터) 정도 양자역학적 특성이 보존되는 2차원 전자 파동 형태로 존재할 수 있다. 이 반도체 위에 전극을 입히고 강한 음전압을 걸어주면 전극이 있는 영역으로는 전자가 진입하지 못하게 되므로 전자가 반사되는 거울 역할을 할 수 있다. 이 원리를 적용하여 두 개의 마주 보는 곡면거울로 이루어진 공진기 구조를 만들고 그 내부에 전자 파동을 주입하여 그 전도도를 측정함으로써 실제로 전자가 공명하는 특성이 관측하였다. 이를 통해 양자역학적 특성을 갖는 물질 파동 또한 빛과 동일한 방법으로 가두어 둘 수 있다는 사실을 밝혀낸 것이다.
우리 대학 물리학과 박사과정 박동성학생과 부산대학교 박사과정 정환철학생이 공동 제1 저자로 참여한 이 연구 결과는 지난 1월 26일 네이처 자매지인 `네이처 커뮤니케이션즈(Nature Communications)'에 게재됐다. (논문명 : Observation of electronic modes in open cavity resonator)
최형순 교수는 “동 기술은 2차원 전자계의 전자광학 발전에 새로운 가능성을 제시하는 원천기술로써 향후 다양한 양자기술 분야에도 활용될 수 있을 것으로 기대된다”라고 설명했다.
이번 연구는 한국연구재단 선도연구센터(SRC)를 중심으로 이루어졌으며 그 외에도 한국연구재단의 다양한 연구 사업(양자컴퓨팅 개발사업, 기본연구, 중견연구 지원사업 등)의 지원이 있었다.
2023.02.13
조회수 8709
-
똑똑한 영상 복원 인공지능 기술 개발
딥러닝 기술은 영상 복원 속도가 기존 알고리즘 대비 수백 배 이상 빠를 뿐만 아니라 복원 정확도 역시 높다. 하지만, 주어진 학습 데이터에만 의존하는 딥러닝 기술은 영상 취득 환경상에 변화가 생기면 성능이 급격히 저하되는 치명적인 약점이 있다. 이는 알파고와 이세돌 九단과의 대국 시 `신의 한 수'에 의해 알파고의 성능이 급격하게 저하되었던 사례를 떠올리면 쉽게 이해할 수 있다. 즉, 인공지능이 학습하지 못했던 변수(학습 데이터상에 존재하지 않는 수)가 발생할 때 신뢰도가 급격히 낮아지는 인공지능 기술의 근본적인 문제이기도 하다.
우리 대학 바이오및뇌공학과 장무석 교수 연구팀과 김재철AI 대학원 예종철 교수 연구팀이 공동 연구를 통해 인공 지능의 신뢰도 문제를 해결할 수 있는 물리적 학습 기반의 영상 복원 딥러닝 기술을 개발했다고 6일 밝혔다.
연구팀은 영상 취득 환경에서 발생할 수 있는 변수 대부분이 물리적 법칙을 통해 수학적으로 기술 가능하다는 점에 착안해 물리적 법칙과 심층 신경망이 통합된 학습 기법을 제시했다.
모든 영상 기술은 물리적인 영상 기기를 통해 영상 정보를 취득한다. 연구팀은 이 정보 취득 과정에 대한 물리적인 통찰력을 인공지능에 학습시키는 방법을 개발했다. 예를 들면, `네가 도출한 복원 결과가 물리적으로 합당할까?' 혹은 `이 영상 기기는 물리적으로 이런 변수가 생길 수 있을 것 같은데?'라는 식의 질문을 통해 물리적 통찰력을 인공지능에 이식하는 방법을 제시한 것이다.
연구팀은 변화하는 영상 취득 환경에서도 신뢰도 높은 홀로그래피 영상* 을 복원하는데 성공했다. 홀로그래피 영상 기술은 의료 영상, 군용 감시, 자율 주행용 영상 등 다양한 정밀 영상 기술에 다양하게 활용될 수 있는데, 이번 연구는 의료 진단 분야의 활용성을 집중적으로 검증하였다.
*홀로그래피 영상: 물체의 그림자 패턴(회절 패턴)으로부터 물체의 형태를 복원하는 영상 기법, 일반적인 영상 기술과 달리 위상 변화에 의한 물체의 미세 구조를 감지할 수 있는 영상 기술
연구팀은 먼저 3차원 공간상에서 매우 빠르게 움직이는 적혈구의 회절 영상(확산된 그림자형상)으로부터 적혈구의 형태를 실시간으로 복원하는데 성공했다. 이러한 동적인 영상 환경에서 예상치 못한 변수로는 여러 개의 적혈구 덩어리가 복잡하게 겹쳐진다거나 적혈구가 예상하지 못했던 위치로 흘러가는 경우를 생각해 볼 수 있다. 여기서, 연구팀은 인공 지능이 생성한 영상이 합당한 결과인지 빛 전파 이론을 통해 검산하는 방식으로 물리적으로 유효한 복원 신뢰도를 구현하는데 성공하였다.
연구팀은 암 진단의 표준기술로 자리잡고 있는 생검 조직(생체에서 조직 일부를 메스나 바늘로 채취하는 것)의 영상 복원에도 성공했다. 주목할 점은 특정한 카메라 위치에서 측정된 회절 영상만을 학습했음에도 인공지능의 인지능력이 부가되어 다양한 카메라 위치에서도 물체를 인식하는데 성공했다는 점이다. 이번에 구현된 기술은 세포 염색 과정이나 수 천 만원에 달하는 현미경이 필요하지 않아 생검 조직 검사의 속도와 비용을 크게 개선할 수 있을 것으로 기대된다.
물리적 통찰력을 인공 지능에 이식하는 영상 복원 기술은 의료 진단 분야 뿐만 아니라 광범위한 영상 기술에 활용될 것으로 기대된다. 최근 영상 기술 산업계 (모바일 기기 카메라, 의료 진단용 MRI, CT, 광 기반 반도체 공정 불량 검출 등) 에선 인공지능 솔루션 탑재가 활발히 이루어지고 있다. 영상 취득에 사용되는 센서, 물체의 밝기, 물체까지의 거리와 같은 영상 취득 환경은 사용자마다 다를 수밖에 없어 적응 능력을 갖춘 인공 지능 솔루션에 대한 수요가 큰 상황이다. 현재 대부분의 인공 지능 기술은 적응 능력 부재로 신뢰도가 낮은 문제 때문에 실제 현장에서 활용성이 제한적인 상황이다.
바이오및뇌공학과 이찬석 연구원은 "데이터와 물리 법칙을 동시에 학습하는 적응형 인공지능 기술은 홀로그래피 영상뿐만 아니라 초고해상도 영상, 3차원 영상, 비시선 영상(장애물 뒷면을 보는 영상) 등 다양한 계산 영상 기술에 적용될 수 있을 것으로 기대된다ˮ고 밝혔다.
연구진은 "이번 연구를 통해 인공지능 학습에 있어서 학습 데이터에 대한 강한 의존성(신뢰도 문제)을 물리적 법칙을 결합해 해소했을 뿐만 아니라, 이미지 복원에 있어 매게 변수화된 전방 모델을 기반으로 했기 때문에 신뢰도와 적응성이 크게 향상됐다ˮ며, 이어 "이번 연구에서는 데이터의 다양한 특성 중에서 수학적 혹은 물리적으로 정확히 다룰 수 있는 측면에 집중했고, 향후 무작위적인 잡음이나 데이터의 형태에 대해서도 제약받지 않는 범용 복원 알고리즘을 개발하는 데 주력할 것이다ˮ라고 밝혔다.
바이오및뇌공학과 이찬석 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 머신 인텔리전스(Nature Machine Intelligence)'에 지난 1월 17일 字 출판됐다. (논문명: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data)
한편 이번 연구는 삼성미래기술육성사업과 선도연구센터사업의 지원을 받아 수행됐다.
2023.02.06
조회수 7336
-
폐암 전이를 막고 치료 가능한 세포로 되돌리는 원천기술 개발
고령화에 따라 암의 발생이 늘어나면서 암은 인류의 건강수명을 위협하는 가장 치명적인 질환이 됐다. 특히 조기 발견을 놓쳐 여러 장기로 전이될 때 암의 치명률은 높아진다. 이러한 문제를 해결하기 위해 암세포의 전이 능력을 제거하거나 낮추려는 시도가 이어졌으나 오히려 중간상태의 불안정한 암세포 상태가 되면서 더욱 악성을 보이게 되어 암 치료의 난제로 남아 있었다.
우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 시스템생물학 연구를 통해 폐암 세포의 성질을 변환시켜 암세포의 전이를 막고 약물에 대한 저항성을 제거할 수 있는 기술을 개발하는 데 성공했다고 30일 밝혔다.
조광현 교수 연구팀은 폐암 세포의 전이능력이 없는 상피(epithelial, 세포 방향성이 있어 유동성 없이 표면조직을 이루는 상태)세포에서 전이가 가능한 중간엽(mesenchymal, 방향성없이 개별적인 이동성을 가진 상태)세포로 변화되는 천이 과정(epithelial-to-mesenchymal transition, 이하 EMT)에서 나타나는 다양한 암세포 상태들을 나타낼 수 있는 세포의 분자 네트워크 수학모델을 만들었다. 컴퓨터 시뮬레이션 분석과 분자 세포실험을 통해 악성종양으로 증식하여 인접한 조직이나 세포로 침입하거나 약물에 내성을 가진 중간엽세포 상태에서 전이가 되지 않은 상피세포 상태로 다시 바뀔수 있도록 세포의 성질을 변환시켜주는 핵심 조절인자들을 발굴했다.
특히 이 과정에서 그동안 난제로 남아 있었던 중간과정의 불안정한 암세포 상태(EMT 하이브리드 세포 상태)를 피하는 동시에 항암 화학요법(chemotherapy) 치료가 잘 되는 상피세포 상태로 온전히 역전하는 데 성공했다.
우리 대학 김남희 박사과정, 황채영 박사, 김태영 연구원, 김현진 박사과정이 참여한 이번 연구 결과는 미국암학회(AACR)에서 출간하는 국제저널 `캔서 리서치(Cancer Research)' 1월 30일 字 온라인판 논문으로 출판됐다. (논문명: A cell fate reprogramming strategy reverses epithelial-to-mesenchymal transition of lung cancer cells while avoiding hybrid states)
암세포의 EMT 과정에서 불완전한 천이(변화과정)로 인해 발생하는 EMT 하이브리드 상태의 세포들은 상피세포와 중간엽세포의 특성을 모두 갖고 있으며, 높은 줄기세포능*을 획득해 약물저항성 및 전이 잠재성이 큰 것으로 알려져 있다. 불안정한 암세포 상태(EMT)는 매우 복잡하여 높은 전이 능력과 약물저항성을 가지는 EMT 하이브리드 세포 상태를 회피하면서 암세포를 전이 능력과 약물저항성이 제거된 상피세포 상태로 온전히 역전시키는 것은 매우 어려운 일이었다.
*줄기세포능: 줄기세포가 지속적 자가복제를 할 수 있도록 하는 세포내 신호전달체계
조광현 교수 연구팀은 복잡한 EMT를 지배하는 유전자 조절 네트워크의 수학모델을 정립한 후, 대규모 컴퓨터 시뮬레이션 분석 및 복잡계 네트워크 제어기술을 적용해 중간엽세포 상태인 폐암 세포를 EMT 하이브리드 세포 상태를 회피하면서 전이 능력이 상실된 상피세포 상태로 역전시킬 수 있는 세 개의 핵심 분자 타깃인 ‘p53 (암 억제 단백질)’, ‘SMAD4 (EMT를 조절하는 대표적 신호전달을 매개하는 중심물질로 SMAD 그룹에 포함된 단백질)’와 ‘ERK1/2 (세포의 성장 및 분화에 관여하는 조절인자)’를 발굴하고 이를 분자 세포실험을 통해 검증했다. 이러한 발견은 실제 인체 내 암 조직의 환경에서처럼 자극이 주어진 상황에서 중간엽세포 상태가 상피세포 상태로 역전될 수 있음을 증명해 그 의미가 크다.
암세포의 비정상적인 EMT는 암세포의 이동과 침윤, 화학요법 치료에 대한 반응성 변화, 강화된 줄기세포능, 암의 전이 등 다양한 악성 형질로 이어지게 된다. 특히 암세포의 전이 능력 획득은 암 환자의 예후를 결정짓는 매우 중요한 요소다. 이번에 개발된 폐암 세포의 EMT 역전 기술은 암세포를 리프로그래밍해 높은 가소성과 전이 능력을 제거하고 항암 화학치료의 반응성을 높이도록 하는 새로운 항암 치료 전략이다.
조광현 교수는 "높은 전이 능력과 약물저항성을 획득한 폐암 세포를 전이 능력이 제거되고 항암 화학요법치료에 민감한 상피세포 상태로 온전히 역전시키는 데 성공함으로써 암 환자의 예후를 증진할 수 있는 새로운 치료전략을 제시했다ˮ라고 말했다.
조광현 교수 연구팀은 암세포를 정상세포로 되돌리는 가역 치료원리를 최초로 제시한 뒤 2020년 1월에 대장암세포를 정상 대장 세포로 되돌리는 연구 결과를 발표했고, 2022년 1월에는 가장 악성인 유방암세포를 호르몬 치료가 가능한 유방암세포로 리프로그래밍하는 연구에 성공한 바 있다. 이번 연구 결과는 전이 능력을 획득한 폐암 세포 상태를 전이 능력이 제거되고 약물 반응성이 증진된 세포 상태로 되돌리는 가역화 기술 개발의 세 번째 성과다.
한편 이번 연구는 과학기술정보통신부와 한국연구재단의 중견연구자지원사업 등의 지원으로 수행됐다.
2023.01.30
조회수 9482
-
3D 프린터로 차세대 소형원전 안전성 높이는 기술 나왔다
우리 대학 원자력및양자공학과 류호진 교수 연구팀이 금속 3D 프린팅을 활용해 소형모듈원자로(SMR) 안전성을 더욱 높일 수 있는 기술을 개발했다고 26일 밝혔다. SMR은 발전용량이 300메가와트(㎿) 수준인 소형 원자력발전소로 기존 원전보다 훨씬 좁은 땅에서 비슷한 수준의 전기를 생산할 수 있는 차세대 기술이다. 한국원자력연구원은 강석훈 재료안전기술개발부 책임연구원팀과 금속 분말 소재 전문 제조 기업인 하나에이엠티도 개발에 참여했다.
3D 프린팅 기술을 이용하면 원자로와 같이 구조가 복잡하면서 정밀한 가공이 요구되는 부품을 이음새 없이 설계‧제조할 수 있다. 원재료를 별도로 가공처리하지 않아고 되고 재료 손실도 거의 없어 비용을 아낄 수 있다는 장점도 있다. 때문에 최근 원전 부품 제조업에서 3D 프린팅 기술이 각광받는 추세다.
연구팀이 개발한 것은 SMR 압력용기 소재를 만들 수 있는 3D 프린팅 전용 금속 분말이다. 원자로 압력용기는 원자로 격납 건물 내부 정중앙에 위치한 핵심 구조물로 안에는 핵 연료봉이 들어간다. 압력용기가 튼튼하게 만들어져야 그 안에서 핵분열이 안전하게 일어나면서 전기 생산이 가능하다는 것이다.
원자로 압력용기는 탄소 함량이 높은 소재로 돼있어 3D 프린팅용 미세 분말로 만들기가 어려웠다. 탄소 함량이 높은 소재는 분말로 만드는 과정에서 쉽게 산화되고 유동성이 낮아 3D 프린터에서 분말을 분사하는 노즐을 통과하기 어렵기 때문이다.
이에 연구팀은 수십 마이크로미터(㎛) 크기의 3D 프린팅용 미세 분말을 제조했다. 여기에 분말을 방사하는 노즐을 소용돌이 형태로 만들어 분사 중에 분말 크기를 미세하게 제어할 수 있도록 해 유동성도 개선했다. 이후 3D 프린팅 방식의 빔 에너지, 스캔 속도, 열의 양을 조절해 충격 흡수율이 우수한 소재를 만드는 최적의 공정 조건을 만들었다.
연구팀은 영하 196도 저온에서 영상 80도 고온까지 다양한 환경에서 3D 프린터로 만든 압력용기용 소재와 기존 압력용기용 소재의 충격 흡수율을 비교했다. 기존 소재는 영하 75도 부근에서 쪼개지는 걸 발견했으나 3D 프린터로 만든 소재는 영하 145도까지 버틸 수 있었다. 금속이 깨지기 쉬운 극한의 저온 환경에서도 충격을 잘 흡수한 것이라고 연구팀은 설명했다.
연구팀은 앞으로 3D 프린팅 기반 제조 기술 표준화와 규제기관 인허가 획득에 힘쓸 계획이다. 주한규 한국원자력연구원장은 “이번에 개발한 3D 프린팅용 분말 소재는 향후 SMR은 물론 높은 안전성이 요구되는 각종 원자로 부품 제작에도 널리 활용될 것이라 기대한다”고 말했다.
2023.01.27
조회수 6276
-
심현철 교수팀, CES 2023 자율주행차 레이싱에 아시아 유일팀으로 참가
우리 대학 전기및전자공학부 심현철 교수 팀이 1월 5일부터 8일까지 미국 라스베이거스에서 열리는 세계 최대 전자·정보기술 전시회 CES 2023의 공식행사인 '자율주행 레이싱'에 참가한다.
1월 7일 라스베이거스 모터스피드웨이(LVMS)에서 개최 예정인 'CES 2023 자율주행차 레이싱'은 지난해 개최된 대회에서 개발된 기술력을 더욱 발전시켜 보다 진보된 고속 자율주행 차량 기술 개발성과를 대중에게 공유하고자 추진됐다.
이 대회는 2021년 10월 23일 미국 인디애나폴리스에서 최초로 개최된 '인디 자율주행 챌린지(Indy Autonomous Challenge, IAC)'에 이은 4번째 대회다. IAC 대회에 이어 CES 2022에서 개최된 대회에서 심현철 교수 무인시스템 및 제어 연구팀은 총 9개 팀 중 4강전에 진출해 CES 2023 참가권을 획득했다. 그 결과 아시아 유일 팀으로 CES 2023 자율주행차 레이싱에 출전해 미국·유럽 대학들과 최고 속도를 겨룰 예정이다.CES 2022 대회 참가 당시 심현철 교수 연구팀은 경기 진행 신호와 레이싱 규정을 준수하는 동시에 240km/h의 고속 자율주행이 가능한 소프트웨어를 성공적으로 구현했다. CES 2023 자율주행차 레이싱에서는 인디 레이싱용 IL-15차량을 자율주행차로 개조, 지난번 대회보다 성능이 더 업그레이드된 AV-23 차량을 사용하며 최고 300km/h까지 주행이 가능하다.
이번 대회에서는 CES2022에서 처음 시도된 레이싱 차량 2대 간의 1:1 자율주행 경주에서 보다 발전해 주행코스 제한 없이 자유롭게 다른 차를 추월해야 하며 토너먼트 형식으로 진행돼 가장 높은 속도로 계속 주행하는 팀이 우승을 차지하게 된다. 심 교수 연구팀은 CES 2022에서 검증된 SW를 보다 발전시켜 다른 차량 인식성능을 향상하고 고속으로 안정적으로 주행할 수 있도록 정밀 측위 및 주행 제어기술 개발에 주안점을 두고 있다.
심 교수 연구진은 2021년 현대자동차 주최 자율주행대회에서 우승한 바 있는데, 이번 CES 2023대회부터 현대자동차와 파트너십 계약을 체결하고 대회 참가에 필요한 금전적인 지원을 받고, 현대자동차 연구진과 자율주행 레이싱 기술 동향을 공유하게 된다.
CES 2023 기간 중 연구진은 웨스트홀(West Hall)에 위치한 IAC 공식 부스에서 KAIST 레이싱 팀의 기술 소개 등 행사에도 참여할 예정이다.
심현철 교수는 "외국에서 개최되는 대회에 계속 참가하면서 많은 어려움이 있는데 열심히 참여해준 학생들에게 깊이 감사하며, 우리 연구실에서 지난 13년간 개발한 자율주행기술을 검증할 수 있는 고속 자율주행 레이싱 대회에 계속 참여할 수 있어 무척 뜻깊게 생각한다"며, "고속자율주행기술은 우리나라 환경에서 장거리 이동 시 가장 효과적으로 적용할 수 있는 기술이며 고속철도나 도심 항공같이 막대한 인프라 구축 비용이 소요되지 않고 기상 조건의 영향도 크게 받지 않는 등 장점이 매우 크다"고 강조했다.한편, CES 2023 자율주행차 레이싱 대회는 CES 주관사인 미국소비자기술협회(CTA)와 에너지시스템즈네트워크(Energy System Network, ESN)가 공동으로 주최한다. KAIST 외 IAC 대회 우승자인 뮌헨공대, 매사추세츠공대(MIT), 취리히연방공대(ETH), 피츠버그대(PIT), 로체스터공대(RW), 워털루 대학 등이 참가할 예정이다. 인디 자율주행 대회는 2023년 6월 이탈리아 몬짜(Monza) 트랙에서 5회 대회, CES 2024에서 6회 대회를 개최할 예정이다.
2023.01.05
조회수 10558
-
사진에서 3차원 정보를 추론하는 인공지능 반도체 IP(지식재산권) 세계 최초 개발
우리 대학 전기및전자공학부 유회준 교수가 이끄는 PIM 반도체 설계 연구센터(AI-PIM)가 유수 학계에서 인정한 5종의 최첨단 인공지능 반도체 IP(지식재산권)를 개발했다고 29일 밝혔다.
대표적으로 심층신경망 추론 기술 및 센서 퓨전* 기술을 통해 사진으로부터 3차원 공간정보 추출하고 물체를 인식해 처리하는 인공지능(AI) 칩은 KAIST에서 세계 최초로 개발해 SRAM PIM** 시스템에 필요한 기술을 IP(지식재산권)화 한 것이다.
* 센서 퓨전 : 카메라, 거리센서 등의 각종 센서로부터 얻은 데이터를 결합하여보다 정확한 데이터를 얻는 방식
** SRAM PIM : 기존 메모리 SRAM과 DRAM 중 SRAM에 연산기를 결합한 PIM반도체
이 IP는 올해 2월 20일부터 28일까지 개최된 국제고체회로설계학회(ISSCC)에서 현장 시연을 통해 많은 주목을 받았으며, 이를 누구라도 편리하게 활용할 수 있도록 한 것이다. (웹사이트 : www.ai-pim.org)
KAIST PIM 반도체 설계연구센터는 해당 IP를 포함해 ADC*, PLL** 등 총 5가지의 PIM IP를 확보했으며, 지난 28일 웹사이트를 오픈해 연구자들이 공유할 수 있는 환경을 제공하고 있다.
* ADC(Analog to Digital Converter) : 아날로그 데이터를 디지털 데이터로 변환시키는 회로
** PLL(Phase-Locked Loop) : 내부 신호의 위상과 외부 신호의 위상을 동기화할 수 있도록 설계된 회로
기존 물체 인식 인공지능 반도체는 사진과 같은 2차원 정보를 인식하는 `사진인식기술'에 불과하다. 하지만 현실 세계의 물체들은 3차원 구조물이기 때문에 3차원 공간정보를 활용해야만 정확한 `물체인식'이 가능하다.
3차원 공간정보는 사진과 같은 2차원 정보에 거리정보를 포함시켜 실제 3차원 공간을 표현한 것으로, 3차원 공간정보에 물체를 식별해 해당 물체의 위치 및 각도를 추적하는 3차원 물체인식 기술이다. 이는 자율주행, 자동화 기술, 개인용 증강현실 (AR)과 가상현실(VR) 등과 같은 3D 어플리케이션에서 사용하는 핵심기술이다.
기존 ToF 센서*를 활용해 센서 뷰 내에 있는 모든 물체에 대한 정밀한 3차원 정보를 추출하는 것은 전력 소모가 매우 크기 때문에 배터리 기반 모바일 장치(스마트폰, 태블릿 등)에서는 사용하기 어렵다.
* ToF 센서 : 3차원 공간정보를 추출하는 Time-of-Flight 센서로, 레이저를 방출하고 반사된 레이저가 검출되는 시간을 측정하여 거리를 계산, 대표적인 센서로 3D 라이다 (LiDAR) 센서가 있음
또한, ToF 센서는 특정 측정 환경에서 3차원 정보가 손실되는 문제와 데이터 전처리 과정에 많은 시간이 소요된다는 문제점이 있다.
3차원 물체인식 기술은 데이터가 복잡해 기존 인공지능 2차원 사진인식 가속 프로세서로 처리하기 어렵다. 이는 3차원 포인트 클라우드 데이터를 어떻게 선택하고 그룹화하느냐에 따라 메모리 접근량이 달라진다.
따라서 3차원 포인트 클라우드 기반 인공지능 추론은 연산 능력이 제한적이고 메모리가 작은 모바일 장치에서는 소프트웨어만으로 구현할 수 없었다.
이에 연구팀은 카메라와 저전력 거리센서 (64픽셀)를 사용하여 3차원 공간정보를 생성했고, 모바일에서도 3차원 어플리케이션 구현이 가능한 반도체 (DSPU: Depth Signal Processing Unit)를 개발함으로써 인공지능 반도체의 활용범위를 넓혔다.
모바일 기기에서 저전력 센서를 활용한 3차원 정보 처리 시스템을 구동하면서, 실시간 심층신경망 추론과 센서 퓨전 기술을 가속하기 위해서는 다양한 핵심기술이 필요하다. 인공지능 핵심기술이 적용된 DSPU는 단순 ToF센서에 의존했던 3차원 물체인식 가속기 반도체 대비 63.4% 낮춘 전력 소모와 53.6% 낮춘 지연시간을 달성했다.
PIM반도체 설계연구센터(AI-PIM)의 소장인 유회준 교수는 “이번 연구는 저가의 거리센서와 카메라를 융합해 3차원 데이터 처리를 가능하게 한 인공지능 반도체를 IP화했다는 점에서 의미가 크며, 모바일 기기에서 인공지능 활용 영역을 크게 넓혀 다양한 분야에 응용 및 기술이전을 기대하고 있다”고 연구의 의의를 설명했다.
한편, 이번 연구는 과학기술정보통신부와 정보통신기획평가원의 PIM인공지능반도체핵심기술개발사업을 통해 개발되었으며, 이와 관련해 PIM 반도체 관련 기업과 연구기관에 개발된 IP들의 기술이전 및 활용을 돕고 있다.
2022.12.29
조회수 7866
-
극미량의 액체를 정밀하게 측정하고 분석할 수 있는 새로운 플랫폼 개발
우리 대학 기계공학과 이정철 교수 연구팀이 마이크로히터와 유동 채널이 내장된 미세전자기계시스템(MEMS) 소자를 이용해 극미량의 유체에 대한 열전달 관련 측정과 공정을 개발할 수 있는 새로운 실험 플랫폼인 열원-미소채널 통합 공진 센서 (heater-integrated fluidic resonator, 이하 HFR)를 개발했다고 21일 밝혔다.
2015년, 벤처 기업 `테라노스'의 피 한 방울로 질병을 진단할 수 있다는 주장은 정밀 분석을 위해 많은 혈액이 필요하던 미국 전역에 큰 충격으로 다가왔다. 결국 허구로 밝혀진 이 사건은 아주 적은 양의 샘플을 이용해 정밀한 측정을 수행하고자 하는 현대 사회의 요구 사항을 단적으로 보여주는 예시다.
마이크로 유체 채널이 통합된 센서는 많은 연구자에 의해 꾸준히 개발되고 있다. 하지만 아직 큰 크기를 갖는 상용화된 센서들(마이크로/나노 공정의 적용이 필요 없는)에 비해 적은 정확도를 갖는다는 한계가 있었다.
이에 연구팀은 밀도/질량 측정에만 주로 사용되지만 오히려 소형화될수록 높은 정확도를 갖는 장점이 있는 기계 공진 센서에 주목했다. 지금까지의 유체 채널 통합 공진 센서는 신뢰할 만한 결과의 확보를 위해 동일한 온도에서의 측정이 필요했다. 반면 이정철 교수팀은 이번 연구에서 온도를 자유자재로 제어하며 고정확도의 공진 측정을 병행함으로써 밀도/질량 측정 이상으로 다양한 현상과 물리량을 분석하는 아이디어를 제시했다.
연구팀은 개발한 플랫폼을 이용해 20pL(피코 리터) 이하 액체의 열전도도, 밀도, 비열을 동시에 측정할 수 있는 방법을 제시하고 1,000개 데이터를 1분 이내에 수집함으로써 고정확도의 계측을 구현했으며, 마이크로채널 내부의 비등 상변화 현상을 다중 공진 주파수로 측정해 기존의 상변화 현상 분석 기법에 비해 이력(hysteresis)과 기포의 초기 발생 시점을 더 명확하게 관측했다.
또한 연구팀은 마이크로채널 자유단에 노즐이 있는 열원-미소채널 통합 공진 센서를 사용해 전열 분무 현상을 유도하고 토출 공정을 공진 주파수로 실시간 관측할 수 있는 방법을 제시함으로써, 이전까지는 불가능했던 고속 카메라와 같은 장비 없이 노즐 자체의 측정만을 이용한 미립화 액적 토출 공정 모니터링을 구현했다. 이는 나노/마이크로 입자 및 세포 측정 분야에만 국한되어 사용되었던 극미량의 질량 측정 기술을 물리 화학적 측정 센서, 나노 패터닝 공정 제어, 상변화/열전달 제어 등 다양한 분야의 연구자들이 응용할 수 있도록 아이디어를 제시하고 그 활용 가능성을 검증한 데에 의의가 있다.
이번 연구는 국제학술지 `나노 레터스(Nano Letters)'에 지난 8월 18일 자에 온라인 게재됐으며 10월 호의 표지 논문(front cover)로 선정됐다.
이번 연구는 유체 채널 내에 가열 및 온도 측정의 기능성을 통합한 이번 연구와 비슷한 접근법으로 자성(magnetic) 혹은 압전(piezoelectric) 기술을 채널 공진 센서 기술과 융합해 자기장(magnetic field) 혹은 음향장(acoustic field)을 정밀하게 분석할 수 있는 플랫폼 등으로의 아이디어 확장이 가능하다. 측정 기법의 새로운 패러다임을 제시하는 이번 연구는 기존의 상용화된 장비들을 대체할 수 있는 고성능 측정 장비의 개발 등을 촉진할 것으로 기대된다.
한편 이번 연구는 한국연구재단의 중견연구자 지원사업과 기초연구실 지원사업, 그리고 산업기술평가관리원의 시장선도를 위한 한국 주도형 K-센서(K-Sensor) 기술개발 사업의 지원을 받아 수행됐다.
2022.11.21
조회수 8907
-
리튬이차전지 실리콘 기반 음극의 수명과 관련된 전자전도도 퇴화를 나노스케일에서 영상화 성공
고에너지 밀도를 갖는 리튬이차전지 개발에 대한 수요가 폭발적으로 증가하면서, 실리콘 기반 음극 개발에 관한 연구가 활발히 이뤄지고 있다. 실리콘 활물질은 기존 음극 활물질인 흑연 대비 높은 용량 값(4200 mAh/g)을 가지고 있어, 고에너지 밀도를 가지는 리튬이차전지용 음극의 유력한 후보로 자리 잡고 있다.
하지만 충전 및 방전 간 400%에 달하는 높은 부피 팽창/수축률이 실리콘 활물질의 상업화를 방해하고 있다. 실리콘 기반 음극의 급격한 부피 변화는 특히 전극 내 전자 전달 시스템에 큰 악영향을 미치고 있으며, 이를 보완하기 위해 다양한 도전재 시스템을 적용하는 연구가 활발히 진행 중이다. 전극 내 전자 전도 채널의 확보는, 활물질 내 균등한 전기화학 반응을 유발하기 위해 필수적이지만, 이를 나노스케일 공간 분해능을 갖고 영상화하는 방법론에 관해서는 많은 연구가 진행되지 않은 실정이다.
우리 대학 신소재공학과 홍승범 교수 연구팀이 LG에너지솔루션과 협업해, 나노스케일 분해능으로 전극 내 전자 전도 채널을 왜곡 신호 없이 정량적으로 추출하는 방법론을 개발하는 데 성공했다고 8일 밝혔다. 연구팀은 전극 소재와 같이 표면 거칠기가 큰 시료에서 전도성 원자간력현미경(Conductive Atomic Force Microscopy, C-AFM) 운용 시 발생하는 왜곡 정보인 용량성 전류(capacitive current)의 원인을 규명하고, 피어슨 상관 분석 방법을 기반으로 해당 왜곡 정보를 제거했다. 이 방법론을 실리콘/흑연 기반 복합 음극에 적용해 도전재 성분에 따른 전자 전도 채널 영상화를 실시했으며, 이를 통해 단일벽 탄소나노튜브(Signle-Walled Carbon Nano Tube, 이하 SWNCT)가 적용된 전극의 전기적, 전기화학적 우수성을 입증하는 데 성공했다.
연구팀은 이번 연구를 통해 실리콘 기반 전극과 같이 활물질의 부피 변화가 큰 시스템에서는 기존의 점형 도전재 대비 선형의 구조적 장점을 갖고 있는 SWCNT가 안정적인 전자 전도 채널을 확보하는 데 유리함을 보였다. 또한 SWCNT가 포함된 복합 전극의 경우, 130 사이클 이후에도 활물질의 분쇄가 보다 억제됐음을 보여주며, 전자 전도 채널의 불균일성이 활물질의 구조적 안정성에도 영향을 미칠 수 있음을 가설을 들어 설명했다.
제1 저자인 신소재공학과 박건 박사과정은 "전자 전도 채널 불균일이 유발한 전극의 전기화학 특성 퇴화라는 주제로 후속 연구를 진행 중이다ˮ라며 "나노스케일 영상화를 기반으로 지금껏 관찰하지 못했던 현상을 탐구할 수 있어 즐겁다ˮ라고 말했다. 교신 저자인 홍승범 교수는 "왜곡 신호의 원인을 규명하고, 이를 정량적으로 제거하는 연구는 영상화 분야에서 매우 중요하다ˮ라며 "이번에 개발한 방법론이 전극 내 전자 전도 채널을 강화하는데 적용돼, 실리콘 기반 복합 음극의 고도화를 앞당기는 데 도움이 되면 좋겠다ˮ라고 말했다.
이번 연구는 국제 학술지 `에이씨에스 어플라이드 머티리얼즈 앤드 인터페이시스(ACS Applied Materials & Interfaces)'에 게재됐다. (논문명: Nanoscale Visualization of the Electron Conduction Channel in the SiO/Graphite Composite Anode)
한편 이번 연구는 LG에너지솔루션-KAIST 프론티어 리서치 랩(Frontier Research Lab)과 KAIST 글로벌 특이점 사업의 지원을 받아 수행됐다.
2022.11.08
조회수 9591
-
코어-쉘 나노입자의 원자 구조와 물성 규명 성공
우리 대학 물리학과 양용수 교수, 화학과 한상우 교수, 기계공학과 유승화 교수 공동연구팀이 한국기초과학지원연구원, 한국화학연구원과의 공동연구 및 미국 로런스 버클리 국립연구소(Lawrence Berkeley National Laboratory), 영국 버밍엄 대학교(University of Birmingham)와의 국제 협력 연구를 통해 팔라듐-백금 코어-쉘 구조 나노입자의 3차원 계면구조와 그 특성을 규명했다고 3일 밝혔다.
코어-쉘(core-shell) 구조 나노입자는 서로 다른 물질로 이루어진 코어(알맹이)와 쉘(껍데기)이 맞붙은 형태로 합성된 나노물질이다. 코어와 쉘 간의 경계면에서 코어를 이루는 물질과 쉘을 이루는 물질 간의 원자 간격 차이로 인해 원자 구조의 변형이 일어나며, 이 변형을 제어함으로써 나노입자의 광학적, 자기적, 촉매적 성질들을 변화시킬 수 있다.
특히 수소연료전지 제작에 필수적으로 사용되는 촉매에 값비싼 백금이 주로 사용되는데, 코어-쉘 구조를 최적화할 수 있다면 훨씬 적은 양의 백금을 이용해 더욱 높은 성능의 촉매를 제작 가능하다는 점 때문에 많은 연구자의 관심을 끌고 있다. 하지만 지금까지의 코어-쉘 나노입자의 계면 연구들은 대부분 2차원 분석이나 앙상블-평균(ensemble-averaged) 분석을 통해 이루어져 쉘 내부에 묻힌 3차원적인 코어-쉘 경계면의 구조와 그에 따른 특성을 정확히 파악하기 어려웠다는 한계가 있다.
연구팀은 자체 개발한 원자 분해능 전자토모그래피 기술을 이용해 팔라듐과 백금으로 이루어진 코어-쉘 구조 나노입자의 3차원 계면 원자 구조를 최초로 규명했다. 병원에서 인체 내부의 3차원적인 구조를 엑스레이 CT를 이용해 측정하는 것과 마찬가지로, 전자토모그래피는 투과전자현미경을 이용해 물질에 대한 초고분해능 CT를 촬영하는 기술이라고 볼 수 있다. 이는 다양한 각도에서 물질의 2차원적인 투과전자현미경 이미지들을 얻고, 이로부터 3차원적인 구조 정보를 재구성해내는 방식으로 작동한다. 연구팀은 전자토모그래피의 3차원 분해능을 끌어올려 물질 내부의 원자들을 하나하나 관찰 가능한 수준으로 재구성하고, 코어-쉘의 3차원 원자 구조를 약 24pm(피코미터)의 정밀도로 규명했다. 1pm(피코미터)는 1미터의 1조 분의 일에 해당하는 단위로, 24pm는 수소 원자 반지름의 약 1/2 정도에 해당하는 매우 높은 정밀도다.
얻어진 구조를 통해 연구팀은 나노입자 내부의 코어-쉘 경계면의 구조를 단일 원자 단위로 파악할 수 있었고, 계면구조로부터 파생되는 원자들의 변위와 구조 변형에 대한 단일 원자 수준의 3차원적인 지도를 작성해 정량적으로 해석했다. 이를 통해 팔라듐-백금의 코어-쉘 나노입자 표면에 분포하는 각각의 원자들의 촉매 활성도를 규명했으며, 적절한 변형이 가해질 경우 촉매 활성도를 크게 높일 수 있음을 밝혔다.
물리학과 조혜성 석박사통합과정 학생이 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)'에 10월 10일 字 게재됐다. (논문명 : Direct strain correlations at the single-atom level in three-dimensional core-shell interface structures)
연구팀은 얻어진 3차원적 원자 변위와 구조 변형 지도에서 푸아송 효과(Poisson effect)로 알려진 탄성체 성질이 코어-쉘 나노입자 전체뿐만 아니라 단일 원자 수준에서도 일어난다는 것을 발견했다. 연구팀은 또한 이론적으로만 예측돼왔던 계면과 표면에서의 구조 변형도에 대한 상관성을 실험적으로 확인하고 이를 정량적으로 해석했다. 이러한 구조의 변형이 나노입자 전체에서 비슷하게 분포하는 것이 아니라 나노입자의 모양에 따라 위치별로 다르게 나타날 수 있음을 밝혔으며, 이러한 실험적인 발견은 분자 정역학(molecular statics) 시뮬레이션을 통해 이론적으로도 재확인됐다.
특히, 실험적으로 얻어진 3차원적인 원자 구조 정보는 양자역학적 계산을 통해 실제 물질의 물성과 직접적으로 연관될 수 있다는 점에서 그 의의가 크다. 이번 연구에서는 표면에서의 구조 변형도를 밀도범함수이론(density functional theory)의 양자역학적 계산 결과와 대응시킴으로써 표면에서의 촉매 활성도를 나타내는 표면의 산소 환원 반응(oxygen reduction reaction)을 각각의 표면 원자에 대해 계산했고, 이는 코어-쉘 구조와 촉매 특성 간의 관계를 단일 원자 수준에서 규명한 최초의 사례다.
연구를 주도한 양용수 교수는 "이번 연구는 그동안 2차원적인 분석, 또는 낮은 분해능에 국한되어 온 코어-쉘 구조 연구에서 벗어나 원자 하나하나까지 3차원적으로 들여다본다는 완전히 새로운 시각을 제시한다ˮ며 "이는 결과적으로 각각의 원자를 제어하는 사전적 설계를 통해 물질의 촉매 특성뿐만 아니라 구조와 연관된 모든 물성을 원하는 대로 최적화할 가능성을 보여준다ˮ라고 연구의 의의를 설명했다.
한편 이번 연구는 삼성미래기술육성재단 사업의 지원을 받아 수행됐다.
2022.11.03
조회수 11879